The Tessmann Planetarium Guide to Comets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Comet's Tale
THE COMET’S TALE Newsletter of the Comet Section of the British Astronomical Association Volume 5, No 1 (Issue 9), 1998 May A May Day in February! Comet Section Meeting, Institute of Astronomy, Cambridge, 1998 February 14 The day started early for me, or attention and there were displays to correct Guide Star magnitudes perhaps I should say the previous of the latest comet light curves in the same field. If you haven’t day finished late as I was up till and photographs of comet Hale- got access to this catalogue then nearly 3am. This wasn’t because Bopp taken by Michael Hendrie you can always give a field sketch the sky was clear or a Valentine’s and Glynn Marsh. showing the stars you have used Ball, but because I’d been reffing in the magnitude estimate and I an ice hockey match at The formal session started after will make the reduction. From Peterborough! Despite this I was lunch, and I opened the talks with these magnitude estimates I can at the IOA to welcome the first some comments on visual build up a light curve which arrivals and to get things set up observation. Detailed instructions shows the variation in activity for the day, which was more are given in the Section guide, so between different comets. Hale- reminiscent of May than here I concentrated on what is Bopp has demonstrated that February. The University now done with the observations and comets can stray up to a offers an undergraduate why it is important to be accurate magnitude from the mean curve, astronomy course and lectures are and objective when making them. -
PYTS/ASTR 206 – Comets 1
PYTS/ASTR 206 – Comets 1 Announcements HW6 available today, due in a week Use Kevin as the TA for this one 2 In-class assignments left in 3 lectures PYTS/ASTR 206 – Comets 2 Comets PTYS/ASTR 206 – The Golden Age of Planetary Exploration Shane Byrne – [email protected] PYTS/ASTR 206 – Comets 3 In this lecture… Observations of comets What are comets? Composition and structure Cometary tails Ion and dust tails Where do comets come from? Orbits of comets Oort cloud Scattered Kuiper Belt PYTS/ASTR 206 – Comets 4 Observations of comets Comets have been known from ancient times Thought to foreshadow disasters and major battles Pre-telescopes the known solar system was a pretty empty place Moon and the Sun Mercury, Venus, Mars, Jupiter, Saturn And COMETS No Uranus No Neptune No planetary Moons (except ours) No Asteroids No Kuiper Belt Objects PYTS/ASTR 206 – Comets 5 People have recorded comet sightings for millennia 167 BC 687 AD 1986 AD PYTS/ASTR 206 – Comets 6 Ancient Greeks thought comets were atmospheric phenomena In the west this went unchallenged until telescopes came along Tycho Brahe’s parallax measurements proved this wrong Comets were much further away than the Moon Renaissance astronomers thought comets moved in straight lines through the solar system Even Kepler argued they shouldn’t follow elliptical orbits like the planets In the 1680s astronomers tracked a comet and showed it had an elliptical orbit Comets were solar system objects – just like planets PYTS/ASTR 206 – Comets 7 Newton finally -
THE GREAT CHRIST COMET CHRIST GREAT the an Absolutely Astonishing Triumph.” COLIN R
“I am simply in awe of this book. THE GREAT CHRIST COMET An absolutely astonishing triumph.” COLIN R. NICHOLL ERIC METAXAS, New York Times best-selling author, Bonhoeffer The Star of Bethlehem is one of the greatest mysteries in astronomy and in the Bible. What was it? How did it prompt the Magi to set out on a long journey to Judea? How did it lead them to Jesus? THE In this groundbreaking book, Colin R. Nicholl makes the compelling case that the Star of Bethlehem could only have been a great comet. Taking a fresh look at the biblical text and drawing on the latest astronomical