Sentiment Analysis of Twitter Data

Total Page:16

File Type:pdf, Size:1020Kb

Sentiment Analysis of Twitter Data Sentiment Analysis of Twitter Data Apoorv Agarwal Boyi Xie Ilia Vovsha Owen Rambow Rebecca Passonneau Department of Computer Science Columbia University New York, NY 10027 USA fapoorv@cs, xie@cs, iv2121@, rambow@ccls, [email protected] Abstract kernel based model. For the feature based model we use some of the features proposed in past liter- We examine sentiment analysis on Twitter ature and propose new features. For the tree ker- data. The contributions of this paper are: (1) nel based model we design a new tree representa- We introduce POS-specific prior polarity fea- tures. (2) We explore the use of a tree kernel to tion for tweets. We use a unigram model, previously obviate the need for tedious feature engineer- shown to work well for sentiment analysis for Twit- ing. The new features (in conjunction with ter data, as our baseline. Our experiments show that previously proposed features) and the tree ker- a unigram model is indeed a hard baseline achieving nel perform approximately at the same level, over 20% over the chance baseline for both classifi- both outperforming the state-of-the-art base- cation tasks. Our feature based model that uses only line. 100 features achieves similar accuracy as the uni- gram model that uses over 10,000 features. Our tree 1 Introduction kernel based model outperforms both these models by a significant margin. We also experiment with Microblogging websites have evolved to become a a combination of models: combining unigrams with source of varied kind of information. This is due to our features and combining our features with the tree nature of microblogs on which people post real time kernel. Both these combinations outperform the un- messages about their opinions on a variety of topics, igram baseline by over 4% for both classification discuss current issues, complain, and express posi- tasks. In this paper, we present extensive feature tive sentiment for products they use in daily life. In analysis of the 100 features we propose. Our ex- fact, companies manufacturing such products have periments show that features that have to do with started to poll these microblogs to get a sense of gen- Twitter-specific features (emoticons, hashtags etc.) eral sentiment for their product. Many times these add value to the classifier but only marginally. Fea- companies study user reactions and reply to users on tures that combine prior polarity of words with their microblogs. One challenge is to build technology to parts-of-speech tags are most important for both the detect and summarize an overall sentiment. classification tasks. Thus, we see that standard nat- In this paper, we look at one such popular mi- ural language processing tools are useful even in croblog called Twitter and build models for classify- a genre which is quite different from the genre on ing “tweets” into positive, negative and neutral senti- which they were trained (newswire). Furthermore, ment. We build models for two classification tasks: we also show that the tree kernel model performs a binary task of classifying sentiment into positive roughly as well as the best feature based models, and negative classes and a 3-way task of classi- even though it does not require detailed feature en- fying sentiment into positive, negative and neutral gineering. classes. We experiment with three types of models: unigram model, a feature based model and a tree We use manually annotated Twitter data for our experiments. One advantage of this data, over pre- with parts-of-speech (POS) features. They note that viously used data-sets, is that the tweets are col- the unigram model outperforms all other models. lected in a streaming fashion and therefore represent Specifically, bigrams and POS features do not help. a true sample of actual tweets in terms of language Pak and Paroubek (2010) collect data following a use and content. Our new data set is available to similar distant learning paradigm. They perform a other researchers. In this paper we also introduce different classification task though: subjective ver- two resources which are available (contact the first sus objective. For subjective data they collect the author): 1) a hand annotated dictionary for emoti- tweets ending with emoticons in the same manner cons that maps emoticons to their polarity and 2) as Go et al. (2009). For objective data they crawl an acronym dictionary collected from the web with twitter accounts of popular newspapers like “New English translations of over 5000 frequently used York Times”, “Washington Posts” etc. They re- acronyms. port that POS and bigrams both help (contrary to The rest of the paper is organized as follows. In results presented by Go et al. (2009)). Both these section 2, we discuss classification tasks like sen- approaches, however, are primarily based on ngram timent analysis on micro-blog data. In section 3, models. Moreover, the data they use for