Detection and Generation of Electric Signals in Fishes: an Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electrophorus Electricus ERSS
Electric Eel (Electrophorus electricus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, August 2011 Revised, July 2018 Web Version, 8/21/2018 Photo: Brian Gratwicke. Licensed under CC BY-NC 3.0. Available: http://eol.org/pages/206595/overview. (July 2018). 1 Native Range and Status in the United States Native Range From Eschmeyer et al. (2018): “Distribution: Amazon and Orinoco River basins and other areas in northern Brazil: Brazil, Ecuador, Colombia, Bolivia, French Guiana, Guyana, Peru, Suriname and Venezuela.” Status in the United States This species has not been reported as introduced or established in the United States. This species is in trade in the United States. From AquaScapeOnline (2018): “Electric Eel 24” (2 feet) (Electrophorus electricus) […] Our Price: $300.00” 1 The State of Arizona has listed Electrophorus electricus as restricted live wildlife. Restricted live wildlife “means wildlife that cannot be imported, exported, or possessed without a special license or lawful exemption” (Arizona Secretary of State 2006a,b). The Florida Fish and Wildlife Conservation Commission has listed the electric eel Electrophorus electricus as a prohibited species. Prohibited nonnative species, "are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities” (FFWCC 2018). The State of Hawaii Plant Industry Division (2006) includes Electrophorus electricus on its list of prohibited animals. From -
REVIEW Electric Fish: New Insights Into Conserved Processes of Adult Tissue Regeneration
2478 The Journal of Experimental Biology 216, 2478-2486 © 2013. Published by The Company of Biologists Ltd doi:10.1242/jeb.082396 REVIEW Electric fish: new insights into conserved processes of adult tissue regeneration Graciela A. Unguez Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA [email protected] Summary Biology is replete with examples of regeneration, the process that allows animals to replace or repair cells, tissues and organs. As on land, vertebrates in aquatic environments experience the occurrence of injury with varying frequency and to different degrees. Studies demonstrate that ray-finned fishes possess a very high capacity to regenerate different tissues and organs when they are adults. Among fishes that exhibit robust regenerative capacities are the neotropical electric fishes of South America (Teleostei: Gymnotiformes). Specifically, adult gymnotiform electric fishes can regenerate injured brain and spinal cord tissues and restore amputated body parts repeatedly. We have begun to identify some aspects of the cellular and molecular mechanisms of tail regeneration in the weakly electric fish Sternopygus macrurus (long-tailed knifefish) with a focus on regeneration of skeletal muscle and the muscle-derived electric organ. Application of in vivo microinjection techniques and generation of myogenic stem cell markers are beginning to overcome some of the challenges owing to the limitations of working with non-genetic animal models with extensive regenerative capacity. This review highlights some aspects of tail regeneration in S. macrurus and discusses the advantages of using gymnotiform electric fishes to investigate the cellular and molecular mechanisms that produce new cells during regeneration in adult vertebrates. -
Electric Organ Electric Organ Discharge
1050 Electric Organ return to the opposite pole of the source. This is 9. Zakon HH, Unguez GA (1999) Development and important in freshwater fish with water conductivity far regeneration of the electric organ. J exp Biol – below the conductivity of body fluids (usually below 202:1427 1434 μ μ 10. Westby GWM, Kirschbaum F (1978) Emergence and 100 S/cm for tropical freshwaters vs. 5,000 S/cm for development of the electric organ discharge in the body fluids, or, in resistivity terms, 10 kOhm × cm vs. mormyrid fish, Pollimyrus isidori. II. Replacement of 200 Ohm × cm, respectively) [4]. the larval by the adult discharge. J Comp Physiol A In strongly electric fish, impedance matching to the 127:45–59 surrounding water is especially obvious, both on a gross morphological level and also regarding membrane physiology. In freshwater fish, such as the South American strongly electric eel, there are only about 70 columns arranged in parallel, consisting of about 6,000 electrocytes each. Therefore, in this fish, it is the Electric Organ voltage that is maximized (500 V or more). In a marine environment, this would not be possible; here, it is the current that should be maximized. Accordingly, in Definition the strong electric rays, such as the Torpedo species, So far only electric fishes are known to possess electric there are many relatively short columns arranged in organs. In most cases myogenic organs generate electric parallel, yielding a low-voltage strong-current output. fields. Some fishes, like the electric eel, use strong – The number of columns is 500 1,000, the number fields for prey catching or to ward off predators, while of electrocytes per column about 1,000. -
