Search for the pair production of light top squarks in the e[superscript ±]μ[superscript #] final state in -proton collisions at s√=13 TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story .

Citation Sirunyan, A.M. et al. "Search for the pair production of light top squarks in the e[superscript ±]μ[superscript #] final state in proton- proton collisions at s√=13 TeV." Journal of High Energy Physics (2019) 2019: 101 © 2019 The Author(s)

As Published https://doi.org/10.1007/JHEP03(2019)101

Publisher Springer

Version Final published version

Citable link https://hdl.handle.net/1721.1/121264

Terms of Use Creative Commons Attribution 4.0 International license

Detailed Terms https://creativecommons.org/licenses/by/4.0/ JHEP03(2019)101 = s √ Springer March 7, 2019 March 18, 2019 : January 4, 2019 : : February 21, 2019 : Accepted Received Published Revised Published for SISSA by https://doi.org/10.1007/JHEP03(2019)101 variable, which combines the transverse mass T2 M of proton-proton collisions at a centre-of-mass energy of 1 − . 3 1901.01288 final state in proton-proton collisions at TeV -Hadron scattering (experiments), , top squark ∓ A search for the production of a pair of top squarks at the LHC is presented. , Copyright CERN, µ [email protected]  e = 13 s E-mail: Article funded by SCOAP Open Access for the benefit of the CMS Collaboration. Keywords: ArXiv ePrint: of each andthe the standard missing model transverse momentum. predictions.the production No Exclusion of excess limits top ofbetween squarks are the events up placed is top to at squark found masses and 95% over of the confidence 208 lightest GeV level for close on models to with that a of mass the difference top . between the top squark andis the performed neutralino with being 35.9 fb close13 TeV, collected to by the the top CMS quarkpair detector mass. with in The 2016, opposite search using charge.pair events containing background, one The and - search the is use based of on the a precise estimate of the Abstract: This search targets aproduction region and of top parameter quark space pair production where are the very kinematics similar, of because top of squark the mass pair difference The CMS collaboration Search for the pairthe production of√ light top squarks in JHEP03(2019)101 11 ], and the lack 2 , 1 ] is a well-motivated extension 13 – 5 9 ] solution to both of these problems, ) provides a good candidate for dark 0 1 e χ 15 , ], that distinguishes between SUSY and 14 16 ], top squarks are produced in pairs and the – 1 – 16 t background 10 4 8 3 7 11 21 ]. Supersymmetry (SUSY) [ 2 4 , 3 6 ), if their masses are close in value. Similar cancellations occur for other 1 1 t e 13 7.3 Other uncertainties 7.1 Modelling7.2 uncertainties in the t Experimental uncertainties the top squark ( , resulting in aintroduces natural a new solution quantum toSM number, the particles. R-parity hierarchy [ problem. Iflightest SUSY R-parity Furthermore, is SUSY is conserved stable, [ which if neutral ( of a candidate particle thatphysical explains observations [ the nature ofof dark the SM in that cosmologicalthrough provides and a the astro- technically introduction naturalSUSY of [ models, an large additional quantumproduced symmetry loop by corrections between the top to quark, the are and masses mostly . of cancelled by the the Higgs one In bosons, produced by mainly its SUSY partner, The standard modelthe (SM) observed of particle particle physicscannot phenomena. physics be accurately However, explained there describes by are theexplain the several SM, the large open such vast difference as problems majority between the the that of hierarchy electroweak and problem, the the Planck need scale [ for fine tuning to The CMS collaboration 1 Introduction 8 Results 9 Summary 6 Background estimation 7 Systematic uncertainties 3 Monte Carlo simulation 4 Objects and event selection 5 Search strategy Contents 1 Introduction 2 The CMS detector JHEP03(2019)101 − 1 . In t e 1 and a m π 2 ] and AT- 31 t background, < ϕ < t) production pro- , as shown in figure 0 1 0 1 0 1 e χ e e χ χ t ] Collaborations do not have 30 → t t – 1 t e 23 is used. 1 − ), leading to a natural solution to the hierarchy 1 1 ] and CMS [ – 2 – t t t e e 22 m – 18 p p ]. 17 , ). t production cross section measurements at 8 TeV by the CMS [ 15 ] Collaborations, excluding the presence of a top squark with a mass of up to , T2 ), using events produced in pp collisions at a centre-of-mass energy of 13 TeV ) close to the top quark mass ( t 14 M 1 33 . Diagram of the top squark pair production with further decay into a top (antitop) quark t e , m m 32 ' The analysis is performed as a search for an excess above a large t Top squarks in this search are assumed to decay as Given that the target SUSY signal and the SM top quark pair (t This paper presents a search for the production of a pair of scalar top partners and 0 1 e χ pixel and strip tracker covering the full range of the azimuthal angle 0 variable ( 2 The CMS detector The central feature ofdiameter, the providing CMS a apparatus magnetic is field a of superconducting 3.8 T. solenoid of Within 6 m the internal solenoid volume are a silicon LAS [ 191 