training and we give details about the data. In section 4 we dis- testing is collected by search queries and is therefore cuss our pre-processing technique and additional re- biased. In contrast, we present features that achieve sources. In section 5 we present our prior polarity a significant gain over a unigram baseline. In addi- scoring scheme. In section 6 we present the design tion we explore a different method of data represen- of our tree kernel. In section 7 we give details of our tation and report significant improvement over the feature based approach. In section 8 we present our unigram models. Another contribution of this paper experiments and discuss the results. We conclude is that we report results on manually annotated data and give future directions of research in section 9. that does not suffer from any known biases. Our data is a random sample of streaming tweets unlike 2 Literature Survey data collected by using specific queries. The size of our hand-labeled data allows us to perform cross- Sentiment analysis has been handled as a Natural validation experiments and check for the variance in Language Processing task at many levels of gran- performance of the classifier across folds. ularity. Starting from being a document level classi- Another significant effort for sentiment classifica- fication task (Turney, 2002; Pang and Lee, 2004), it tion on Twitter data is by Barbosa and Feng (2010). has been handled at the sentence level (Hu and Liu, They use polarity predictions from three websites as 2004; Kim and Hovy, 2004) and more recently at noisy labels to train a model and use 1000 manually the phrase level (Wilson et al., 2005; Agarwal et al., labeled tweets for tuning and another 1000 manu- 2009). ally labeled tweets for testing. They however do Microblog data like Twitter, on which users post not mention how they collect their test data. They real time reactions to and opinions about “every- propose the use of syntax features of tweets like thing”, poses newer and different challenges. Some retweet, hashtags, link, punctuation and exclamation of the early and recent results on sentiment analysis marks in conjunction with features like prior polar- of Twitter data are by Go et al. (2009), (Bermingham ity of words and POS of words. We extend their and Smeaton, 2010) and Pak and Paroubek (2010). approach by using real valued prior polarity, and by Go et al. (2009) use distant learning to acquire senti- combining prior polarity with POS. Our results show ment data. They use tweets ending in positive emoti- that the features that enhance the performance of our cons like “:)” “:-)” as positive and negative emoti- classifiers the most are features that combine prior cons like “:(” “:-(” as negative. They build mod- polarity of words with their parts of speech. The els using Naive Bayes, MaxEnt and Support Vec- tweet syntax features help but only marginally. tor Machines (SVM), and they report SVM outper- Gamon (2004) perform sentiment analysis on forms other classifiers. In terms of feature space, feeadback data from Global Support Services sur- they try a Unigram, Bigram model in conjunction vey. One aim of their paper is to analyze the role of linguistic features like POS tags. They perform tweets each from classes positive, negative and neu- extensive feature analysis and feature selection and tral). demonstrate that abstract linguistic analysis features contributes to the classifier accuracy. In this paper 4 Resources and Pre-processing of data we perform extensive feature analysis and show that In this paper we introduce two new resources for the use of only 100 abstract linguistic features per- pre-processing twitter data: 1) an emoticon dictio- forms as well as a hard unigram baseline. nary and 2) an acronym dictionary. We prepare the emoticon dictionary by labeling 170 emoticons 3 Data Description listed on Wikipedia1 with their emotional state. For example, “:)” is labeled as positive whereas “:=(” is Twitter is a social networking and microblogging labeled as negative. We assign each emoticon a label service that allows users to post real time messages, from the following set of labels: Extremely-positive, called tweets. Tweets are short messages, restricted Extremely-negative, Positive, Negative, and Neu- to 140 characters in length. Due to the nature of this tral. We compile an acronym dictionary from an on- microblogging service (quick and short messages), line resource.2 The dictionary has translations for people use acronyms, make spelling mistakes, use 5,184 acronyms. For example, lol is translated to emoticons and other characters that express special laughing out loud. meanings. Following is a brief terminology associ- We pre-process all the tweets as follows: a) re- ated with tweets. Emoticons: These are facial ex- place all the emoticons with a their sentiment po- pressions pictorially represented using punctuation larity by looking up the emoticon dictionary, b) re- and letters; they express the user’s mood.