A Large 28S Rdna-Based Phylogeny Confirms the Limitations Of
A peer-reviewed open-access journal ZooKeysA 500: large 25–59 28S (2015) rDNA-based phylogeny confirms the limitations of established morphological... 25 doi: 10.3897/zookeys.500.9360 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A large 28S rDNA-based phylogeny confirms the limitations of established morphological characters for classification of proteocephalidean tapeworms (Platyhelminthes, Cestoda) Alain de Chambrier1, Andrea Waeschenbach2, Makda Fisseha1, Tomáš Scholz3, Jean Mariaux1,4 1 Natural History Museum of Geneva, CP 6434, CH - 1211 Geneva 6, Switzerland 2 Natural History Museum, Life Sciences, Cromwell Road, London SW7 5BD, UK 3 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic 4 Department of Genetics and Evolution, University of Geneva, CH - 1205 Geneva, Switzerland Corresponding author: Jean Mariaux ([email protected]) Academic editor: B. Georgiev | Received 8 February 2015 | Accepted 23 March 2015 | Published 27 April 2015 http://zoobank.org/DC56D24D-23A1-478F-AED2-2EC77DD21E79 Citation: de Chambrier A, Waeschenbach A, Fisseha M, Scholz T and Mariaux J (2015) A large 28S rDNA-based phylogeny confirms the limitations of established morphological characters for classification of proteocephalidean tapeworms (Platyhelminthes, Cestoda). ZooKeys 500: 25–59. doi: 10.3897/zookeys.500.9360 Abstract Proteocephalidean tapeworms form a diverse group of parasites currently known from 315 valid species. Most of the diversity of adult proteocephalideans can be found in freshwater fishes (predominantly cat- fishes), a large proportion infects reptiles, but only a few infect amphibians, and a single species has been found to parasitize possums. Although they have a cosmopolitan distribution, a large proportion of taxa are exclusively found in South America. -
Chirping and Asymmetric Jamming Avoidance Responses in the Electric Fish Distocyclus Conirostris Jacquelyn M
© 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb178913. doi:10.1242/jeb.178913 SHORT COMMUNICATION Chirping and asymmetric jamming avoidance responses in the electric fish Distocyclus conirostris Jacquelyn M. Petzold1,2, JoséA. Alves-Gomes3 and G. Troy Smith1,2,* ABSTRACT of two of more EODs creates a periodic amplitude modulation Electrosensory systems of weakly electric fish must accommodate (beat). Beat frequency is equal to the difference between the EOD competing demands of sensing the environment (electrolocation) frequencies (EODfs) of the two interacting fish. Fish use the beat and receiving social information (electrocommunication). The and the relative geometry of the interacting signals to estimate jamming avoidance response (JAR) is a behavioral strategy thought conspecific EODfs, which convey important social information to reduce electrosensory interference from conspecific signals close (Smith, 2013; Dunlap, et al., 2017). However, slow beats (<10 Hz) in frequency. We used playback experiments to characterize electric created by interactions between fish with similar EODfs can impair organ discharge frequency (EODf), chirping behavior and the JAR of the electrolocation function of the EOD by masking localized EOD Distocyclus conirostris, a gregarious electric fish species. EODs of D. distortions (Heiligenberg, 1973; Matsubara and Heiligenberg, conirostris had low frequencies (∼80–200 Hz) that shifted in response 1978). The JAR is a stereotyped response in which an electric to playback stimuli. Fish consistently lowered EODf in response to fish increases or decreases its EODf to increase beat frequency and higher-frequency stimuli but inconsistently raised or lowered EODf in thereby reduce or eliminate the interference caused by slow beats response to lower-frequency stimuli. -
Pheromones and Animal Behaviour Communication by Smell and Taste
Pheromones and Animal Behaviour Communication by Smell and Taste Tristram D. Wyatt University of Oxford published by the press syndicate of the university of cambridge The Pitt Building, Trumpington Street, Cambridge, United Kingdom cambridge university press The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org © Cambridge University Press 2003 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2003 Printed in the United Kingdom at the University Press, Cambridge Typeface Swift 9/13pt System QuarkXPress® [tb] A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication data Wyatt, Tristram D., 1956– Pheromones and animal behaviour: communication by smell and taste / Tristram D. Wyatt. p. cm. Includes bibliographical references (p. ). ISBN 0 521 48068 X – ISBN 0 521 48526 6 (pb.) 1. Animal communication. 2. Pheromones. 3. Chemical senses. I. Title. QL776 .W93 2002 591.59 – dc21 2002024628 ISBN 0 521 48068 X hardback ISBN 0 521 48526 6 paperback The publisher has used its best endeavours to ensure that the URLs for external web sites re- ferred to in this book are correct and active at time of going to press. However, the publisher has no responsibility for the web sites and can make no guarantee that a site will remain live or that the content is or will remain appropriate. -