GeV for a neutralino mass of 1 GeV. which must be estimated preciselyachieved to by attain exploiting sensitivity the to distribution the of signal signal. and Further background separation events is in a discriminating cesses are characterized by equivalent finaltop states squark with searches very by similarenough kinematics, the most sensitivity ATLAS of for [ the observingon the the production production of cross topset section squarks of through in signals t these described scenarios. by these Limits models have previously been particular, this analysis usesbottom events (anti)quark in and which a the Wselects final resulting states that top characterized in (anti)quark by turn decays the decays into presence into of a a an lepton opposite-sign and electron-muon a pair. , and that are degeneratem or nearly degeneraterecorded in mass with with the the CMScorresponding top detector to quark at an ( integrated the luminosity LHC. of 35.9 A fb data sample collected during 2016 and matter. The lighter SUSYand therefore particles could may be haveof masses produced the close in CERN to proton-proton LHC. (pp) thosemass collisions of ( In within the certain the SM scenarios energyproblem particles, the reach [ lightest top squarks are expected to have a Figure 1 and the lightest neutralino. JHEP03(2019)101 ) T p ]. 35 tV), are ) scales. A R µ ]. The first level, 34 ] tune for all other 47 ]. The contributions from using the underlying event 42 ] is used to model the SUSY t events at the next-to-leading 45 , t events (referred to as t will be discussed later. 44 ] generator. The production of the pythia ) and renormalization ( 41 F damp µ h generator at LO. v2.2.2 [ , is used to limit the resummation of higher- ] generator. The Drell-Yan process (DY), and – 3 – 40 damp h v1 [ mc@nlo a t events and the CUETP8M1 [ mc@nlo a mg5 ]. mg5 powheg 43 ] generator is used to simulate t t background is crucial for this analysis and the uncertainties on 5, a lead tungstate crystal electromagnetic calorimeter (ECAL), 38 . ] for SM t – ] parton distribution function (PDF) set is used for all the samples. 2 , and on the factorization ( t 39 36 46 < m ]. The effect of additional interactions in the same events (referred to v8.205 [ | η 48 v2 [ | pythia package [ powheg ]. The central value and uncertainties of t cross section. 39 t acceptance on The response of the CMS detector is simulated for all the generated events with the The T2tt model from the simplified model spectra [ The NNPDF 3.0 [ Single top quark and antiquark production in association with a W boson (tW) is The A more detailed description of the CMS detector, together with a definition of the Events of interest are selected using a two-tiered trigger system [ s. The second level, known as the high-level trigger, consists of a farm of processors µ Parton showering and hadronizationtune are CUETP8M2T4 handled [ by background and signal events. Geant4 (LO) using signal, in which topfor the are top unpolarized squark andsamples decaying a is into branching performed fraction a using of top the 100% quark is and assumed a neutralino. The generation of signal the production of Wgenerated at or NLO Z using bosonsDY the in process association is simulated withfor with t the up matching to of two theWW, additional matrix WZ, partons and elements and ZZ and (collectively the parton referred FxFx showers to [ scheme as is VV) processes used are simulated at leading order parameter, denoted as dampingorder factor effects byscale the [ Sudakov form factor to belowsimulated a at given NLO using transverse the momentum ( the modelling of this process playson an important the role, t especially the theoretical uncertainties order (NLO) in quantum chromodynamics (QCD),the as t well as to calculate the dependency of coordinate system used and the relevant kinematic variables, can be3 found in ref. Monte [ Carlo simulation A correct estimate of the t composed of custom hardware processors, usesdetectors information to from the select calorimeters events and4 muon at a rate ofrunning around a 100 version kHz of withinand the a reduces full time the event event interval rate of reconstruction to less software around optimized than 1 kHz for before fast data processing, storage. and a brass andtwo endcap scintillator sections. hadron Forward calorimeter calorimeters extendthe (HCAL), the barrel each pseudorapidity and coverage composed endcap provided detectors. by ofin a the are barrel steel detected in flux-return and gas-ionization yoke chambers outside embedded the solenoid. pseudorapidity of JHEP03(2019)101 ]). 