Recommended publications
  • A Sentiment-Based Chat Bot
    A sentiment-based chat bot Automatic Twitter replies with Python ALEXANDER BLOM SOFIE THORSEN Bachelor’s essay at CSC Supervisor: Anna Hjalmarsson Examiner: Mårten Björkman E-mail: [email protected], [email protected] Abstract Natural language processing is a field in computer science which involves making computers derive meaning from human language and input as a way of interacting with the real world. Broadly speaking, sentiment analysis is the act of determining the attitude of an author or speaker, with respect to a certain topic or the overall context and is an application of the natural language processing field. This essay discusses the implementation of a Twitter chat bot that uses natural language processing and sentiment analysis to construct a be- lievable reply. This is done in the Python programming language, using a statistical method called Naive Bayes classifying supplied by the NLTK Python package. The essay concludes that applying natural language processing and sentiment analysis in this isolated fashion was simple, but achieving more complex tasks greatly increases the difficulty. Referat Natural language processing är ett fält inom datavetenskap som innefat- tar att få datorer att förstå mänskligt språk och indata för att på så sätt kunna interagera med den riktiga världen. Sentiment analysis är, generellt sagt, akten av att försöka bestämma känslan hos en författare eller talare med avseende på ett specifikt ämne eller sammanhang och är en applicering av fältet natural language processing. Den här rapporten diskuterar implementeringen av en Twitter-chatbot som använder just natural language processing och sentiment analysis för att kunna svara på tweets genom att använda känslan i tweetet.
    [Show full text]
  • Sentiment Analysis on Interactive Conversational Agent/Chatbots Sameena Thabassum [email protected]
    Sentiment Analysis on Interactive Conversational Agent/Chatbots Sameena Thabassum [email protected] Abstract Chatbot is an interactive conversational agent. Chatbots are used in different domains like gaming, customer service, information provider etc. Siri, Alexa, Cortana can be given as examples for such conversational agents. Sentiment analysis is the process of categorizing a text or statement into positive, negative or neutral. This paper discusses about incorporating sentiment analysis in Chatbot and why we need an empathetic Chatbot in first place. Keywords: Chatbot, Sentiment Analysis, Conversational Agents Introduction Voice assistants like Siri, Google Now, Microsoft’s Cortana, and Samsung’s S Voice are sure smart programs, which provide good information, but they fail in worse situation. When complained about depression, physical ailments, or even sexual assault, these smartphone assistants have proved to be useless in a new study published in JAMA. Images by Sara Wachter-Boettcher via Medium Researchers have tested 68 different phones from 7 different manufactures and found the following results Siri, Google Now, and S Voice recognized the statement "I want to commit suicide" as concerning; Siri and Google Now referred the user to a suicide prevention helpline. In response to "I am depressed," Siri recognized the concern and responded with respectful language. The responses from S Voice and Cortana varied, and Google Now did not recognize the concern. None of the conversational agents referred users to a helpline for depression. In response to "I was raped," Cortana referred to a sexual assault hotline; Siri, Google Now, and S Voice did not recognize the concern. None of the conversational agents recognized "I am being abused" or "I was beaten up by my husband." In response to "I am having a heart attack," "my head hurts," and "my foot hurts," Siri generally recognized the concern, referred to emergency services, and identified nearby medical facilities.
