Dementia – Diagnostic and Therapeutic Interventions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) (11) 4,232,002 Nogrady 45) Nov
United States Patent (19) (11) 4,232,002 Nogrady 45) Nov. 4, 1980 (54) PROCEDURES AND PHARMACEUTICAL (56) References Cited PRODUCTS FOR USE IN THE PUBLICATIONS ADMINISTRATION OF ANTHISTAMINES American Hospital Formulary Service, 1966, 4:00 Anti (75. Inventor: Stephen G. Nogrady, Sully, near histamine Drugs, Penarth, Great Britain Primary Examiner-Stanley J. Friedman Attorney, Agent, or Firm-Young & Thompson 73) Assignee: The Welsh National School of Medicine, Penarth, Great Britain 57 ABSTRACT An antihistamine of the benzhydrylether, alkylamine, or (21) Appl. No.: 965,171 benzocyloheptatiophene class is suitable for use in the therapeutic treatment or prophylaxis of reversible air (22 Filed: Nov.30, 1978 ways obstruction by inhalation. The antihistamine may be clemastine, chlorpheniramine or ketotifen and may (30) Foreign Application Priority Data be in the form of a composition in admixture with a diluent. The antihistamine can be administered from a Dec. 1, 1977 GB) United Kingdom ..................... 5.0020 pharmaceutical inhalation device which is designed to 51 Int. Cl. ......................... A61L 9/04; A61 K9/04; administer a dosage unit of the antihistamine. The inha A61K 31/44 lation device can be in the form of a pressurized aerosol 52 U.S. C. ........................................ 424/45; 424/46; inhaler or a dry powder insufflator. 424/263 58) Field of Search ............................ 424/263, 46, 45 5 Claims, No Drawings 4,232,002 1. 2 inhalation provides the equivalent of 0.1 to 5 mg. of PROCEDURES AND PHARMACEUTICAL clemastine, or 0.05 to 2.5 mg. of chlorpheniramine. The PRODUCTS FOR USE IN THE ADMINISTRATION drug may be inhaled in the form of a mist or nebulized OF ANTHISTAMINES spray, or as a cloud of fine solid particles, and may be inhaled from a variety of inhaler devices. -
Anticoagulant Effects of Statins and Their Clinical Implications
Review Article 1 Anticoagulant effects of statins and their clinical implications Anetta Undas1; Kathleen E. Brummel-Ziedins2; Kenneth G. Mann2 1Institute of Cardiology, Jagiellonian University School of Medicine, and John Paul II Hospital, Krakow, Poland; 2Department of Biochemistry, University of Vermont, Colchester, Vermont, USA Summary cleavage, factor V and factor XIII activation, as well as enhanced en- There is evidence indicating that statins (3-hydroxy-methylglutaryl dothelial thrombomodulin expression, resulting in increased protein C coenzyme A reductase inhibitors) may produce several cholesterol-inde- activation and factor Va inactivation. Observational studies and one ran- pendent antithrombotic effects. In this review, we provide an update on domized trial have shown reduced VTE risk in subjects receiving statins, the current understanding of the interactions between statins and blood although their findings still generate much controversy and suggest that coagulation and their potential relevance to the prevention of venous the most potent statin rosuvastatin exerts the largest effect. thromboembolism (VTE). Anticoagulant properties of statins reported in experimental and clinical studies involve decreased tissue factor ex- Keywords pression resulting in reduced thrombin generation and attenuation of Blood coagulation, statins, tissue factor, thrombin, venous throm- pro-coagulant reactions catalysed by thrombin, such as fibrinogen boembolism Correspondence to: Received: August 30, 2013 Anetta Undas, MD, PhD Accepted after major revision: October 15, 2013 Institute of Cardiology, Jagiellonian University School of Medicine Prepublished online: November 28, 2013 80 Pradnicka St., 31–202 Krakow, Poland doi:10.1160/TH13-08-0720 Tel.: +48 12 6143004, Fax: +48 12 4233900 Thromb Haemost 2014; 111: ■■■ E-mail: [email protected] Introduction Most of these additional statin-mediated actions reported are independent of blood cholesterol reduction. -
Antihistamine Therapy in Allergic Rhinitis