research, this beautifully illustrated volume will introduce readers to the Bethlehem Star in all of its glory. GREAT “A stunning book. It is now the definitive “In every respect this volume is a remarkable treatment of the subject.” achievement. I regard it as the most important J. P. MORELAND, Distinguished Professor book ever published on the Star of Bethlehem.” of Philosophy, Biola University GARY W. KRONK, author, Cometography; consultant, American Meteor Society “Erudite, engrossing, and compelling.” DUNCAN STEEL, comet expert, Armagh “Nicholl brilliantly tackles a subject that has CHRIST Observatory; author, Marking Time been debated for centuries. You will not be able to put this book down!” “An amazing study. The depth and breadth LOUIE GIGLIO, Pastor, Passion City Church, of learning that Nicholl displays is prodigious Atlanta, Georgia and persuasive.” GORDON WENHAM, Adjunct Professor “The most comprehensive interdisciplinary of Old Testament, Trinity College, Bristol synthesis of biblical and astronomical data COMET yet produced. -
Richard C. Hoagland - Summary Bibliography
Richard C. Hoagland - Summary Bibliography Search the database Advanced Search Not Logged In Log In Help Navigating Other Pages: Home Page ISFDB Wiki ISFDB FAQ Magazines Awards Recent Edits Recent Verifications Other Bibliographies For This Author: Summary Awards Alphabetical Chronological Editing Tools: Moderator Edit Author Data Make/Remove a Pseudonym Show All Titles Check for Duplicate Titles Add New Data: Add New Anthology Add New Chapterbook Add New Collection Add New Fanzine Add New Magazine Add New Nonfiction Add New Novel Add New Omnibus Policies: Disclaimer Privacy Policy Banner Art Credits License: This work is licensed under a Creative Commons License. Used These Alternate Names: Dick Hoagland Interviews: Interview: Richard Hoagland Biography: Bio:Richard C. Hoagland Bibliographic Comments: Author:Richard C. Hoagland Nonfiction The Monuments of Mars: A City on the Edge of Forever (1989) Dark Mission: The Secret History of NASA (2007) with Mike Bara Essay Series Science Fact (Analog) o Why We WON'T Find Life on Mars (1974) o Rendezvous in 1985 (1975) o Return to Mars: A Mission for the Enterprise (1977) o The Blivit in the B-Ring (Part 1 of 2) (1982) o The Blivit in the B-Ring (Part 2 of 2) (1983) o The Curious Case of the Humanoid Face ... On Mars (1986) (R)evolution o Torchships Now! (If, July-August 1974) (1974) with Robert D. Enzmann o Torchships Now! (If, September-October 1974) (1974) with Robert D. Enzmann o Following Yonder Star (1974) Essays Forum: Television: Never-Never Land and Clarke's Third Law (1974) [only as by Dick Hoagland ] The Origin of the Solar System (1977) with Ben Bova Space: The El Chichon Incident (1983) Richard C. -
January 12-18, 2020
3# Ice & Stone 2020 Week 3: January 12-18, 2020 Presented by The Earthrise Institute This week in history JANUARY 12 13 14 15 16 17 18 JANUARY 12, 1910: A group of diamond miners in the Transvaal in South Africa spot a brilliant comet low in the predawn sky. This was the first sighting of what became known as the “Daylight Comet of 1910” (old style designations 1910a and 1910 I, new style designation C/1910 A1). It soon became one of the brightest comets of the entire 20th Century and will be featured as “Comet of the Week” in two weeks. JANUARY 12, 2005: NASA’S Deep Impact mission is launched from Cape Canaveral, Florida. Deep Impact would encounter Comet 9P/Tempel 1 in July of that year and – under the mission name “EPOXI” – would encounter Comet 103P/Hartley 2 in November 2010. Comet 9P/Tempel 1 is a future “Comet of the Week” and the Deep Impact mission – and its results – will be discussed in more detail at that time. JANUARY 12, 2007: Comet McNaught C/2006 P1, the brightest comet thus far of the 21st Century, passes through perihelion at a heliocentric distance of 0.171 AU. Comet McNaught is this week’s “Comet of the Week.” JANUARY 12 13 14 15 16 17 18 JANUARY 13, 1950: Jan Oort’s paper “The Structure of the Cloud of Comets Surrounding the Solar System, and a Hypothesis Concerning its Origin,” is published in the Bulletin of the Astronomical Institute of The Netherlands. In this paper Oort demonstrates that his calculations reveal the existence of a large population of comets enshrouding the solar system at heliocentric distances of tens of thousands of Astronomical Units. -
