Memristor Neural Network Design Memristor Neural Network Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Artificial Neural Networks Part 2/3 – Perceptron
Artificial Neural Networks Part 2/3 – Perceptron Slides modified from Neural Network Design by Hagan, Demuth and Beale Berrin Yanikoglu Perceptron • A single artificial neuron that computes its weighted input and uses a threshold activation function. • It effectively separates the input space into two categories by the hyperplane: wTx + b = 0 Decision Boundary The weight vector is orthogonal to the decision boundary The weight vector points in the direction of the vector which should produce an output of 1 • so that the vectors with the positive output are on the right side of the decision boundary – if w pointed in the opposite direction, the dot products of all input vectors would have the opposite sign – would result in same classification but with opposite labels The bias determines the position of the boundary • solve for wTp+b = 0 using one point on the decision boundary to find b. Two-Input Case + a = hardlim(n) = [1 2]p + -2 w1, 1 = 1 w1, 2 = 2 - Decision Boundary: all points p for which wTp + b =0 If we have the weights and not the bias, we can take a point on the decision boundary, p=[2 0]T, and solving for [1 2]p + b = 0, we see that b=-2. p w wT.p = ||w||||p||Cosθ θ Decision Boundary proj. of p onto w proj. of p onto w T T w p + b = 0 w p = -bœb = ||p||Cosθ 1 1 = wT.p/||w|| • All points on the decision boundary have the same inner product (= -b) with the weight vector • Therefore they have the same projection onto the weight vector; so they must lie on a line orthogonal to the weight vector ADVANCED An Illustrative Example Boolean OR ⎧ 0 ⎫ ⎧ 0 ⎫ ⎧ 1 ⎫ ⎧ 1 ⎫ ⎨p1 = , t1 = 0 ⎬ ⎨p2 = , t2 = 1 ⎬ ⎨p3 = , t3 = 1⎬ ⎨p4 = , t4 = 1⎬ ⎩ 0 ⎭ ⎩ 1 ⎭ ⎩ 0 ⎭ ⎩ 1 ⎭ Given the above input-output pairs (p,t), can you find (manually) the weights of a perceptron to do the job? Boolean OR Solution 1) Pick an admissable decision boundary 2) Weight vector should be orthogonal to the decision boundary. -
Face Recognition: a Convolutional Neural-Network Approach
98 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY 1997 Face Recognition: A Convolutional Neural-Network Approach Steve Lawrence, Member, IEEE, C. Lee Giles, Senior Member, IEEE, Ah Chung Tsoi, Senior Member, IEEE, and Andrew D. Back, Member, IEEE Abstract— Faces represent complex multidimensional mean- include fingerprints [4], speech [7], signature dynamics [36], ingful visual stimuli and developing a computational model for and face recognition [8]. Sales of identity verification products face recognition is difficult. We present a hybrid neural-network exceed $100 million [29]. Face recognition has the benefit of solution which compares favorably with other methods. The system combines local image sampling, a self-organizing map being a passive, nonintrusive system for verifying personal (SOM) neural network, and a convolutional neural network. identity. The techniques used in the best face recognition The SOM provides a quantization of the image samples into a systems may depend on the application of the system. We topological space where inputs that are nearby in the original can identify at least two broad categories of face recognition space are also nearby in the output space, thereby providing systems. dimensionality reduction and invariance to minor changes in the image sample, and the convolutional neural network provides for 1) We want to find a person within a large database of partial invariance to translation, rotation, scale, and deformation. faces (e.g., in a police database). These systems typically The convolutional network extracts successively larger features return a list of the most likely people in the database in a hierarchical set of layers. We present results using the [34]. -
CSE 152: Computer Vision Manmohan Chandraker
CSE 152: Computer Vision Manmohan Chandraker Lecture 15: Optimization in CNNs Recap Engineered against learned features Label Convolutional filters are trained in a Dense supervised manner by back-propagating classification error Dense Dense Convolution + pool Label Convolution + pool Classifier Convolution + pool Pooling Convolution + pool Feature extraction Convolution + pool Image Image Jia-Bin Huang and Derek Hoiem, UIUC Two-layer perceptron network Slide credit: Pieter Abeel and Dan Klein Neural networks Non-linearity Activation functions Multi-layer neural network From fully connected to convolutional networks next layer image Convolutional layer Slide: Lazebnik Spatial filtering is convolution Convolutional Neural Networks [Slides credit: Efstratios Gavves] 2D spatial filters Filters over the whole image Weight sharing Insight: Images have similar features at various spatial locations! Key operations in a CNN Feature maps Spatial pooling Non-linearity Convolution (Learned) . Input Image Input Feature Map Source: R. Fergus, Y. LeCun Slide: Lazebnik Convolution as a feature extractor Key operations in a CNN Feature maps Rectified Linear Unit (ReLU) Spatial pooling Non-linearity Convolution (Learned) Input Image Source: R. Fergus, Y. LeCun Slide: Lazebnik Key operations in a CNN Feature maps Spatial pooling Max Non-linearity Convolution (Learned) Input Image Source: R. Fergus, Y. LeCun Slide: Lazebnik Pooling operations • Aggregate multiple values into a single value • Invariance to small transformations • Keep only most important information for next layer • Reduces the size of the next layer • Fewer parameters, faster computations • Observe larger receptive field in next layer • Hierarchically extract more abstract features Key operations in a CNN Feature maps Spatial pooling Non-linearity Convolution (Learned) . Input Image Input Feature Map Source: R. -