25 2.0 52 > T p tV [ ] obtained ], t 60 Top++ 51 – 55 . The energy of t events because miss T p 8 (12) GeV. To increase ] applied to all charged > 63 T , p t production cross section of 62 ]), and NLO (VV [ 50 ) with respect to t 5 GeV. . miss T p = 172 ] is used, performed with the t ) to obtain a t t sample, the full NNLO plus next-to-next- 53 S m α – 4 – ] aims to reconstruct and identify each individual pair and jets are selected. Signal events may have 61 ∓ µ  ) pb assuming S α 35 (24) GeV are also selected. The efficiency of the combination > T ]), approximate NNLO order (tW [ p 49 23 (23) GeV and one muon (electron) with is taken to be the primary pp interaction vertex, where the physics ob- 35 (PDF+ > 2 T p  T p ]. The PDF uncertainties are added in quadrature to the uncertainty asso- 54 (scale) 29 The particle-flow (PF) algorithm [ Events are required to pass a dilepton trigger based on the presence of one electron For the normalization of the simulated t The signal events are normalized to the theoretical NLO cross section [ Simulated events are normalized according to the integrated luminosity and the the- +20 − and HCAL energies. The momentum of muons isenergy obtained of charged from the is curvaturein determined of from the the a corresponding tracker combination of track. andsuppression their The the effects momentum measured and matching for ECALFinally, the the and response energy HCAL function of neutral energy of hadrons the deposits, is calorimeters obtained corrected to from for hadronic the corresponding showers. zero- corrected ECAL jects are the objectstracks associated returned with by the aphotons vertex, jet is plus obtained finding the from corresponding algorithmfrom the associated [ a ECAL combination measurement. of The themined energy electron by the of momentum tracker, at the the energy isall of primary determined bremsstrahlung the interaction corresponding vertex ECAL spatially as cluster, deter- compatible and the with energy originating sum from of the electron track. calculated as a function of the pseudorapidity of theparticle . in an event,ments with of an the optimized CMS combinationphysics detector. of object information The from reconstructed the vertex various with ele- the largest value of summed the trigger efficiency, events passing aelectron single-lepton (muon) trigger with that requires theof presence of dilepton one and single-leptonand triggers 20 for GeV is events measured with inefficiency an data is and electron-muon found corrected pair to to with be match approximately that 98%. observed The in simulated data trigger by using a multiplicative scale factor this analysis, events containing ana e larger amount of missingof transverse the momentum presence ( of the neutralinos. (muon) with from the simplified model spectrum for the T2tt model. 4 Objects and eventIn selection the SM, top quarks decay almost exclusively into a and a W boson. In to-leading-logarithmic accuracy calculation [ program [ ciated with the strong832 coupling constant ( event. Simulated events are then reweighted somatches that the the observed simulated distribution, pileup which vertex has distribution an average of 23 collisions peroretical bunch cross crossing. section oforder each (NNLO) process. (DY [ The latter are computed at next-to-next-to-leading as pileup) is accounted for by simulating additional interactions for each hard scattering JHEP03(2019)101 , T p 62 4, and . ]. This 2 64 4 and must | ≤ . η 2 | 4) centered on . | ≤ 3 (0 η . | 20 GeV, = 0 2 ≥ clustering algorithm [ ) T φ T p k + (∆ 30 GeV and 2 ) ≥ ) is defined as the transverse com- η T p (∆ miss T ~p √ = spectrum. The charged PF candidates that 4 are not considered. . R ]. T p 68 – 5 – = 0 . All the corrections applied to the jet momenta [ R miss T miss T p p ]. This algorithm combines the information of the recon- 66 (leading) lepton must be at least 25 GeV. In case more than ], and b tagging and b tag misidentification rates are measured of the object and are of the order of 1% for leptons and a few , the latter except for the trigger efficiency. T η p 67 T , p 64 and and T p ]. η 66 ]. Selected jets are required to have 65 Events containing one electron-muon pair with opposite charge and invariant mass The vectorial missing transverse momentum ( The correction of MC efficiencies to match that observed does not introduce any bias Lepton reconstruction, identification, and isolation efficiencies, as well as efficiencies for Jets originating from b quarks are identified (tagged) as b jets using the combined Jets are reconstructed from PF candidates using the anti- Selected leptons (electrons and muons) are required to have . Selected leptons are required to originate from the primary vertex. ] with a distance parameter of 0.4. The jet momentum is defined as the vector sum of T an event; its magnitude isare denoted propagated as to the calculation of greater than 20 GeV, tomomentum avoid of selecting the low highest- mass resonances, are selected. The transverse identification, and isolation efficienciestag-and-probe and method [ the triggerusing efficiency an are independent measured sample usingapplied of by the QCD bins of multijet events. In addition,ponent these of corrections the are negative vector sum of the momenta of all reconstructed PF candidates in Carlo (MC) simulation to matchas the functions observed of values. the These correctionspercent are for parameterized jets [ in our search for an excess above SM background prediction as the lepton reconstruction, identification efficiencies of aboutabilities 70% are is about used. 1% The for15% corresponding light-flavour for jets misidentification c (originating prob- jets. from u, d, s quarksb or tagging ) and and b tag misidentification of