Hormones and Sexual Behavior of Teleost Fishes
Chapter 7 Hormones and Sexual Behavior of Teleost Fishes y David M. Gonc¸alves*, and Rui F. Oliveira*,** y * Instituto Superior de Psicologia Aplicada, Lisboa, Portugal, Universidade do Algarve, Faro, Portugal, ** Instituto Gulbenkian de Cieˆncia, Oeiras, Portugal more variable during the initial stages of the sequence and SUMMARY more stereotyped towards its end. To account for this Fishes are an excellent group for studying the mechanisms through which hormones modulate the expression of sexual variation, these researchers suggested that an initial appe- behaviors in vertebrates. First, they have radiated virtually titive phase, defined as the phase of searching towards the throughout all aquatic environments and this is reflected in an goal, can be distinguished from a final consummatory extraordinary diversity of mating systems and reproductive phase, defined as the stage when the goal is reached behaviors. Second, many species present a remarkable plasticity (Sherrington, 1906; Craig, 1917). Although this distinction in their sexual displays, as exemplified by fishes that change sex or is still widely applied in studies investigating the mecha- that adopt more than one reproductive tactic during their lifetime, nisms of behavior, there is an ongoing debate on the and this plasticity seems to be mediated by hormones. Third, the usefulness of these terms. In a recent review, Sachs (2007) fish neuroendocrine system is well conserved among vertebrates identified some problems in the current use of the and the mechanisms of hormonal action in behavior are likely to appetitive/consummatory dichotomy. These include the share similarities with those of other vertebrates. We review the difficulties in defining the boundary between the two pha- role of hormones and neuropeptides in the modulation of fish sexual displays. -
The Air-Breathing Behaviour of Brevimyrus Niger (Osteoglossomorpha, Mormyridae)
Journal of Fish Biology (2007) 71, 279–283 doi:10.1111/j.1095-8649.2007.01473.x, available onlineathttp://www.blackwell-synergy.com The air-breathing behaviour of Brevimyrus niger (Osteoglossomorpha, Mormyridae) T. MORITZ* AND K. E. LINSENMAIR Lehrstuhl fur¨ Tiero¨kologie und Tropenbiologie, Theodor-Boveri-Institut, Universita¨t Wurzburg,¨ Am Hubland, 97074 Wurzburg,¨ Germany (Received 2 May 2006, Accepted 6 February 2007) Brevimyrus niger is reported to breathe atmospheric air, confirming previous documenta- tion of air breathing in this species. Air is taken up by rising to the water surface and gulping, or permanently resting just below the surface, depending on the environmental conditions. # 2007 The Authors Journal compilation # 2007 The Fisheries Society of the British Isles Key words: elephantfishes; Osteoglossomorpha; weakly electric fish. The Mormyridae consists of 201 weakly electric fishes endemic to Africa (Nelson, 2006). They belong to the Osteoglossomorpha among which air-breathing behaviour is known from several families. All genera of the Osteoglossidae are able to breathe atmospheric air utilizing their swimbladder as a respiratory organ, i.e. Heterotis niloticus (Cuvier) (Luling,¨ 1977), Arapaima gigas (Schinz) (Luling,¨ 1964, 1977). Similarly, Pantodon buchholzi Peters (Schwarz, 1969), which is the only member of the Pantodontidae, and the members of the Notopteridae (Graham, 1997) are air-breathers. A close relative to the mormyrids, Gymnarchus niloticus Cuvier, the only member of the Gymnarchidae, is also well known to breathe air (Hyrtl, 1856; Bertyl, 1958). In the remaining two families within the Osteoglossomorpha air breathing has never been reported from the Hiodontidae (Graham, 1997) and only for a single species, Brevimyrus niger (Gunther),¨ within the Mormyridae (Benech & Lek, 1981; Bigorne, 2003). -
The Biology and Genetics of Electric Organ of Electric Fishes