Kohoutek Is Coming! New York, New York September I0, 1973
INSTITUTE OF CURRENT rORLD AFFAIRS ATW-20 Kohoutek Is Coming! New York, New York September I0, 1973 Mr. Richard H. Nolte Institute of Current World Affairs 535 Fifth Avenue New York, New York 10017 Dear Mr. Nolte: Our planet earth is about to be visited by a ghost. The name of the visitor is "1973f" or "Kohoutek," and it is a great comet, perhaps the greatest of the century. Comets have been called the ghosts of the solar system because they are so insubstantial relative to their size and brightness. Percival Lowell called them "bagfuls of nothing," and, in fact, their most eye- catching features great tails of enormous length and brilliance seem to be nothing more than tenuous streamers of gas excited to lumin- escence by the radiation of the sun. The great comet now rushing at us from the far corners of space was discovered on March 7th of this year by Dr. Lubo Kohoutek of the Hamburg Observatory in Bergedorf, West Germany. It showed up on a photo- graphic plate as a faint, diffuse object with no tail in the constel- lation of Hydra. Subsequent observations made possible the calculation of the orbit of this body. We now know that it will reach perihelion, its closest approach to the un, on December 24th, and it should be spectacu- larly visible to the naked eye for about six weeks before and after that date. The word "comet" comes from the Greek "hairy star." Comets are members of the solar system. Like planets they revolve in orbits around the sun. -
Kuiper Belt and Comets: an Observational Perspective
Kuiper Belt and Comets: An Observational Perspective David Jewitt1 1. Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 [email protected] Note to the Reader These notes outline a series of lectures given at the Saas Fee Winter School held in Murren, Switzerland, in March 2005. As I see it, the main aim of the Winter School is to communicate (especially) with young people in order to inflame their interests in science and to encourage them to see ways in which they can contribute and maybe do a better job than we have done so far. With this in mind, I have written up my lectures in a less than formal but hopefully informative and entertaining style, and I have taken a few detours to discuss subjects that I think are important but which are usually glossed-over in the scientific literature. 1 Preamble Almost exactly 400 years ago, planetary astronomy kick-started the era of modern science, with a series of remarkable discoveries by Galileo concerning the surfaces of the Moon and Sun, the phases of Venus, and the existence and motions of Jupiter’s large satellites. By the early 20th century, the fo- cus of astronomical attention had turned to objects at larger distances, and to questions of galactic structure and cosmological interest. At the start of the 21st century, the tide has turned again. The study of the Solar system, particularly of its newly discovered outer parts, is one of the hottest topics in modern astrophysics with great potential for revealing fundamental clues about the origin of planets and even the emergence of life. -
Water Production Activity of Nine Long-Period Comets from SOHO/SWAN Observations of Hydrogen Lyman-Alpha: 2013–2016 Michael R