light quarks or gluons are corrected in the Monte with the selected leptons in a cone of ∆ secondary vertex algorithm v2 [ structed secondary vertex with otherclassifier kinematic to variables of maximize the jet the by probability using of a multivariate tagging b jets. An operating point that yields 10% of the true momentumare over determined the entire to originateand from an pileup offset vertices correctioninteractions are [ is discarded applied in tocome the account from jet the for reconstruction, main remaining primary contributions vertex. of In the order pileup to avoid double counting, jets that overlap for the expected contributionisolation variable of is neutral required hadrons, top be following smaller the than procedure 6 (15)% in of [ the electron63 (muon) candidate the momenta of all PF candidates associated with the jet, and is found to be within 5– to satisfy a lepton isolation criterion.sum The of lepton all isolation the variable PF is candidates definedthe inside as a electron the cone scalar (muon) of candidate, ∆ excludingTo the contribution account from for the lepton particleshadrons candidate that produced itself. are not in associated pileup to the interactions, primary vertex the is removed contribution and from a correction charged is applied JHEP03(2019)101 . ]. T = p 70 miss T m (5.1) p t back- 24 pb, but the , ≈ of the event. The i ) values smaller than miss T miss T,2 ~p T2 , ~p ], the sensitivity of the M 2 ` T 26 ~p ( T variable, defined as is limited but the signal cross distributions of the simulated , m 98%) come from top quark pro- T2 right). T2 ) T2 ≈ left). Furthermore, the differences 2 M M M 2 miss T,1 0 GeV are used for hypothesis testing. , ~p correspond to the estimated transverse t background, using MC simulation and 1 ` T > ~p , figure ( t miss T2 T T2 m ~p m M , h ≈ – 6 – 80 GeV, because of the presence of the endpoint is done using the algorithm discussed in ref. [ m miss T1 50 GeV) in the event can result in additional > ~p max t production cross section. However, the kinematics > = 0 GeV do not provide any discrimination between T2  T2 0 1 e M χ T2 M miss T m ~p M = distributions for signal and background for different mass t events. This difference increases significantly when ∆ miss T,2 T2 ~p + M , the discriminating power of t miss T,1 ~p m ] theoretical uncertainties on the predicted cross section and the even t, tW). For a top squark mass similar to that of the top quark, the = min ≈ 54 1 t e T2 to the event (keeping ∆ ] experimental uncertainties on the measurement. Additional sensitivity m M shows the ], while this is not true if extra invisible particles are present in the event. For distribution for t miss T t background, only events with . The computation of 69 , is the transverse mass and is different from the top quark mass (figure p 2 T 71 distribution has a kinematic endpoint at the mass of the W boson in the case of p 0 1 T2 31 T are large for signal points characterized by large neutralino masses, which have e χ T2 M m m T2 M Figure For a top squark mass of 245 GeV, the cross section decreases to − M 1 t e t events [ t background with small signal contamination is impossible to define. The sensitivity of 80 GeV and a largein difference the for m in additional section is high enoughexpectation. to have Since sensitivity events to with signal the and presence t of a signal over the background hypotheses for the stopsignal squark models and are neutralino. characterized by The a slightly different shape for transverse mass is calculated forneutrino each lepton-neutrino pair, for differentThe assumptions of the t models where analysis is further increased by using the shape of the where momenta of two that are presumed to determine the total ground, which become moremass difference important between with the top increasing squark top and squark neutralino. masspresence of and massive increasing neutralinos ( To account for this, following previous top squark searches [ t the analysis comes from aexploiting precise the estimate 6% of [ thesmaller t [ comes from the small kinematic differences between the target signal and the t After the event selection,duction the processes vast (t majority ofproduction events cross ( section ofresponding the to signal about process 15% isof of expected the the to SM final-state amount t to particles up are to very 125 pb, similar cor- in both processes, so a control region for the leptons, and the eventSelected is events are selected also if requireda to that b-tagged contain pair jet. at least satisfies two the jets, at aforementioned least requirements. one5 of which must be Search strategy two leptons are present in the event, the dilepton pair is formed using the two highest JHEP03(2019)101 t [GeV] . For (GeV) 3 (13 TeV) T2 M = 7.5 GeV = 7.5 GeV = 52.5 GeV = 52.5 GeV 00 11 00 11 ∼∼ χχ ∼∼ χχ = 30 GeV = 30 GeV 00 11 ∼∼ χχ = 182.5 GeV, m = 182.5 GeV, m = 227.5 GeV, m = 227.5 GeV, m = 205 GeV, m = 205 GeV, m t modelling and their associated 11 11 11 tt tt tt ~~ ~~ ~~ t t tt mm mm mm t and signal events with two generated Simulation CMS 0 20 40 60 80 100 120 1 2 3 4 1 1 2 − t with a mismeasurement of the electron − − −