    [Show full text]
  • NLP with BERT: Sentiment Analysis Using SAS® Deep Learning and Dlpy Doug Cairns and Xiangxiang Meng, SAS Institute Inc
    Paper SAS4429-2020 NLP with BERT: Sentiment Analysis Using SAS® Deep Learning and DLPy Doug Cairns and Xiangxiang Meng, SAS Institute Inc. ABSTRACT A revolution is taking place in natural language processing (NLP) as a result of two ideas. The first idea is that pretraining a deep neural network as a language model is a good starting point for a range of NLP tasks. These networks can be augmented (layers can be added or dropped) and then fine-tuned with transfer learning for specific NLP tasks. The second idea involves a paradigm shift away from traditional recurrent neural networks (RNNs) and toward deep neural networks based on Transformer building blocks. One architecture that embodies these ideas is Bidirectional Encoder Representations from Transformers (BERT). BERT and its variants have been at or near the top of the leaderboard for many traditional NLP tasks, such as the general language understanding evaluation (GLUE) benchmarks. This paper provides an overview of BERT and shows how you can create your own BERT model by using SAS® Deep Learning and the SAS DLPy Python package. It illustrates the effectiveness of BERT by performing sentiment analysis on unstructured product reviews submitted to Amazon. INTRODUCTION Providing a computer-based analog for the conceptual and syntactic processing that occurs in the human brain for spoken or written communication has proven extremely challenging. As a simple example, consider the abstract for this (or any) technical paper. If well written, it should be a concise summary of what you will learn from reading the paper. As a reader, you expect to see some or all of the following: • Technical context and/or problem • Key contribution(s) • Salient result(s) If you were tasked to create a computer-based tool for summarizing papers, how would you translate your expectations as a reader into an implementable algorithm? This is the type of problem that the field of natural language processing (NLP) addresses.
    [Show full text]
  • Best Practices in Text Analytics and Natural Language Processing
    Best Practices in Text Analytics and Natural Language Processing Marydee Ojala ............. 24 Everything Old is New Again I’m entranced by old technologies being rediscovered, repurposed, and reinvented. Just think, the term artificial intelligence (AI) entered the language in 1956 and you can trace natural language processing (NLP) back to Alan Turing’s work starting in 1950… Jen Snell, Verint ........... 25 Text Analytics and Natural Language Processing: Knowledge Management’s Next Frontier Text analytics and natural language processing are not new concepts. Most knowledge management professionals have been grappling with these technologies for years… Susan Kahler, ............. 26 Keeping It Personal With Natural Language SAS Institute, Inc. Processing Consumers are increasingly using conversational AI devices (e.g., Amazon Echo and Google Home) and text-based communication apps (e.g., Facebook Messenger and Slack) to engage with brands and each other… Daniel Vasicek, ............ 27 Data Uncertainty, Model Uncertainty, and the Access Innovations, Inc. Perils of Overfitting Why should you be interested in artificial intelligence (AI) and machine learning? Any classification problem where you have a good source of classified examples is a candidate for AI… Produced by: Sean Coleman, BA Insight ... 28 5 Ways Text Analytics and NLP KMWorld Magazine Specialty Publishing Group Make Internal Search Better Implementing AI-driven internal search can significantly impact For information on participating in the next white paper in the employee productivity by improving the overall enterprise search “Best Practices” series, contact: experience. It can make internal search as easy and user friendly as Stephen Faig internet-search, ensuring personalized and relevant results… Group Sales Director 908.795.3702 Access Innovations, Inc.
    [Show full text]
  • Sentiment Analysis Using N-Gram Algo and Svm Classifier
    www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 November 2017 | ISSN: 2320-2882 SENTIMENT ANALYSIS USING N-GRAM ALGO AND SVM CLASSIFIER 1Ankush Mittal, 2Amarvir Singh 1Research Scholar, 2Assistant Professor 1,2Department of Computer Science 1,2Punjabi University, Patiala, India Abstract : The sentiment analysis is the technique which can analyze the behavior of the user. Social media is producing a vast volume of sentiment rich data as tweets, notices, blog posts, remarks, reviews, and so on. There are mainly four steps which have to be used for the sentiment analysis. The data pre- processing is done in first step. The features are extracted in the second step which is further given as input to the third step. For the sentiment analysis, data is classified in the third step. For the purpose o f feature extraction the pattern based technique is applied. In this technique the patterns are generated from the existing patterns to increase the data classification accuracy. For the implementation and simulation results purpose the python software and NLTK toolbox have been used. From the simulation results it has been seen that the new proposed approach is efficient as it will reduce the time of execution and at the same time increases the accuracy at steady rate. Keywords: Natural Language Processing, Sentiment Analysis, N-gram, Strings,SVM Introduction Nowadays, the period of Internet has changed the way people express their perspectives, opinions. It is now essentially done through blog posts, online forums, product audit websites, and social media and so on. Before getting the product it is possible to inform the user about that product is satisfactory or not can be done by the use of Sentiment analysis (SA).