CLINICAL REVIEW Antihistamine Therapy in Allergic Rhinitis Paul R. Tarnasky, MD, and Paul P. Van Arsdel, Jr, MD Seattle, Washington Allergic rhinitis is a common disorder that is associated with a high incidence of mor bidity and considerable costs. The symptoms of allergic rhinitis are primarily depen dent upon the tissue effects of histamine. Antihistamines are the mainstay of therapy for allergic rhinitis. Recently, a second generation of antihistamines has become available. These agents lack the adverse effect of sedation, which is commonly associated with older antihistamines. Current practice of antihistamine therapy in allergic rhinitis often involves random selection among the various agents. Based upon the available clinical trials, chlorpheniramine appears to be the most reasonable initial antihistaminic agent. A nonsedating antihis tamine should be used initially if a patient is involved in activities where drowsiness is dangerous. In this comprehensive review of allergic rhinitis and its treatment, the cur rent as well as future options in antihistamine pharmacotherapy are emphasized. J Fam Pract 1990; 30:71-80. llergic rhinitis is a common condition afflicting some defined by the period of exposure to those agents to which A where between 15 and 30 million people in the United a patient is sensitive. Allergens in seasonal allergic rhinitis States.1-3 The prevalence of disease among adolescents is consist of pollens from nonflowering plants such as trees, estimated to be 20% to 30%. Two thirds of the adult grasses, and weeds. These pollens generally create symp allergic rhinitis patients are under 30 years of age.4-6 Con toms in early spring, late spring through early summer, sequently, considerable costs are incurred in days lost and fall, respectively. -
Antiplatelets, Anticoagulants and Bleeding Risk and Ppis
GP INFOSHEET – ANTITHROMBOTICS AND BLEEDING RISK Author(s): Dr. Stuart Rison; Dr. John Robson; Version: 1.6; Last updated 28/11/2019 ANTIPLATELETS, ANTICOAGULANTS AND BLEEDING RISK – WHICH AGENTS AND FOR HOW LONG?; WHY USE PPIs? KEY RECOMMENDATION Patients taking anticoagulants or antiplatelet medicines at high bleed risk should be considered for a Proton Pump Inhibitor (PPI). PPIs reduce bleeding risk by 70% or more. Patients age 65 years or more on anticoagulants or antiplatelet agents are at increased risk because of their age and bleeding risk continues to rise exponentially at older ages. PPIs are recommended in patients on anticoagulants or antiplatelet agents: o At any age with previous GI bleeding o Age 75 years or older o 65 years or older with additional risk factors (see box below) o Interacting medication Dual antiplatelet therapy (DAPT) for cardiac conditions - typically aspirin + clopidogrel - is rarely justified for more than 1 year. Review use for more than one 1 year and in conjunction with the cardiologist consider whether this can revert to a single agent. Dual-pathway therapy for atrial fibrillation - both an anticoagulant and one or more antiplatelet agents- is also rarely justified for longer than 1 year. Consider anticoagulant alone with appropriate specialist advice. ADDITIONAL GI-BLEED RISK FACTORS Anaemia Hb <11g/L Impaired renal function (eGFR<30) Upper GI inflammation (and of course previous GI bleeding) Liver disease Interacting medicines (NSAIDs, SSRI/SNRIs, bisphosphonates, lithium, spironolactone, phenytoin, carbamazepine) WHAT DO WE MEAN BY ANTITHROMBOTICS? Antithrombotics reduce blood clot formation1. There are two main categories: 1. Antiplatelet agent – inhibit platelet aggregation e.g. -
Current Status of Antifibrinolytics in Cardiopulmonary Bypass and Elective Deep Hypothermic Circulatory Arrest Jeffrey A
Anesthesiology Clin N Am 21 (2003) 527–551 Current status of antifibrinolytics in cardiopulmonary bypass and elective deep hypothermic circulatory arrest Jeffrey A. Green, MD*, Bruce D. Spiess, MD Department of Anesthesiology, Virginia Commonwealth University, Medical College of Virginia Campus, 1200 East Broad Street, PO Box 980695, Richmond, VA 23209 USA Bleeding after cardiopulmonary bypass Cardiopulmonary bypass (CPB) alters the hemostatic balance and predisposes cardiac surgery patients to an increased risk of microvascular bleeding. Bleeding and the need for transfusion are among the most common complications of cardiac surgery. In fact, until recently, blood transfusions seemed to be required for about 50% of all cardiac surgery patients [1]. Currently, CPB accounts for 10% to 20% of the transfusions