10

10 Signal/t 10 t 10 10 10 10 Arbitrary units Arbitrary is observed, within the uncertainties, and is 4 4. The last bin includes the overflow. – 7 – 1 (syst). . tZ events, for a total contribution of about 1%. . ] and MC parameters have been tuned using an 2 . The tW background gives the second-largest [GeV] 0 72 ), while all other requirements for the event selection (GeV) 7  (13 TeV) | ≤ T2 η 2 M | . tW, and t ]. Moreover, its differential cross section as a function of 31 same-sign ]. The MC tuning does not produce a significant modification distributions for various mass hypotheses for the top squark and for 39 T2 tZ events or dileptonic t = 45 GeV = 45 GeV = 52.5 GeV = 52.5 GeV = 60 GeV = 60 GeV 00 11 00 11 00 11 M ∼∼ χχ ∼∼ χχ ∼∼ χχ of at least 20 GeV and tW and t T = 227.5 GeV, m = 227.5 GeV, m = 227.5 GeV, m = 227.5 GeV, m = 227.5 GeV, m = 227.5 GeV, m shape. The main parameters affecting the t 11 11 11 p tt tt tt ~~ ~~ ~~ t t tt mm mm mm T2 . Normalized Simulation M t process accounts for approximately 94% of the total background yields in the selected CMS 0 20 40 60 80 100 120 Other background contributions are estimated using MCA simulation and good come agreement from between data and SM predictions after the full event selection The number of events with nonprompt leptons, including the contribution of events 1 2 3 4 1 1 2 − − − −

10

10 Signal/t 10 t 10 10 10 10 Arbitrary units Arbitrary estimated in MC simulation to be 1 DY, VV (WW, WZ, and ZZ), t and after the corrections described in section events in the control region afterproduce subtraction of prompt the leptons. contribution frommainly the This backgrounds from contribution that t is estimatedcharge. from The MC events simulation insign and this to comes control same-sign region events are with weighted by nonprompt the leptons expected after ratio the of full opposite- event selection, which is with jets misidentified as leptonsmistakenly or with identified leptons coming as fromcontrol coming the region decay from of in a the which bottomelectric the hard quark charge (referred electron to process, and as is muonare are estimated the required from same to as an have for the observed the same sign signal of region. the This background is estimated using the observed different variables has beenindependent measured data [ sample [ of the uncertainties are discussedcontribution, in approximately section 4%, and is also modelled using MC simulation. The t region, and is modelledthis from modelling, MC a simulation top quark using massproduction the of process 172.5 sample has GeV is been described assumed. previously in demonstratedby The section in accurate the several knowledge cross of CMS section the measurements Collaboration t [ the neutralino. Variables at theleptons generator with level are used for t 6 Background estimation Figure 2 JHEP03(2019)101 (GeV) (GeV) T miss T = 1 GeV 0 1 (13 TeV) (13 TeV) χ ∼ p -1 -1 = 1 GeV 0 1 ∼ χ t background Syst 35.9 fb 35.9 fb . The last bin ⊕ = 175 GeV, m 1 t . The uncertainty ~ 7 t m Stat Data t tW Other SM Syst ⊕ Subleading lepton p = 175 GeV, m miss T 1 t ~ p t Data t tW Other SM m Stat ), and , and the angle between the , µ (e miss T φ p )). The considered uncertainties , T , ∆ , µ p T (e p φ 3 3 CMS CMS 10 10 × ×

0 50 100 150 200 250

1 1

20 40 60 80 100 120 140 5 0 0

Events / 10 GeV 10 / Events GeV 10 / Events Data/Pred. Data/Pred. 0.8 0.6 0.8 0.6 1.4 1.2 1.4 1.2 15 10 40 20 ] and the modelling of the t 39 ) – 8 – π (GeV) T ) (rad/ µ (13 TeV) (13 TeV) t background prediction in this search, various mod- = 1 GeV 0 1 -1 -1 (e, χ ∼ = 1 GeV. φ ∆ 1 0 e χ 35.9 fb 35.9 fb m Syst ⊕ = 175 GeV, m Leading lepton p 1 t ~ t m Stat Data t tW Other SM CMS . . 7 7.1 = 1 GeV 0 1 χ ∼ = 175 GeV and for the leading and subleading lepton ]. Details on the systematic uncertainties accounting for modelling effects 1 3 t e 72 Syst ⊕ m = 175 GeV, m 1 t ~ t Stat m Data t tW Other SM . Distributions for leading and subleading lepton 3 3 CMS 40 60 80 100 120 140 160 180 200 220 10 10 × ×

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 1 The background and signal estimates are affected by several systematic uncertainties