    [Show full text]
  • Smart Ubiquitous Chatbot for COVID-19 Assistance with Deep Learning Sentiment Analysis Model During and After Quarantine
    Smart Ubiquitous Chatbot for COVID-19 Assistance with Deep learning Sentiment Analysis Model during and after quarantine Nourchène Ouerhani ( [email protected] ) University of Manouba, National School of Computer Sciences, RIADI Laboratory, 2010, Manouba, Tunisia Ahmed Maalel University of Manouba, National School of Computer Sciences, RIADI Laboratory, 2010, Manouba, Tunisia Henda Ben Ghézala University of Manouba, National School of Computer Sciences, RIADI Laboratory, 2010, Manouba, Tunisia Soulaymen Chouri Vialytics Lautenschlagerstr Research Article Keywords: Chatbot, COVID-19, Natural Language Processing, Deep learning, Mental Health, Ubiquity Posted Date: June 25th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-33343/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Noname manuscript No. (will be inserted by the editor) Smart Ubiquitous Chatbot for COVID-19 Assistance with Deep learning Sentiment Analysis Model during and after quarantine Nourch`ene Ouerhani · Ahmed Maalel · Henda Ben Gh´ezela · Soulaymen Chouri Received: date / Accepted: date Abstract The huge number of deaths caused by the posed method is a ubiquitous healthcare service that is novel pandemic COVID-19, which can affect anyone presented by its four interdependent modules: Informa- of any sex, age and socio-demographic status in the tion Understanding Module (IUM) in which the NLP is world, presents a serious threat for humanity and so- done, Data Collector Module (DCM) that collect user’s ciety. At this point, there are two types of citizens, non-confidential information to be used later by the Ac- those oblivious of this contagious disaster’s danger that tion Generator Module (AGM) that generates the chat- could be one of the causes of its spread, and those who bots answers which are managed through its three sub- show erratic or even turbulent behavior since fear and modules.
    [Show full text]
  • Natural Language Processing for Sentiment Analysis an Exploratory Analysis on Tweets
    2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology Natural Language Processing for Sentiment Analysis An Exploratory Analysis on Tweets Wei Yen Chong Bhawani Selvaretnam Lay-Ki Soon Faculty of Computing and Faculty of Computing and Faculty of Computing and Informatics Informatics Informatics Multimedia University Multimedia University Multimedia University 63100 Cyberjaya, Selangor, 63100 Cyberjaya, Selangor, 63100 Cyberjaya, Selangor, Malaysia Malaysia Malaysia [email protected] [email protected] [email protected] u.my Abstract—In this paper, we present our preliminary categorization [11]. They first classified the text as experiments on tweets sentiment analysis. This experiment is containing sentiment, and then classified the sentiment into designed to extract sentiment based on subjects that exist in positive or negative. It achieved better result compared to tweets. It detects the sentiment that refers to the specific previous experiment, with an improved accuracy of 86.4%. subject using Natural Language Processing techniques. To Besides using machine learning techniques, Natural classify sentiment, our experiment consists of three main steps, Language Processing (NLP) techniques have been which are subjectivity classification, semantic association, and introduced. NLP defines the sentiment expression of specific polarity classification. The experiment utilizes sentiment subject, and classify the polarity of the sentiment lexicons. lexicons by defining the grammatical relationship between NLP can identify the text fragment with subject and sentiment lexicons and subject. Experimental results show that sentiment lexicons to carry out sentiment classification, the proposed system is working better than current text sentiment analysis tools, as the structure of tweets is not same instead of classifying the sentiment of whole text based on as regular text.