CNN Architectures
Lecture 9: CNN Architectures Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - 1 May 2, 2017 Administrative A2 due Thu May 4 Midterm: In-class Tue May 9. Covers material through Thu May 4 lecture. Poster session: Tue June 6, 12-3pm Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - 2 May 2, 2017 Last time: Deep learning frameworks Paddle (Baidu) Caffe Caffe2 (UC Berkeley) (Facebook) CNTK (Microsoft) Torch PyTorch (NYU / Facebook) (Facebook) MXNet (Amazon) Developed by U Washington, CMU, MIT, Hong Kong U, etc but main framework of Theano TensorFlow choice at AWS (U Montreal) (Google) And others... Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - 3 May 2, 2017 Last time: Deep learning frameworks (1) Easily build big computational graphs (2) Easily compute gradients in computational graphs (3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc) Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - 4 May 2, 2017 Last time: Deep learning frameworks Modularized layers that define forward and backward pass Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - 5 May 2, 2017 Last time: Deep learning frameworks Define model architecture as a sequence of layers Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - 6 May 2, 2017 Today: CNN Architectures Case Studies - AlexNet - VGG - GoogLeNet - ResNet Also.... - NiN (Network in Network) - DenseNet - Wide ResNet - FractalNet - ResNeXT - SqueezeNet - Stochastic Depth Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - 7 May 2, 2017 Review: LeNet-5 [LeCun et al., 1998] Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. -
1 Convolution
CS1114 Section 6: Convolution February 27th, 2013 1 Convolution Convolution is an important operation in signal and image processing. Convolution op- erates on two signals (in 1D) or two images (in 2D): you can think of one as the \input" signal (or image), and the other (called the kernel) as a “filter” on the input image, pro- ducing an output image (so convolution takes two images as input and produces a third as output). Convolution is an incredibly important concept in many areas of math and engineering (including computer vision, as we'll see later). Definition. Let's start with 1D convolution (a 1D \image," is also known as a signal, and can be represented by a regular 1D vector in Matlab). Let's call our input vector f and our kernel g, and say that f has length n, and g has length m. The convolution f ∗ g of f and g is defined as: m X (f ∗ g)(i) = g(j) · f(i − j + m=2) j=1 One way to think of this operation is that we're sliding the kernel over the input image. For each position of the kernel, we multiply the overlapping values of the kernel and image together, and add up the results. This sum of products will be the value of the output image at the point in the input image where the kernel is centered. Let's look at a simple example. Suppose our input 1D image is: f = 10 50 60 10 20 40 30 and our kernel is: g = 1=3 1=3 1=3 Let's call the output image h. -
Deep Clustering with Convolutional Autoencoders
Deep Clustering with Convolutional Autoencoders Xifeng Guo1, Xinwang Liu1, En Zhu1, and Jianping Yin2 1 College of Computer, National University of Defense Technology, Changsha, 410073, China [email protected] 2 State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, 410073, China Abstract. Deep clustering utilizes deep neural networks to learn fea- ture representation that is suitable for clustering tasks. Though demon- strating promising performance in various applications, we observe that existing deep clustering algorithms either do not well take advantage of convolutional neural networks or do not considerably preserve the local structure of data generating distribution in the learned feature space. To address this issue, we propose a deep convolutional embedded clus- tering algorithm in this paper. Specifically, we develop a convolutional autoencoders structure to learn embedded features in an end-to-end way. Then, a clustering oriented loss is directly built on embedded features to jointly perform feature refinement and cluster assignment. To avoid feature space being distorted by the clustering loss, we keep the decoder remained which can preserve local structure of data in feature space. In sum, we simultaneously minimize the reconstruction loss of convolutional autoencoders and the clustering loss. The resultant optimization prob- lem can be effectively solved by mini-batch stochastic gradient descent and back-propagation. Experiments on benchmark datasets empirically validate -