6 4 2 0 0

Events / 0.05 / Events Events / 10 GeV 10 / Events Data/Pred. Data/Pred. 1.4 1.2 0.8 0.6 1.4 1.2 0.8 0.6 20 10 uncertainties [ are reported in section in the acceptance, efficiency, andefficiencies, normalization. lepton reconstruction, The identification effect and of isolation uncertainties efficiencies, in jet the energy trigger scale Because of the largeelling impact systematic of uncertainties the are t theoretical assigned, parameters reflecting used in the the limitedwere simulation. knowledge set The of in ranges the of severalhas main variation previous of been these CMS shown parameters analyses to [ accurately describe several kinematic variables within the systematic momentum of the leptons inare the described transverse in plane (∆ section 7 Systematic uncertainties band includes statisticalcontains and the overflow all events. systematic Thehypothesis signal of uncertainties is described stacked on in top section of the background prediction for ashown mass in figure Figure 3 JHEP03(2019)101 ]. ]. ]. ]. = T2 . t 73 36 46 73 1 M , ]. A m . 39 39 7.3 shape and ], is calcu- 39 [ T2 t M m denotes the square 66 59 . . 0 t , +0 − 2 T p 58 ++ for a top quark mass . = 1 Top ) by factors of 2 and 1/2 [ . Here S t , α t rest frame. The uncertainty in damp 2 T t yields is summarized in table p h t background prediction with scales by factors of 2 and 1/2 relative + 2 t R . S µ m α is determined by reweighting the sample of = S and 2 R α t background – 9 – F µ t background normalization, taking into account generator as µ = 2 F µ 1 GeV in the calculation of the cross section.  powheg are tuned to model the measured underlying event [ t events has been found to be slightly mismodelled [ t yields is small and the range of the uncertainty can be seen in in t ], is also propagated to the acceptance. The differences in the . pythia is propagated by reweighting the simulated sample by sets of weights T 74 S p 7.2 α ]. The second effect is the uncertainty from the choice of the top quark , and the scales calculated using the program S 54 α t events according to the envelope of a PDF set of 100 NNPDF3.0 replicas [ sample through changes of the . 1 A 1 GeV uncertainty in the top quark mass, which corresponds to twice the measured The top quark The parameters of An uncertainty from the limited knowledge of the colour reconnection is estimated The impact of the modelling uncertainties of the initial- and final-state radiation is In addition to the normalization uncertainty, several sources of modelling uncertainties The uncertainty in the modelling of the hard interaction process is assessed in the Some other uncertainties, including normalization uncertainties on tW and other minor the reweighting on thetable t uncertainty by CMS [ yields for each bin of the distribution between the t by comparing different models andrespect taking to as the the nominal uncertainty value the for maximum each variation bin. with Thereweighting procedure procedure, is described based in onsearch, detail the these in reweighting ref. studies, is [ tween has not the applied been weighted on and derived. the unweighted distributions background To is estimate, avoid taken but as biasing the an difference the uncertainty. be- The effect of lated by varying this parameterfinal within yields. the uncertainties and propagating the result to the An uncertainty is assigned by varying these parameters within their uncertainties. with two variations within the uncertainties of evaluated by varying the partonIn shower addition, scales the (running impactwhich of is the parameterized matrix by the element (ME) and parton shower (PS) matching, to their common nominalof value the of transverse momentumthe of choice of the the top PDFssimulated quark and t in in the the valueThe t of uncertainty in are considered. Alldescribed in the the modelling next paragraphs. uncertainties Their are effect propagated onpowheg to the t the An uncertainty of 6% istwo effects. assigned to The the first t onein the is PDFs, the uncertainty inof the 172.5 NNLO GeV cross [ section frommass the obtained variations by varying it by are considered in thedescribed estimate in section of background and signal yields.backgrounds and These modelling uncertainties uncertainties are on the signal,7.1 are described in section Modelling uncertainties in the t and resolution, pileup reweighting, and b tagging efficiency and mistag rate efficiencies, JHEP03(2019)101 ] , η T2 64 M and T p t background distribution for ]. The average un- T2 66 M 0.6 0.8 1.5 1.0 ≈ ≈ ≈ ≈ ]. 76 , distribution resulting from t . 75 , 2 T2 ) 0.3–2.0 61 M damp h ]. – 10 – 78 ]. reweighting 0.1–0.5 t sample are of the order of 1.2%, with a dependence 77 T scales 0.3–1.0 p R µ ]. The uncertainties associated with the jet energy scale 4.6% [ 67  from the contribution of unclustered energy is evaluated based and F Source Range (%) µ PDF Initial-state radiation 0.5–1.0 Final-state radiation 0.6–1.2 ME/PS matching ( Underlying event Colour reconnection Top quark Top quark mass (acceptance) miss T p 5 GeV in the MC simulation. . = 172 t m . η range. 