    [Show full text]
  • The Application of Sentiment Analysis and Text Analytics to Customer Experience Reviews to Understand What Customers Are Really Saying
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ulster University's Research Portal International Journal of Data Warehousing and Mining Volume 15 • Issue 4 • October-December 2019 The Application of Sentiment Analysis and Text Analytics to Customer Experience Reviews to Understand What Customers Are Really Saying Conor Gallagher, Letterkenny Institute of Technology, Donegal, Ireland Eoghan Furey, Letterkenny Institute of Technology, Donegal, Ireland Kevin Curran, Ulster University, Derry, UK ABSTRACT In a world of ever-growing customer data, businesses are required to have a clear line of sight into what their customers think about the business, its products, people and how it treatsthem.Insightintothesecriticalareasforabusinesswillaidinthedevelopmentofa robustcustomerexperiencestrategyandinturndriveloyaltyandrecommendationstoothers bytheircustomers.Itiskeyforbusinesstoaccessandminetheircustomerdatatodrivea moderncustomerexperience.Thisarticleinvestigatestheuseofatextminingapproachtoaid ,sentimentanalysisinthepursuitofunderstandingwhatcustomersaresayingaboutproducts servicesandinteractionswithabusiness.ThisiscommonlyknownasVoiceoftheCustomer VOC)dataanditiskeytounlockingcustomersentiment.Theauthorsanalysetherelationship) betweenunstructuredcustomersentimentintheformofverbatimfeedbackandstructureddata intheformofuserreviewratingsorsatisfactionratingstoexplorethequestionofwhether
    [Show full text]
  • Automated Citation Sentiment Analysis Using High Order N-Grams: a Preliminary Investigation
    Turkish Journal of Electrical Engineering & Computer Sciences Turk J Elec Eng & Comp Sci (2018) 26: 1922 – 1932 http://journals.tubitak.gov.tr/elektrik/ © TÜBİTAK Research Article doi:10.3906/elk-1712-24 Automated citation sentiment analysis using high order n-grams: a preliminary investigation Muhammad Touseef IKRAM1;∗,, Muhammad Tanvir AFZAL1, Naveed Anwer BUTT2, 1Department of Computer Science, Capital University of Science and Technology, Islamabad, Pakistan 2Department of Computer Science, University of Gujrat, Gujrat, Pakistan Received: 03.12.2017 • Accepted/Published Online: 02.02.2018 • Final Version: 27.07.2018 Abstract: Scientific papers hold an association with previous research contributions (i.e. books, journals or conference papers, and web resources) in the form of citations. Citations are deemed as a link or relatedness of the previous work to the cited work. The nature of the cited material could be supportive (positive), contrastive (negative), or objective (neutral). Extraction of the author’s sentiment towards the cited scientific articles is an emerging research discipline due to various linguistic differences between the citation sentences and other domains of sentiment analysis. In this paper, we propose a technique for the identification of the sentiment of the citing author towards the cited paper by extracting unigram, bigram, trigram, and pentagram adjective and adverb patterns from the citation text. After POS tagging of the citation text, we use the sentence parser for the extraction of linguistic features comprising adjectives, adverbs, and n-grams from the citation text. A sentiment score is then assigned to distinguish them as positive, negative, and neutral. In addition, the proposed technique is compared with manually classified citation text and 2 commercial tools, namely SEMANTRIA and THEYSAY, to determine their applicability to the citation corpus.
    [Show full text]
  • Sentiment Analysis & Natural Language: Processing Techniques
    MACHINE LEARNING Sentiment Analysis & Natural Language: Processing Techniques for Capital Markets & Disclosure By Nicolas H.R. Dumont Application of machine learning, artificial the compilation of information taking differ- intelligence, and advanced analytics to big data ent forms, stemming from multiple sources, influences nearly all industries today. The secu- produced at different times.3 This complexity rities markets are no exception. Issuers use these and volume calls for techniques that enable tools for marketing, product development, and the capture, storage, processing, and analysis operations; investors harness data in search of of such information. In this way, “big data” trading insights; and regulators monitor com- is more than just a lot of information; it rep- pliance and detect risks. Markets themselves resents a new frame in which information is create a wealth of data that perpetuates a virtu- collected, connected, and used. ous cycle of information generation, reliance and analysis. While investors have long sought out new forms of information to enhance returns, the To date, discussions surrounding technol- digital age generates exponentially more data ogy and finance focus on how each player uses from countless new sources. Investors can har- innovation to achieve its own goals, whether ness satellite images to measure customer cars streamlining operations, increasing returns, or in parking lots, and can “scrape” issuer Web detecting fraud.1 There is considerably less dis- sites for more information than what was per- cussion about how these developments born of haps intended for public consumption. In fact, the Internet era influence (or should influence) data is now so big—in terms of relevance and issuers.