Tensorizing Neural Networks
Tensorizing Neural Networks Alexander Novikov1;4 Dmitry Podoprikhin1 Anton Osokin2 Dmitry Vetrov1;3 1Skolkovo Institute of Science and Technology, Moscow, Russia 2INRIA, SIERRA project-team, Paris, France 3National Research University Higher School of Economics, Moscow, Russia 4Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia [email protected] [email protected] [email protected] [email protected] Abstract Deep neural networks currently demonstrate state-of-the-art performance in sev- eral domains. At the same time, models of this class are very demanding in terms of computational resources. In particular, a large amount of memory is required by commonly used fully-connected layers, making it hard to use the models on low-end devices and stopping the further increase of the model size. In this paper we convert the dense weight matrices of the fully-connected layers to the Tensor Train [17] format such that the number of parameters is reduced by a huge factor and at the same time the expressive power of the layer is preserved. In particular, for the Very Deep VGG networks [21] we report the compression factor of the dense weight matrix of a fully-connected layer up to 200000 times leading to the compression factor of the whole network up to 7 times. 1 Introduction Deep neural networks currently demonstrate state-of-the-art performance in many domains of large- scale machine learning, such as computer vision, speech recognition, text processing, etc. These advances have become possible because of algorithmic advances, large amounts of available data, and modern hardware. -
Fully Convolutional Mesh Autoencoder Using Efficient Spatially Varying Kernels
Fully Convolutional Mesh Autoencoder using Efficient Spatially Varying Kernels Yi Zhou∗ Chenglei Wu Adobe Research Facebook Reality Labs Zimo Li Chen Cao Yuting Ye University of Southern California Facebook Reality Labs Facebook Reality Labs Jason Saragih Hao Li Yaser Sheikh Facebook Reality Labs Pinscreen Facebook Reality Labs Abstract Learning latent representations of registered meshes is useful for many 3D tasks. Techniques have recently shifted to neural mesh autoencoders. Although they demonstrate higher precision than traditional methods, they remain unable to capture fine-grained deformations. Furthermore, these methods can only be applied to a template-specific surface mesh, and is not applicable to more general meshes, like tetrahedrons and non-manifold meshes. While more general graph convolution methods can be employed, they lack performance in reconstruction precision and require higher memory usage. In this paper, we propose a non-template-specific fully convolutional mesh autoencoder for arbitrary registered mesh data. It is enabled by our novel convolution and (un)pooling operators learned with globally shared weights and locally varying coefficients which can efficiently capture the spatially varying contents presented by irregular mesh connections. Our model outperforms state-of-the-art methods on reconstruction accuracy. In addition, the latent codes of our network are fully localized thanks to the fully convolutional structure, and thus have much higher interpolation capability than many traditional 3D mesh generation models. 1 Introduction arXiv:2006.04325v2 [cs.CV] 21 Oct 2020 Learning latent representations for registered meshes 2, either from performance capture or physical simulation, is a core component for many 3D tasks, ranging from compressing and reconstruction to animation and simulation. -
Artificial Neuron Using Mos2/Graphene Threshold Switching Memristor
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2018 Artificial Neuron using MoS2/Graphene Threshold Switching Memristor Hirokjyoti Kalita University of Central Florida Part of the Electrical and Electronics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Kalita, Hirokjyoti, "Artificial Neuron using MoS2/Graphene Threshold Switching Memristor" (2018). Electronic Theses and Dissertations, 2004-2019. 5988. https://stars.library.ucf.edu/etd/5988 ARTIFICIAL NEURON USING MoS2/GRAPHENE THRESHOLD SWITCHING MEMRISTOR by HIROKJYOTI KALITA B.Tech. SRM University, 2015 A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in the Department of Electrical and Computer Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer Term 2018 Major Professor: Tania Roy © 2018 Hirokjyoti Kalita ii ABSTRACT With the ever-increasing demand for low power electronics, neuromorphic computing has garnered huge interest in recent times. Implementing neuromorphic computing in hardware will be a severe boost for applications involving complex processes such as pattern recognition. Artificial neurons form a critical part in neuromorphic circuits, and have been realized with complex complementary metal–oxide–semiconductor (CMOS) circuitry in the past. Recently, insulator-to-metal-transition (IMT) materials have been used to realize artificial neurons. -
Deep Learning Architectures for Sequence Processing
