Contents — a Through D
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Sabbatical Leave Report 2019 – 2020
Sabbatical Leave Report 2019 – 2020 James MacDevitt, M.A. Associate Professor of Art History and Visual & Cultural Studies Director, Cerritos College Art Gallery Department of Art and Design Fine Arts and Communications Division Cerritos College January 2021 Table of Contents Title Page i Table of Contents ii Sabbatical Leave Application iii Statement of Purpose 35 Objectives and Outcomes 36 OER Textbook: Disciplinary Entanglements 36 Getty PST Art x Science x LA Research Grant Application 37 Conference Presentation: Just Futures 38 Academic Publication: Algorithmic Culture 38 Service and Practical Application 39 Concluding Statement 40 Appendix List (A-E) 41 A. Disciplinary Entanglements | Table of Contents 42 B. Disciplinary Entanglements | Screenshots 70 C. Getty PST Art x Science x LA | Research Grant Application 78 D. Algorithmic Culture | Book and Chapter Details 101 E. Just Futures | Conference and Presentation Details 103 2 SABBATICAL LEAVE APPLICATION TO: Dr. Rick Miranda, Jr., Vice President of Academic Affairs FROM: James MacDevitt, Associate Professor of Visual & Cultural Studies DATE: October 30, 2018 SUBJECT: Request for Sabbatical Leave for the 2019-20 School Year I. REQUEST FOR SABBATICAL LEAVE. I am requesting a 100% sabbatical leave for the 2019-2020 academic year. Employed as a fulltime faculty member at Cerritos College since August 2005, I have never requested sabbatical leave during the past thirteen years of service. II. PURPOSE OF LEAVE Scientific advancements and technological capabilities, most notably within the last few decades, have evolved at ever-accelerating rates. Artists, like everyone else, now live in a contemporary world completely restructured by recent phenomena such as satellite imagery, augmented reality, digital surveillance, mass extinctions, artificial intelligence, prosthetic limbs, climate change, big data, genetic modification, drone warfare, biometrics, computer viruses, and social media (and that’s by no means meant to be an all-inclusive list). -
MARS an Overview of the 1985–2006 Mars Orbiter Camera Science
MARS MARS INFORMATICS The International Journal of Mars Science and Exploration Open Access Journals Science An overview of the 1985–2006 Mars Orbiter Camera science investigation Michael C. Malin1, Kenneth S. Edgett1, Bruce A. Cantor1, Michael A. Caplinger1, G. Edward Danielson2, Elsa H. Jensen1, Michael A. Ravine1, Jennifer L. Sandoval1, and Kimberley D. Supulver1 1Malin Space Science Systems, P.O. Box 910148, San Diego, CA, 92191-0148, USA; 2Deceased, 10 December 2005 Citation: Mars 5, 1-60, 2010; doi:10.1555/mars.2010.0001 History: Submitted: August 5, 2009; Reviewed: October 18, 2009; Accepted: November 15, 2009; Published: January 6, 2010 Editor: Jeffrey B. Plescia, Applied Physics Laboratory, Johns Hopkins University Reviewers: Jeffrey B. Plescia, Applied Physics Laboratory, Johns Hopkins University; R. Aileen Yingst, University of Wisconsin Green Bay Open Access: Copyright 2010 Malin Space Science Systems. This is an open-access paper distributed under the terms of a Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: NASA selected the Mars Orbiter Camera (MOC) investigation in 1986 for the Mars Observer mission. The MOC consisted of three elements which shared a common package: a narrow angle camera designed to obtain images with a spatial resolution as high as 1.4 m per pixel from orbit, and two wide angle cameras (one with a red filter, the other blue) for daily global imaging to observe meteorological events, geodesy, and provide context for the narrow angle images. Following the loss of Mars Observer in August 1993, a second MOC was built from flight spare hardware and launched aboard Mars Global Surveyor (MGS) in November 1996. -
Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001
Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001. Preface This bibliography attempts to list all substantial autobiographies, biographies, festschrifts and obituaries of prominent oceanographers, marine biologists, fisheries scientists, and other scientists who worked in the marine environment published in journals and books after 1922, the publication date of Herdman’s Founders of Oceanography. The bibliography does not include newspaper obituaries, government documents, or citations to brief entries in general biographical sources. Items are listed alphabetically by author, and then chronologically by date of publication under a legend that includes the full name of the individual, his/her date of birth in European style(day, month in roman numeral, year), followed by his/her place of birth, then his date of death and place of death. Entries are in author-editor style following the Chicago Manual of Style (Chicago and London: University of Chicago Press, 14th ed., 1993). Citations are annotated to list the language if it is not obvious from the text. Annotations will also indicate if the citation includes a list of the scientist’s papers, if there is a relationship between the author of the citation and the scientist, or if the citation is written for a particular audience. This bibliography of biographies of scientists of the sea is based on Jacqueline Carpine-Lancre’s bibliography of biographies first published annually beginning with issue 4 of the History of Oceanography Newsletter (September 1992). It was supplemented by a bibliography maintained by Eric L. Mills and citations in the biographical files of the Archives of the Scripps Institution of Oceanography, UCSD. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Year XIX, Supplement Ethnographic Study And/Or a Theoretical Survey of a Their Position in the Article Should Be Clearly Indicated
III. TITLES OF ARTICLES DRU[TVO ANTROPOLOGOV SLOVENIJE The journal of the Slovene Anthropological Society Titles (in English and Slovene) must be short, informa- SLOVENE ANTHROPOLOGICAL SOCIETY Anthropological Notebooks welcomes the submis- tive, and understandable. The title should be followed sion of papers from the field of anthropology and by the name of the author(s), their position, institutional related disciplines. Submissions are considered for affiliation, and if possible, by e-mail address. publication on the understanding that the paper is not currently under consideration for publication IV. ABSTRACT AND KEYWORDS elsewhere. It is the responsibility of the author to The abstract must give concise information about the obtain permission for using any previously published objective, the method used, the results obtained, and material. Please submit your manuscript as an e-mail the conclusions. Authors are asked to enclose in English attachment on [email protected] and enclose your contact information: name, position, and Slovene an abstract of 100 – 200 words followed institutional affiliation, address, phone number, and by three to five keywords. They must reflect the field of e-mail address. research covered in the article. English abstract should be placed at the beginning of an article and the Slovene one after the references at the end. V. NOTES A N T H R O P O L O G I C A L INSTRUCTIONS Notes should also be double-spaced and used sparingly. They must be numbered consecutively throughout the text and assembled at the end of the article just before references. VI. QUOTATIONS Short quotations (less than 30 words) should be placed in single quotation marks with double marks for quotations within quotations. -
Mars Mapping, Data Mining, Change Detection, GIS Mapping, Time Series Analysis
ISPRS Technical Commission IV Symposium on Geospatial Databases and Location Based Services, 14 – 16 May 2014, Suzhou, China, MTSTC4-2014-172-2 TEMPORAL ANALYSIS OF ALL AVAILABLE HIGH-RESOLUTION MARS IMAGING PRODUCTS SINCE 1976 Panagiotis Sidiropoulos1 and Jan-Peter Muller Mullard Space Science Laboratory, University College London, Holmbury St Mary, Surrey, RH56NT, UK [email protected], [email protected] Commission KEY WORDS: Mars mapping, data mining, change detection, GIS mapping, time series analysis ABSTRACT: Starting from Viking Orbiter 1, launched in August 1975, several mainly NASA orbiters have been sent to Mars to accomplish the robotic tasks of imaging its surface. Initial analyses of these early images indicated a planet with similar characteristics to the Moon pitted with craters and large volcanic and tectonic features but dead from a geological perspective. Recently, scientific interest has shifted towards high-resolution imaging, which allows the identification of previously undiscovered geological phenomena and surface features as well as the examination of surface composition and geological history. The increasing frequency of Mars orbiters, carrying high-resolution cameras, allows the dynamic analysis of Martian surface, i.e. the analysis of the temporal evolution of certain areas that reveal natural processes that happen over time. The latter can be roughly classified into two major categories; processes that happen periodically each and every Martian season (e.g. seasonal flows in high latitude areas (McEwen et al., 2011) and events that do not follow some iterative pattern but are rather sporadic (e.g. new impact craters (Byrne et al., 2009)). Consequently, it is beneficial to conduct a twin temporal grouping of Mars imaging products, the first examining product distribution through time, so as to point out areas that favor the search for sporadic events, and the second product distribution per season, to identify areas favouring the search for periodic events. -
10Great Features for Moon Watchers