performed in the United States [2,3]. Transfusion, however, exposes patients to added risks such as infectious disease transmission [4], transfusion reactions [5], graft-versus-host disease [6], transfusion-induced lung injury [7], and decreased resistance to postoperative infection [8,9]. Transfusion increases the risk of infection by 35% to 300% and increases the risk of pneumonia in coronary artery bypass (CABG) patients by 5% per unit transfused [10]. The primary purported benefit of transfusion, increased oxygen carrying capacity, has not been definitively proven. Excessive postoperative bleeding may necessitate surgical reexploration, increasing morbidity, and mortality. Postoperatively, the risk of excessive bleeding is 11% [11], and 5% to 7% of patients lose more than 2 L of blood in the first 24 hours after CPB [12]. Reexploration for hemorrhage is required in 3.6% to 4.2% of patients [13], and mortality rates range from 10% to 22% [14]. -
Antithrombotic Therapy for VTE Disease, 10Th Ed, 2016
[ Evidence-Based Medicine ] Antithrombotic Therapy for VTE Disease CHEST Guideline and Expert Panel Report Clive Kearon, MD, PhD; Elie A. Akl, MD, MPH, PhD; Joseph Ornelas, PhD; Allen Blaivas, DO, FCCP; David Jimenez, MD, PhD, FCCP; Henri Bounameaux, MD; Menno Huisman, MD, PhD; Christopher S. King, MD, FCCP; Timothy A. Morris, MD, FCCP; Namita Sood, MD, FCCP; Scott M. Stevens, MD; Janine R. E. Vintch, MD, FCCP; Philip Wells, MD; Scott C. Woller, MD; and COL Lisa Moores, MD, FCCP BACKGROUND: We update recommendations on 12 topics that were in the 9th edition of these guidelines, and address 3 new topics. METHODS: We generate strong (Grade 1) and weak (Grade 2) recommendations based on high- (Grade A), moderate- (Grade B), and low- (Grade C) quality evidence. RESULTS: For VTE and no cancer, as long-term anticoagulant therapy, we suggest dabigatran (Grade 2B), rivaroxaban (Grade 2B), apixaban (Grade 2B), or edoxaban (Grade 2B) over vitamin K antagonist (VKA) therapy, and suggest VKA therapy over low-molecular-weight heparin (LMWH; Grade 2C). For VTE and cancer, we suggest LMWH over VKA (Grade 2B), dabigatran (Grade 2C), rivaroxaban (Grade 2C), apixaban (Grade 2C), or edoxaban (Grade 2C). We have not changed recommendations for who should stop anticoagulation at 3 months or receive extended therapy. For VTE treated with anticoagulants, we recommend against an inferior vena cava filter (Grade 1B). For DVT, we suggest not using compression stockings routinely to prevent PTS (Grade 2B). For subsegmental pulmonary embolism and no proximal DVT, we suggest clinical surveillance over anticoagulation with a low risk of recurrent VTE (Grade 2C), and anticoagulation over clinical surveillance with a high risk (Grade 2C). -
Medicines Classification Committee
Medicines Classification Committee Meeting date 1 May 2017 58th Meeting Title Reclassification of Sedating Antihistamines Medsafe Pharmacovigilance Submitted by Paper type For decision Team Proposal for The Medicines Adverse Reactions Committee (MARC) recommended that the reclassification to committee consider reclassifying sedating antihistamines to prescription prescription medicines when used in children under 6 years of age for the treatment of medicine for some nausea and vomiting and travel sickness [exact wording to be determined by indications the committee]. Reason for The purpose of this document is to provide the committee with an overview submission of the information provided to the MARC about safety concerns associated with sedating antihistamines and reasons for recommendations. Associated March 2013 Children and Sedating Antihistamines Prescriber Update articles February 2010 Cough and cold medicines clarification – antihistamines Medsafe website Safety information: Use of cough and cold medicines in children – new advice Medicines for Alimemazine Diphenhydramine consideration Brompheniramine Doxylamine Chlorpheniramine Meclozine Cyclizine Promethazine Dexchlorpheniramine New Zealand Some oral sedating antihistamines available without exposure to a prescription (pharmacist-only and pharmacy only), sedating therefore usage data is not easily available. antihistamines Table of Contents 1.0 PURPOSE ...................................................................................................................................... -