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2021. All rights reserved. Draft of September 21, 2021. CHAPTER Deep Learning Architectures 9 for Sequence Processing Time will explain. Jane Austen, Persuasion Language is an inherently temporal phenomenon. Spoken language is a sequence of acoustic events over time, and we comprehend and produce both spoken and written language as a continuous input stream. The temporal nature of language is reflected in the metaphors we use; we talk of the flow of conversations, news feeds, and twitter streams, all of which emphasize that language is a sequence that unfolds in time. This temporal nature is reflected in some of the algorithms we use to process lan- guage. For example, the Viterbi algorithm applied to HMM part-of-speech tagging, proceeds through the input a word at a time, carrying forward information gleaned along the way. Yet other machine learning approaches, like those we’ve studied for sentiment analysis or other text classification tasks don’t have this temporal nature – they assume simultaneous access to all aspects of their input. The feedforward networks of Chapter 7 also assumed simultaneous access, al- though they also had a simple model for time. Recall that we applied feedforward networks to language modeling by having them look only at a fixed-size window of words, and then sliding this window over the input, making independent predictions along the way. Fig. 9.1, reproduced from Chapter 7, shows a neural language model with window size 3 predicting what word follows the input for all the. Subsequent words are predicted by sliding the window forward a word at a time. -
Geometrical Aspects of Statistical Learning Theory
Geometrical Aspects of Statistical Learning Theory Vom Fachbereich Informatik der Technischen Universit¨at Darmstadt genehmigte Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt von Dipl.-Phys. Matthias Hein aus Esslingen am Neckar Prufungskommission:¨ Vorsitzender: Prof. Dr. B. Schiele Erstreferent: Prof. Dr. T. Hofmann Korreferent : Prof. Dr. B. Sch¨olkopf Tag der Einreichung: 30.9.2005 Tag der Disputation: 9.11.2005 Darmstadt, 2005 Hochschulkennziffer: D17 Abstract Geometry plays an important role in modern statistical learning theory, and many different aspects of geometry can be found in this fast developing field. This thesis addresses some of these aspects. A large part of this work will be concerned with so called manifold methods, which have recently attracted a lot of interest. The key point is that for a lot of real-world data sets it is natural to assume that the data lies on a low-dimensional submanifold of a potentially high-dimensional Euclidean space. We develop a rigorous and quite general framework for the estimation and ap- proximation of some geometric structures and other quantities of this submanifold, using certain corresponding structures on neighborhood graphs built from random samples of that submanifold. Another part of this thesis deals with the generalizati- on of the maximal margin principle to arbitrary metric spaces. This generalization follows quite naturally by changing the viewpoint on the well-known support vector machines (SVM). It can be shown that the SVM can be seen as an algorithm which applies the maximum margin principle to a subclass of metric spaces. The motivati- on to consider the generalization to arbitrary metric spaces arose by the observation that in practice the condition for the applicability of the SVM is rather difficult to check for a given metric. -
Pre-Training Cnns Using Convolutional Autoencoders
Pre-Training CNNs Using Convolutional Autoencoders Maximilian Kohlbrenner Russell Hofmann TU Berlin TU Berlin [email protected] [email protected] Sabbir Ahmmed Youssef Kashef TU Berlin TU Berlin [email protected] [email protected] Abstract Despite convolutional neural networks being the state of the art in almost all computer vision tasks, their training remains a difficult task. Unsupervised rep- resentation learning using a convolutional autoencoder can be used to initialize network weights and has been shown to improve test accuracy after training. We reproduce previous results using this approach and successfully apply it to the difficult Extended Cohn-Kanade dataset for which labels are extremely sparse but additional unlabeled data is available for unsupervised use. 1 Introduction A lot of progress has been made in the field of artificial neural networks in recent years and as a result most computer vision tasks today are best solved using this approach. However, the training of deep neural networks still remains a difficult problem and results are highly dependent on the model initialization (local minima). During a classification task, a Convolutional Neural Network (CNN) first learns a new data representation using its convolution layers as feature extractors and then uses several fully-connected layers for decision-making. While the representation after the convolutional layers is usually optizimed for classification, some learned features might be more general and also useful outside of this specific task. Instead of directly optimizing for a good class prediction, one can therefore start by focussing on the intermediate goal of learning a good data representation before beginning to work on the classification problem.