Sinus Aestuum is a lava pond hemming the Imbrium debris. Mare Orientale is another of the Moon’s large impact basins, Beginning observing On its eastern edge, dark volcanic material erupted explosively and possibly the youngest. Lunar scientists think it formed 170 along a rille. Although this region at first appears featureless, million years after Mare Imbrium. And although “Mare Orien- observe it at several different lunar phases and you’ll see the tale” translates to “Eastern Sea,” in 1961, the International dark area grow more apparent as the Sun climbs higher. Astronomical Union changed the way astronomers denote great features for Occupying a region below and a bit left of the Moon’s dead lunar directions. The result is that Mare Orientale now sits on center, Mare Nubium lies far from many lunar showpiece sites. the Moon’s western limb. From Earth we never see most of it. Look for it as the dark region above magnificent Tycho Crater. When you observe the Cauchy Domes, you’ll be looking at Yet this small region, where lava plains meet highlands, con- shield volcanoes that erupted from lunar vents. The lava cooled Moon watchers tains a variety of interesting geologic features — impact craters, slowly, so it had a chance to spread and form gentle slopes. 10Our natural satellite offers plenty of targets you can spot through any size telescope. lava-flooded plains, tectonic faulting, and debris from distant In a geologic sense, our Moon is now quiet. The only events by Michael E. Bakich impacts — that are great for telescopic exploring. -
Pervasive Ice-Related Erosion of Mid-Latitude Martian Craters
52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1149.pdf PERVASIVE ICE-RELATED EROSION OF MID-LATITUDE MARTIAN CRATERS. Alan D. Howard1, 1Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719-2395 ([email protected]). Introduction: Mid-latitude craters on Mars display shows maintenance of steep interior crater walls during distinctive degradation morphologies, ranging from considerable lateral erosion of all crater walls. The muted, rounded appearance to extensive erosion of both crater walls are free of primary crater wall morphology, interior and exterior crater walls. The primary focus such as roughness and slumps. The joint rim of the two here is the erosional modification of mid-latitude craters craters is missing, in part from burial, but the sharp by ice-related processes. drop-off to the interior at the rim junction suggests erosional attack as well. Fig. 1. CTX image of "softened" crater at -9.10°E, 45.83°S. Note the smooth texture of the intercrater Fig. 2. CTX image of a skeletonized mid-latitude crater plains, suggesting deep mantling. at -130.38°E, 47.02°S. Black arrow points to steep interior crater wall, and the white arrow show erosional "Softened" craters: An appreciable fraction of steepening of exterior crater wall. craters in the southern mid-latitudes embody the description of "softened" craters [1] which display The outer wall of the crater rim also displays a steep muted topography with rounded crater rims (Fig. 1). scarp at several locations, such as along the NE rim as The crater floor is often relatively flat, sometimes with at the white arrows. -
2019 Annual Report
Alfred P. Sloan Foundation $ 2019 Annual Report 2019 Annual Report 1 Alfred P. Sloan Foundation $ 2019 Annual Report Driven by the promise of great ideas. Alfred P. Sloan Foundation $ 2019 Annual Report Contents Preface 2 Mission 3 From the President 4 On Racism and Our Responsibilities 6 The Year in Discovery 8 Deep Carbon Observatory 18 Microbiology of the Built Environment 21 About the Grants Listing 24 2019 Grants by Program 25 2019 Financial Review 123 Audited Financial Statements and Schedules 125 Board of Trustees 156 Officers and Staff 157 Index of 2019 Grant Recipients 158 Cover: A student participant in the Environmentor program holds a turtle. An initiative of RISE (the Rockaway Institute for Sustainability), the Environmentor program is a Sloan-supported science research mentorship that offers NYC high school students the opportunity to conduct authentic, hands-on environmental research on Jamaica Bay and the Rockaway shoreline. (PHOTO: RISE ROCKAWAY) 1 Alfred P. Sloan Foundation $ 2019 Annual Report Preface The Alfred P. Sloan Foundation administers a private fund for the benefit of the public. It accordingly recognizes the responsibility of making periodic reports to the public on the management of this fund. The Foundation therefore submits this public report for the year 2019. 2 Alfred P. Sloan Foundation $ 2019 Annual Report Mission The Alfred P. Sloan Foundation makes grants primarily to support original research and education related to science, technology, engineering, mathematics, and economics. The Foundation believes that these fields— and the scholars and practitioners who work in them— are chief drivers of the nation’s health and prosperity. -
Annual Report 2011-2012