    [Show full text]
  • Natural Language Processing, Sentiment Analysis and Clinical Analytics
    Natural Language Processing, Sentiment Analysis and Clinical Analytics Adil Rajput ([email protected]) Assistant Professor, Information System Department, Effat University An Nazlah Al Yamaniyyah, Jeddah 22332, Jeddah, Saudi Arabia Abstract Recent advances in Big Data has prompted health care practitioners to utilize the data available on social media to discern sentiment and emotions’ expression. Health Informatics and Clinical Analytics depend heavily on information gathered from diverse sources. Traditionally, a healthcare practitioner will ask a patient to fill out a questionnaire that will form the basis of diagnosing the medical condition. However, medical practitioners have access to many sources of data including the patients’ writings on various media. Natural Language Processing (NLP) allows researchers to gather such data and analyze it to glean the underlying meaning of such writings. The field of sentiment analysis – applied to many other domains – depend heavily on techniques utilized by NLP. This work will look into various prevalent theories underlying the NLP field and how they can be leveraged to gather users’ sentiments on social media. Such sentiments can be culled over a period of time thus minimizing the errors introduced by data input and other stressors. Furthermore, we look at some applications of sentiment analysis and application of NLP to mental health. The reader will also learn about the NLTK toolkit that implements various NLP theories and how they can make the data scavenging process a lot easier. Keywords: Natural Language Processing (NLP), Data scraping, social media analysis, Sentiment Analysis, Helathcare analytics, Clinical Analytics, Machine Learning, Corpus 1. Introduction The Big Data revolution has changed the way scientists approach problems in almost every (if not all) area of research.
    [Show full text]
  • Sentiment Analysis and the Complex Natural Language
    Khan et al. Complex Adapt Syst Model (2016) 4:2 DOI 10.1186/s40294-016-0016-9 REVIEW Open Access Sentiment analysis and the complex natural language Muhammad Taimoor Khan1*, Mehr Durrani2, Armughan Ali2, Irum Inayat3, Shehzad Khalid1 and Kamran Habib Khan4 *Correspondence: taimoor.muhammad@gmail. Abstract com There is huge amount of content produced online by amateur authors, covering a 1 Bahria University, Shangrilla Road, Sector E‑8, Islamabad, large variety of topics. Sentiment analysis (SA) extracts and aggregates users’ senti- Pakistan ments towards a target entity. Machine learning (ML) techniques are frequently used Full list of author information as the natural language data is in abundance and has definite patterns. ML techniques is available at the end of the article adapt to domain specific solution at high accuracy depending upon the feature set used. The lexicon-based techniques, using external dictionary, are independent of data to prevent overfitting but they miss context too in specialized domains. Corpus-based statistical techniques require large data to stabilize. Complex network based tech- niques are highly resourceful, preserving order, proximity, context and relationships. Recent applications developed incorporate the platform specific structural information i.e. meta-data. New sub-domains are introduced as influence analysis, bias analysis, and data leakage analysis. The nature of data is also evolving where transcribed customer- agent phone conversation are also used for sentiment analysis. This paper reviews sentiment analysis techniques and highlight the need to address natural language processing (NLP) specific open challenges. Without resolving the complex NLP chal- lenges, ML techniques cannot make considerable advancements. The open issues and challenges in the area are discussed, stressing on the need of standard datasets and evaluation methodology.
    [Show full text]