0 GeV are taken as an uncertainty, accounting for the possible bias introduced in . . Summary of the uncertainties on the T2 1 and M  T The uncertainty from the pileup reweighting procedureThe is uncertainty evaluated in the by integrated varying luminosity, which the affects the signal and background The uncertainty in The uncertainties associated with the b tagging efficiency and mistag rate are deter- To account for the uncertainties in the lepton momentum scales, the momenta of the The uncertainties in the dilepton trigger, lepton identification, and isolation efficien- 5 . p Details on the procedure can be found in refs.inelastic [ pp cross section by normalization, is estimated to be 2.5% [ according to their uncertainties, ascertainties measured on in these QCD scale multijet factors events for [ on a t on the momentum resolution of the different PF candidates, according to their classification. and about 0.2% forand jet muons energy [ resolutionaccording are to determined the by uncertainties in varying the these jet quantities energy in corrections, which bins amount of mined to a by few varying percent. the scale factors for the b-tagged jets and mistagged light-flavour jets, cies used in simulationuncertainties, are estimated which by are varyingefficiencies, about data-to-simulation and scale 1.5% about factors for 0.5% by for electron their the and trigger efficiency. muonleptons identification are and varied by their isolation uncertainties, which are of the order of 0.1–0.5% for electrons [ 7.2 Experimental uncertainties A summary of theevents passing effect the of full selection the is experimental shown uncertainties in table on the distribution. When only oneentire number is shown, the uncertainty is approximately constant over the 172 the choice of Table 1 modelling uncertainties. The ranges correspond to variations of the uncertainty along the JHEP03(2019)101 . No 4 90 GeV > ]. For other T2 69 M by factors of 2 ]. An uncertainty R bins and in different µ 24 T2 and M F µ 1.5 1.4 0.6 t and signal (%) ≈ ≈ ≈ . The number of events with 3 tV, a normalization uncertainty of 30% is as- t background and signal simulation resulting from – 11 – distributions for selected events are shown in figure T2 bin. M T2 bins of the order of 0.5–1.0%. modelling of the initial-state radiation in signal events is improved M T2 Pileup 0.5–3.5 Unclustered energy 0.5–1.5 Mistag efficiency 0.2–0.6 b tagging efficiency 1.2–2.0 Jet energy resolution 0.3–3.5 Jet energy scale 1.5–3.0 Lepton energy scale 0.5–2.0 Electron efficiencies Muon efficiencies Trigger efficiency Source Range for t M t events, following the same procedure described in [ ]. The effect on the acceptance of the uncertainties in the factorization ]. This uncertainty is propagated to the signal yields, resulting in an distribution of the initial-state radiation jets in MC, according to a correc- 55 79 T mc@nlo a p ], covering the uncertainties in the predicted cross sections and possible extrap- mg5 . Summary of the uncertainties in t 69 t background yields or ranges for these uncertainties in different The Furthermore, a 15% uncertainty in the signal normalization is assigned, according to 8 Results The predicted and observed significant deviation from theobserved SM number of expectation events are is shown observed. in table The integrated expected and tion derived using t is applied by considering variations ofThe half effect the difference of between this thevalues corrections uncertainty assigned and on to unity. the each signal yields amounts to about 1%, with individual of the analysis [ and renormalization scales isand taken 1/2 into both account [ uncertainty in by each varying by scaling the normalization uncertainty of 30%number is of applied, MC taking events used intotor in account applied, the the and estimation effect the of normalization the of of same-sign the the to limited prompt-process opposite-sign subtraction transfer in fac- the the uncertainties in control the region. predicted cross section of signal models in the top squark mass range A normalization uncertaintyseen of between 15% data is andbackgrounds, MC applied including predictions to in tW, the different dibosons,signed jet and DY [ multiplicity t process, regions [ coveringolation differences to the phase space used in the analysis. For the nonprompt lepton background, a experimental uncertainties. The numbersand represent typical t values of thesignal uncertainties samples. in the signal 7.3 Other uncertainties Table 2 JHEP03(2019)101 0 and > 90 GeV 260 6 260 53 41 27 45 19 T2 32 11 >         distribution for M   T2 bin individually, T2 M M T2 (GeV) = 30 GeV M 0 1 ∼ χ T2 M (13 TeV) -1 distribution is performed, Syst ⊕ T2 = 205 GeV, m 1 t ~ 0 GeV with t M m Data t tW Other SM Stat 7400 1680 7600 1821 35.9 fb 2500 276 400 30 650 262 540 106 1400 92 100 19 1240 232 1200 157 >           T2 M are assigned to each 7.1 – 12 – and 5 GeV 8070 0 GeV 7830 5 GeV 6140 5 GeV 3550 . . . . 7.2 0 GeV 16 400 . = 1 = 22 = 30 = 37 = 67 0 1 0 1 0 1 0 1 0 1 e e e e e χ χ χ χ χ m m m m m 0 GeV, 0 GeV, 0 GeV, 0 GeV, 5 GeV, 3 CMS . . . . . 10 ×