Water production activity of nine long-period comets from SOHO/SWAN observations of hydrogen Lyman-alpha: 2013–2016 Michael R. Combi, J. Teemu T. Mäkinen, Jean-Loup Bertaux, Eric Quémerais, Stéphane Ferron, M. Avery, C. Wright To cite this version: Michael R. Combi, J. Teemu T. Mäkinen, Jean-Loup Bertaux, Eric Quémerais, Stéphane Ferron, et al.. Water production activity of nine long-period comets from SOHO/SWAN observations of hydrogen Lyman-alpha: 2013–2016. Icarus, Elsevier, 2018, 300, pp.33 - 46. 10.1016/j.icarus.2017.08.035. insu-01584917 HAL Id: insu-01584917 https://hal-insu.archives-ouvertes.fr/insu-01584917 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NASA Public Access Author manuscript Icarus. Author manuscript; available in PMC 2019 January 15. Published in final edited form as: NASA Author ManuscriptNASA Author Manuscript NASA Author Icarus. 2018 January Manuscript NASA Author 15; 300: 33–46. doi:10.1016/j.icarus.2017.08.035. Water Production Activity of Nine Long-Period Comets from SOHO/SWAN Observations of Hydrogen Lyman-alpha: 2013– 2016 M.R. Combi1, T.T. Mäkinen2, J.-L. -
Monthly Newsletter of the Durban Centre - May 2018
Page 1 Monthly Newsletter of the Durban Centre - May 2018 Page 2 Table Of Contents Chairman’s Chatter …...…………………….…...….………..….…… 3 The Man Of Mars ……..………………………………...…….……….. 5 At The Eye Piece ……………...…………………………….….…….... 9 The Cover Image - Eta Carinae ……………….……….………….... 11 Comets Continued.………………………………..……..………….... 14 The Green Flash …….………………...…….………..………………. 21 Sutherland 2018 …..…..………………………………..…..………… 23 The Month Ahead …..…………………...….…….……………..…… 27 Minutes Of The Previous Meeting ……………………..…….……. 28 Public Viewing Roster …………………………….……….…..……. 29 Pre-loved Astronomical Equipment ..…………..….…........…… 30 Committee Nomination Form For 2018-19 …………………..….. 31 Image by Angus Burns from Newcastle, KZN Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, We are moving into May and autumn and are starting to get into a period of clearer skies and great viewing. We have certainly had some fantastic viewing evenings over the last 2 weeks. Particularly, the end of last week. For those of you who have been watching the skies, in the late evening we could see a risen Scorpio following Jupiter, with both Mars and Saturn following closely. Three of the five visible planets in one night and if you looked a little earlier you would have seen Venus on the western horizon just after sunset! Our activities over the last month were dominated by our trip to Sutherland which turned out to be a most fantastic trip. Not only did the skies play ball, (the Cape rain held out till the 26 April), but our hosts at SALT did the usual, taking us through SALT and in the evening through the control centre where we had the working astronomers giving us a presentation. -
Dust in Comet 103P/Hartley 2 Coma During EPOXI Mission Q ⇑ E
Icarus 222 (2013) 774–785 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Dust in Comet 103P/Hartley 2 coma during EPOXI mission q ⇑ E. Hadamcik a, , A.K. Sen b, A.C. Levasseur-Regourd c, R. Gupta d, J. Lasue e, R. Botet f a UPMC (U. P. & M. Curie, Sorbonne Universités), LATMOS/CNRS, 11 Bld d’Alembert, 78280 Guyancourt, France b Assam Univ., Silchar 788 001, India c UPMC (U. P. & M. Curie, Sorbonne Universités), LATMOS/CNRS, 4 Place Jussieu, 75005 Paris, France d IUCAA, Post Bag 4, Ganeshkhind, 411007 Pune, India e Univ. de Toulouse, UPS-OMP, IRAP, BP 44346, 31028 Toulouse, France f Univ. Paris-Sud, LPS/CNRS, Bat. 510, 91405 Orsay, France article info abstract Article history: The Deep Impact spacecraft flew by Comet 103P/Hartley 2 on 4 November 2010 (EPOXI mission). In situ Available online 16 July 2012 observations are complemented by a systematic ground- and space-based observation campaign. In the present work, imaging polarimetry is used to emphasize different dust regions in the coma and follow Keywords: their evolution over a period including the EPOXI fly-by. Comets, Dust On the intensity images, the coma is asymmetric with an important tailward feature. Jets in the sun- Comets, Coma ward direction are observed to present an extension that depends on the nucleus phase. The azimuthal Polarimetry integrated intensity presents a nominal radial decrease (À1 in log–log scale) for optocentric distances lar- ger than a few hundred kilometers. Through cometary continuum narrow band filters, the aperture polar- ization decreases with the optocentric distance. -