____2011 2012 Annual Report Cover Page Imprint Puzzle composed of six images (from the upper left to the lower right): Publisher International Space Science Institute 1. The Three Gorges Dam spans the Yangtze River in Hallerstrasse 6 east-central China, and is the world's largest power CH-3012 Bern station in terms of installed capacity, with its vast Switzerland reservoir stretching for 660 km (NASA, GSFC, METI, Tel.: +41 31 631 48 96 ERSDAC, JAROS, and U.S./Japan ASTER Science Fax.: +41 31 631 48 97 Team). E-mail: [email protected] Internet: www.issibern.ch 2. The High Resolution Stereo Camera on ESA’s Mars Express orbiter has obtained images of Hephaestus Editors Fossae, a region on Mars dotted with craters and Andrea Fischer and Rudolf von Steiger channel systems (ESA, DLR, FU Berlin (G. Neukum)). Concept/Layout 3. This X-ray image shows a comet-like blob of gas Andrea Fischer about 5 million light-years long hurling through a distant galaxy cluster at nearly 1 000 kilometres per Cover Design second (University of Maryland, Baltimore County Andrea Fischer (UMBC)). Printed by 4. Picture of the cosmic microwave background Länggass Druck AG (CMB) radiation which thermal radiation filling the Länggassstr. 65 observable universe almost uniformly (WMAP Sci- 3000 Bern 9 ence Team, NASA). Switzerland 5. The map of the surface of an exoplanet, or a planet beyond our solar system. The map, which shows temperature variations across the cloudy tops of a gas giant called HD 189733b, is made from in- frared data taken by NASA's Spitzer Space Telescope (NASA, JPL Caltech, H. -
Mapping the Martian Polar Ice Caps: Applications of Terrestrial Optical
JOURNAL OF GEOPHYSICALRESEARCH, VOL. 103,NO. Ell, PAGES25,851-25,864, OCTOBER 25, 1998 Mapping the Martian polar ice caps' Applications of terrestrial optical remote sensing methods Anne W. Nolin National Snow and Ice Data Center, Universityof Colorado,Boulder Abstract. With improvementsin bothinstrumentation and algorithms,methods formapping terrestrial snow cover using optical remote sensing data have progressed significantlyover the past decade. Multispectral data can now be used to determine notonly the presence or absenceof snowbut the fraction of snowcover in a pixel. Radiativetransfer models have been used to quantifythe nonlinearrelationship betweensurface reflectance and grainsize thereby providing the basisfor mapping snowgrain size from surface reflectance images. Model-derived characterization of the bidirectionalreflectance distribution function provides the meansfor converting measuredbidirectional reflectance to directionM-hemisphericMalbedo. In recent work,this approach has allowed climatologists to examine the large scale seasonal variabilityof albedoon the Greenlandice sheet. This seasonal albedo variability resultsfrom increasesin snowgrain size and exposureof the underlyingice cap •s the se•sonMsnow cover •bl•tes •w•y. With the currentM•rs GlobM Surveyor and future missionsto Mars, it will soonbe possibleto apply someof these terrestrialmapping methods to learnmore about Martian ice properties,extent, andvariability. Distinct differences exist between Mars and Earth ice mapping conditions,including surface temperature, -
Ancient Fluid Escape and Related Features in Equatorial Arabia Terra (Mars)
EPSC Abstracts Vol. 7 EPSC2012-132-3 2012 European Planetary Science Congress 2012 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2012 Ancient fluid escape and related features in equatorial Arabia Terra (Mars) F. Franchi(1), A. P. Rossi(2), M. Pondrelli(3), B. Cavalazzi(1), R. Barbieri(1), Dipartimento di Scienze della Terra e Geologico Ambientali, Università di Bologna, via Zamboni 67, 40129 Bologna, Italy ([email protected]). 2Jacobs University, Bremen, Germany. 3IRSPS, Università D’Annunzio, Pescara, Italy. Abstract Noachian [1]. The ELDs are composed by light rocks showing a polygonal pattern, described elsewhere on Arabia Terra, in the equatorial region of Mars, is Mars [4], and is characterized by a high sinuosity of long-time studied area especially for the abundance the strata that locally follows a concentric trend of fluid related features. Detailed stratigraphic and informally called “pool and rim” structures (Fig. morphological study of the succession exposed in the 1A). Crommelin and Firsoff craters evidenced the occurrences of flow structures and spring deposits that endorse the presence of fluids circulation in the Late Noachian. All the morphologies in these two proto-basins occur within the Equatorial Layered Deposits (ELDs). 1. Introduction Martian layered spring deposits are of considerable interest for their supposed relationship with water and high potential of microbial signatures preservation. Their supposed fluid-related origin [1] makes the Equatorial Layered Deposits attractive targets for future missions with astrobiological purposes. In this study we report the occurrence of mounds fields and flow structures in Firsoff and Crommelin craters and summarize the result of a detailed study of the remote-sensing data sets available in this region.