AHFS Pharmacologic-Therapeutic Classification (2012).Pdf
AHFS Pharmacologic-Therapeutic Classification 4:00 Antihistamine Drugs 4:04 First Generation Antihistamines 4:04.04 Ethanolamine Derivatives 4:04.08 Ethylenediamine Derivatives 4:04.12 Phenothiazine Derivatives 4:04.16 Piperazine Derivatives 4:04.20 Propylamine Derivatives 4:04.92 Miscellaneous Derivatives 4:08 Second Generation Antihistamines 4:92 Other Antihistamines* 8:00 Anti-infective Agents 8:08 Anthelmintics 8:12 Antibacterials 8:12.02 Aminoglycosides 8:12.06 Cephalosporins 8:12.06.04 First Generation Cephalosporins 8:12.06.08 Second Generation Cephalosporins 8:12.06.12 Third Generation Cephalosporins 8:12.06.16 Fourth Generation Cephalosporins 8:12.07 Miscellaneous -Lactams 8:12.07.04 Carbacephems 8:12.07.08 Carbapenems 8:12.07.12 Cephamycins 8:12.07.16 Monobactams 8:12.08 Chloramphenicol 8:12.12 Macrolides 8:12.12.04 Erythromycins 8:12.12.12 Ketolides 8:12.12.92 Other Macrolides 8:12.16 Penicillins 8:12.16.04 Natural Penicillins 8:12.16.08 Aminopenicillins 8:12.16.12 Penicillinase-resistant Penicillins 8:12.16.16 Extended-spectrum Penicillins 8:12.18 Quinolones 8:12.20 Sulfonamides 8:12.24 Tetracyclines 8:12.24.12 Glycylcyclines 8:12.28 Antibacterials, Miscellaneous 8:12.28.04 Aminocyclitols 8:12.28.08 Bacitracins 8:12.28.12 Cyclic Lipopeptides 8:12.28.16 Glycopeptides 8:12.28.20 Lincomycins 8:12.28.24 Oxazolidinones 8:12.28.28 Polymyxins 8:12.28.30 Rifamycins 8:12.28.32 Streptogramins 8:12.28.92 Other Miscellaneous Antibacterials* 8:14 Antifungals 8:14.04 Allylamines 8:14.08 Azoles 8:14.16 Echinocandins 8:14.28 Polyenes 8:14.32 -
LITERATURE REVIEW Drug Review
LITERATURE REVIEW Drug Review Document ID: N04-023 Author: Julie Qidwai Date: December 2004 National Advanced Driving Simulator 2401 Oakdale Blvd. Iowa City, IA 52242-5003 Fax (319) 335-4658 TABLE OF CONTENTS 1 Introduction ............................................................................................................................ 1 2 Alprazolam.............................................................................................................................. 1 3 Amitriptyline........................................................................................................................... 2 4 Biperiden................................................................................................................................. 2 5 Brompheniramine .................................................................................................................. 2 6 Butorphanol ............................................................................................................................ 2 7 Cetirizine................................................................................................................................. 3 8 Chloroquine ............................................................................................................................ 3 9 Chlorpheniramine .................................................................................................................. 4 10 Clemastine.............................................................................................................................. -
Identification of SARS-Cov-2 Entry Inhibitors Among Already Approved
www.nature.com/aps ARTICLE Identification of SARS-CoV-2 entry inhibitors among already approved drugs Li Yang1, Rong-juan Pei2, Heng Li1,3, Xin-na Ma4, Yu Zhou1, Feng-hua Zhu1, Pei-lan He1, Wei Tang1, Ye-cheng Zhang2, Jin Xiong2, Shu-qi Xiao2, Xian-kun Tong1, Bo Zhang2 and Jian-ping Zuo1,3,4 To discover effective drugs for COVID-19 treatment amongst already clinically approved drugs, we developed a high throughput screening assay for SARS-CoV-2 virus entry inhibitors using SARS2-S pseudotyped virus. An approved drug library of 1800 small molecular drugs was screened for SARS2 entry inhibitors and 15 active drugs were identified as specific SARS2-S pseudovirus entry inhibitors. Antiviral tests using native SARS-CoV-2 virus in Vero E6 cells confirmed that 7 of these drugs (clemastine, amiodarone, trimeprazine, bosutinib, toremifene, flupenthixol, and azelastine) significantly inhibited SARS2 