International Journal of Zoology and Animal Biology ISSN: 2639-216X The Biology and Genetics of Electric Organ of Electric Fishes Khandaker AM* Editorial Department of Zoology, University of Dhaka, Bangladesh Volume 1 Issue 5 *Corresponding author: Ashfaqul Muid Khandaker, Faculty of Biological Sciences, Received Date: November 19, 2018 Department of Zoology, Branch of Genetics and Molecular Biology, University of Published Date: November 29, 2018 DOI: 10.23880/izab-16000131 Dhaka, Bangladesh, Email: [email protected] Editorial The electric fish comprises an interesting feature electric organs and sense feedback signals from their called electric organ (EO) which can generate electricity. EODs by electroreceptors in the skin. These weak signals In fact, they have an electrogenic system that generates an can also serve in communication within and between electric field. This field is used by the fish as a carrier of species. But the strongly electric fishes produce electric signals for active sensing and communicating with remarkably powerful pulses. A large electric eel generates other electric fish [1]. The electric discharge from this in excess of 500 V. A large Torpedo generates a smaller organ is used for navigation, communication, and defense voltage, about 50 V in air, but the current is larger and the and also for capturing prey [2]. The power of electric pulse power in each case can exceed I kW [5]. organ varies from species to species. Some electric fish species can produce strong current (100 to 800 volts), The generating elements of the electric organs are especially electric eel and some torpedo electric rays are specialized cells termed electrocytes. -
Sexual Selection and the Evolution of Animal Signals. In: Squire LR (Ed.) Encyclopedia of Neuroscience, Volume 8, Pp
This article was originally published in the Encyclopedia of Neuroscience published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Searcy W A and Nowicki S (2009) Sexual Selection and the Evolution of Animal Signals. In: Squire LR (ed.) Encyclopedia of Neuroscience, volume 8, pp. 769- 776. Oxford: Academic Press. Author's personal copy Sexual Selection and the Evolution of Animal Signals 769 Sexual Selection and the Evolution of Animal Signals W A Searcy , University of Miami, Coral Gables, FL, such as mammals and birds, with extensive parental USA care. Largely as a result of these parental investment S Nowicki , Duke University, Durham, NC, USA patterns, females typically have lower maximal rates ã 2009 Elsevier Ltd. All rights reserved. of reproduction. Thus sexual biases in both parental investment and maximal rates of reproduction predict the predominance of female choice. Introduction Many of the greats of evolutionary biology who followed Darwin were skeptical of the importance of Darwin defined sexual selection in On the Origin of female choice as a selective mechanism. -
Taking Turns: Bridging the Gap Between Human and Animal Communication
This is a repository copy of Taking turns: bridging the gap between human and animal communication. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/150857/ Version: Published Version Article: Pika, Simone, Wilkinson, Ray, Kendrick, Kobin H. orcid.org/0000-0002-6656-1439 et al. (1 more author) (2018) Taking turns: bridging the gap between human and animal communication. Proceedings of the royal society b-Biological sciences. 20180598. ISSN 1471-2954 https://doi.org/10.1098/rspb.2018.0598 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Downloaded from http://rspb.royalsocietypublishing.org/ on July 30, 2018 Taking turns: bridging the gap between rspb.royalsocietypublishing.org human and animal communication Simone Pika1,2, Ray Wilkinson3, Kobin H. Kendrick4 and Sonja C. Vernes5,6 1Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany Review 2Department of Comparative Biocognition, Institute of Cognitive Science, University of Osnabru¨ck, Osnabru¨ck, Germany Cite this article: Pika S, Wilkinson R, 3Department of Human Communication Sciences, University of Sheffield, Sheffield, UK Kendrick KH, Vernes SC. -
Lecture 10: Animal Theory of Mind and Deception
PS452 Intelligent Behaviour Lecture 10: Animal Theory of Mind and Deception Maxwell J Roberts Department of Psychology University of Essex www.tubemapcentral.com version date: 19/11/2019 Part 3: Intelligent Behaviour in Animals • Lecture 7: Animal Intelligence Tests Measuring animal cognitive capacity • Learning and logic between species • The ubiquitous g factor • Lecture 8: Tools, Puzzles, Beliefs, and Intentions Complex interactions with objects • Natural tool use • Understanding the properties of objects 2 Part 3: Intelligent Behaviour in Animals • Lecture 9: Animal Communication Mindless signals or deliberate acts • Natural communication • Taught language in the laboratory • Lecture 10: Animal Theory of Mind and Deception In search of proto-modules • Animal (lack of) awareness of other minds • Social versus non-social origins of general intelligence 3 Lecture 10: Animal Theory of Mind & Deception • 10.1 Theory of Mind: A Tool for Deception • Theory of Mind and modularity • Evidence for Theory of Mind in animals • 10.2 The Special Case of Deception • Deception in the wild • Primate deception in the wild • Deception in the laboratory • Return of the crows • 10.3 Evaluation: Theory of Mind & Deception 4 Lecture 10: Animal Theory of Mind & Deception • 10.4 The Origins of General Intelligence? • 10.5 Animal, Human, and Machine Intelligence 5 10.1 Theory of Mind: A Tool for Deception • Theory of Mind: A popular concept in child psychology • The assumption that other beings are intentional systems and have mental states, including: Knowledge