Kudo-Fujikawa\), C/2002 V1 \(NEAT\
A&A 528, A142 (2011) Astronomy DOI: 10.1051/0004-6361/201016250 & c ESO 2011 Astrophysics Molecular investigations of comets C/2002 X5 (Kudo-Fujikawa), C/2002 V1 (NEAT), and C/2006 P1 (McNaught) at small heliocentric distances N. Biver1, D. Bockelée-Morvan1, P. Colom1, J. Crovisier1, G. Paubert2,A.Weiss3, and H. Wiesemeyer3 1 LESIA, CNRS UMR 8109, UPMC, Université Paris-Diderot, Observatoire de Paris, 5 pl. Jules Janssen, 92195 Meudon, France e-mail: [email protected] 2 IRAM, Avd. Divina Pastora, 7, 18012 Granada, Spain 3 Max Planck Institute for Radio Astronomy, PO Box 20 24, 53010 Bonn, Germany Received 2 December 2010 / Accepted 14 January 2011 ABSTRACT We present unique spectroscopic radio observations of comets C/2002 X5 (Kudo-Fujikawa), C/2002 V1 (NEAT), and C/2006 P1 (McNaught), which came within rh ≈ 0.2 AU of the Sun in 2003 and 2007. The molecules OH, HCN, HNC, CS, and CH3OH + were detected in each of these comets when they were exposed to strong heating from the Sun. HC3NandHCO were detected in comets C/2002 X5 and C/2006 P1, respectively. We show that in these very productive comets close to the Sun screening of the photodissociation by the Sun UV radiation plays a non-negligible role. Acceleration of the gas expansion velocity and day-night −5 −1 asymmetry is also measured and modeled. The CS photodissociation lifetime was constrained to be about 2.5 × 10 s at rh = 1AU. The relative abundances are compared to values determined from more distant observations of C/2002 X5 or other comets. -
Thermal and Structural Evolution of Small Bodies in the Solar System
הפקולטה למדעים מדוי יקים RAYMOND AND BEVERLY SACKLER "ע ש ריימונד ובברלי סאקלר FACULTY OF EXACT SCIENCES המחלקה לגיאופיזיקה ומדעים פלנטאריים GEOPHYSICS AND PLANETARY SCIENCES Thermal and Structural Evolution of Small Bodies in the Solar System Thesis submitted for the degree Doctor of Philosophy by Gal Sarid This work was carried out under the supervision of Prof. Dina Prialnik Dept. of Geophysics and Planetary Sciences Submitted to the Senate of Tel Aviv University October 2009 Thermal and Structural Evolution of Small Bodies in the Solar System By Gal Sarid October 2009 Abstract The designation ”small bodies” in Solar System studies refers to astronomical bodies smaller than planets, for which the Sun is the main gravitational attractor. The diversity in the dynamical properties of these bodies may be a result of the specific accretion locations of each class of bodies, or their subsequent orbital evolution, mainly due to gravitational perturbations by the planets. There are many dynamical classes of small bodies, but the ones that share a common dynamical evolution scheme, or a widely accepted chain of origin, are Comets, Centaurs and trans-Neptunian objects. In the work presented here we followed the thermo-chemical evolution of the relevant small bodies. This was done through the use of a sophisticated 1-D or quasi-3D numerical code, which solves the heat transfer and flow equations for a porous multi-component object, with full consideration of interior and exterior boundary conditions. We applied this general thermal evolution code to the modeling of several specific trans-Neptunian objects, which represent a sample of the various physical characteris- tics attributed to this population.