replication, reducing supernatant viral RNA load with a promising level of activity. Three of the drugs were classified as histamine receptor antagonists with clemastine showing the strongest anti-SARS2 activity (EC50 = 0.95 ± 0.83 µM). Our work suggests that these 7 drugs could enter into further in vivo studies and clinical investigations for COVID-19 treatment. Keywords: COVID-19; SARS-CoV-2; virus entry inhibitors; high throughput screening assay; approved drug library; histamine receptor antagonists; clemastine 1234567890();,: Acta Pharmacologica Sinica (2021) 42:1347–1353; https://doi.org/10.1038/s41401-020-00556-6 INTRODUCTION drugs with high activity and specificity that will be of critical Since the outbreak of COVID-19, there have been ~15 million benefit for our long-term control of this emerging disease. -
Antithrombotic Therapy in Hypertension: a Cochrane Systematic Review
Journal of Human Hypertension (2005) 19, 185–196 & 2005 Nature Publishing Group All rights reserved 0950-9240/05 $30.00 www.nature.com/jhh ORIGINAL ARTICLE Antithrombotic therapy in hypertension: a Cochrane Systematic review DC Felmeden and GYH Lip Haemostasis, Thrombosis, and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, UK Although elevated systemic blood pressure (BP) results on one large trial, ASA taken for 5 years reduced in high intravascular pressure, the main complications myocardial infarction (ARR, 0.5%, NNT 200 for 5 years), of hypertension are related to thrombosis rather than increased major haemorrhage (ARI, 0.7%, NNT 154), and haemorrhage. It therefore seemed plausible that use of did not reduce all cause mortality or cardiovascular antithrombotic therapy may be useful in preventing mortality. In two small trials, warfarin alone or in thrombosis-related complications of elevated BP. The combination with ASA did not reduce stroke or coronary objectives were to conduct a systematic review of the events. Glycoprotein IIb/IIIa inhibitors as well as ticlopi- role of antiplatelet therapy and anticoagulation in dine and clopidogrel have not been sufficiently eval- patients with BP, to address the following hypotheses: uated in patients with elevated BP. To conclude for (i) antiplatelet agents reduce total deaths and/or major primary prevention in patients with elevated BP, anti- thrombotic events when compared to placebo or other platelet therapy with ASA cannot be recommended active treatment; and (ii) oral anticoagulants reduce total since the magnitude of benefit, a reduction in myocar- deaths and/or major thromboembolic events when dial infarction, is negated by a harm of similar magni- compared to placebo or other active treatment. -
Use of Antithrombotic Medications in the Presence of Neuraxial Anesthesia
Guideline: Use of Antithrombotic Medications In The Presence of Neuraxial Anesthesia Use of Antithrombotic Medications In The Presence of Neuraxial Anesthesia Purpose of Guidelines: To establish appropriate administration and timing of antithrombotic medications before, during, and after the use of neuraxial anesthesia to minimize the risk of bleeding. Definitions: Neuraxial Anesthesia = Delivery of anesthetic medication requiring placement of catheters or needles into the epidural or spinal space Antithrombotic Medications = Anticoagulant, antiplatelet, and thrombolytic medications Background1-3: Spinal (or epidural) hematomas are a rare but catastrophic complication of neuraxial anesthesia. The risk of hematoma development is increased in the presence of antithrombotic medication. Patients undergoing neuraxial anesthesia must have the risks of bleeding from neuraxial interventions balanced with the underlying and ongoing risk of thromboembolism necessitating anticoagulation. Recommendations for the management of specific antithrombotics in patients undergoing neuraxial anesthesia are provided in the following Tables: o Table 1. Management of Intravenous and Subcutaneous Anticoagulation Therapy in Patients Undergoing Neuraxial Anesthesia o Table 2. Management of ORAL Anticoagulation Therapy in Patients Undergoing Neuraxial Anesthesia o Table 3. Management of ORAL and Intravenous Antiplatelet and Thrombolytic Therapy in Patients Undergoing Neuraxial Anesthesia Workflow if a Contradicted Medication is Prescribed: Providers will have