0 20 40 60 80 100

1

5 0

Events / 5 GeV 5 / Events Data/Pred. = 175 = 205 = 205 = 205 = 242 1.4 1.2 0.8 0.6 10 distribution (prefit) for data and predicted background. The 1 1 1 1 1 . t t t t t e e e e e T2 m m m m m T2 tV + Dibosons 570 M M . . Number of expected and observed events after the selection, with 90 GeV. The quoted uncertainties reflect both the statistical and systematic contributions. t 102 400 > Process with t tW 4700 Nonprompt leptons 1330 DY + t Total Background 109 000 Signal: Signal: Signal: Signal: Signal: Data 105 893 1694 The statistical interpretation is performed by testing the SM hypothesis against the T2 a signal corresponding toshown, stacked a on top top of squarksystematic the mass and background statistical of estimate. uncertainties 205 The on GeVthe hatched background and rates. bands overflow a correspond events. The to neutralino last The the binSM mass lower combined of background. pane of the shows histogram 30 GeV the includes is ratio also between the observed data and the predicted Figure 4 values of SUSY hypothesis. Awhere the binned nuisance parameters profile are likelihood modelledatic using fit uncertainties log-normal described distributions. of in All section the the system- Table 3 M reflects the discriminating power for different top squark and neutralino masses at high JHEP03(2019)101 5 ≈ . − ) 0 1 0 1 e χ e χ , 175 = m 1 t e − ( − ) = 167 1 0 1 ) t e m 0 1 e χ 5 GeV. This . m e , χ distribution. 1 , )7 t e 1 ( t e T2 − ( m M m comes mostly from t criterion, implemented m s decay mode is considered, ) = 80 GeV). The expected and 0 1 0 1 e χ e χ t & , 1 shape become important for top t e → T2 ( , that was previously unexplored. t 1 M m T2 t e m M ≈ . 0 1 5 e χ values ( m ]. All the uncertainties in the background and − T2 83 – 13 – 1 bins and all processes. The statistical uncertain- – t e M are modelled as nuisance parameters and profiled m 80 , using events with one opposite-sign electron-muon T2 t 7 M m ≈ 1 0 5, 175.0, and 182.5 GeV. The sensitivity of the analysis e χ . variable is used in a binned profile likelihood fit to increase m − T2 1 t e M m ) = 167 0 1 e χ , 1 t e . The ( t t distributions for high m m − 1 t e m 5 GeV. . ≈ )7 No excess is observed and upper limits are set at 95% confidence level on the top squark We exclude the presence of a signal up to a top squark mass of 208 GeV for ∆ We interpret the results for different signals characterized by top squark masses from Upper limits on the top squark pair production cross section are calculated at 95% con- and masses up to 235 (242) GeV in models with a mass difference of +( 0 1 − e t χ t background. Further sensitivity is gained from the absence of a kinematic endpoint in Acknowledgments We congratulate our colleagues in theformance CERN of accelerator departments the for LHC theother and excellent CMS per- thank institutes the for technical theirwe and contributions gratefully to administrative acknowledge the staffs success the at of computing CERN the and centres CMS at effort. and In personnel addition, of the Worldwide LHC production cross section for topm squark masses up toresult 208 GeV significantly in extends models the exclusion with limitstop of squark top masses squark in searches at the the region LHC where to higher m the sensitivity, owing tot the different kinematic distributionsthis between variable the for the signal signal. and the A search is presented for ato top the squark top with quark a mass, mass differencepair, from at the neutralino least mass two close and jets, different and top at squark least masses one are b explored jet. up The to 240 GeV with neutralino masses of 175 = 0 GeV+( and up to top squark masses9 of 235 Summary (242) GeV for ∆ squark masses greater thanand 210 GeV. 182.5 GeV, For the the sensitivitythe difference of signal in the and masses analysis t of isobserved upper ∆ mostly limits driven on by the thethe signal strength, differences predicted defined cross between as sections, the are ratio shown between the in excluded figure and in the fit. 170 to 250 GeV andneutralino: by ∆ three differentto mass SUSY differences models betweenthe with the signal low top normalization, neutralino squark while masses and the and the differences ∆ on ties are treated as uncorrelated nuisance parameters in eachfidence bin level (CL) of using the a modifiedthrough frequentist approach an and asymptotic the approximation CL [ signal predictions described in section and treated as correlated among all JHEP03(2019)101 (GeV) 1 t ~ m (13 TeV) -1 5 GeV (upper right) 35.9 fb . = 167.5 GeV 0 1 χ ∼ - m 1 t ~ = 167 m 0 1 e χ m σ σ (GeV) 1 t − ~ m 1 t e m (13 TeV) -1 Observed Expected Expected 1 Expected 2 CMS 170 180 190 200 210 220 230 240 1

2

1.5 0.5 2.5 95% CL limit on signal strength signal on limit CL 95% 35.9 fb = 182.5 GeV 0 1 χ ∼ - m 1 t ~ – 14 – m (GeV) σ 1 σ t ~ m = 175 GeV (upper left), (13 TeV) -1 0 1 190 200 210 220 230 240 Observed Expected Expected 1 Expected 2 e χ m CMS 35.9 fb 1 3 2 −

= 175 GeV

2.5 1.5 0.5 0 1 95% CL limit on signal strength signal on limit CL 95% 1 χ ∼ t e m - m 1 t ~ 5 GeV (lower). The green dark and yellow light bands correspond to the 68 . m σ σ = 182 0 1 e χ m Observed Expected Expected 1 Expected 2 . Expected and observed upper limits at 95% CL on the signal strength as a function of − 180 190 200 210 220 230 240 1 CMS t e 1

4 3 2

m 0.5 4.5 3.5 2.5 1.5 95% CL limit on signal strength signal on limit CL 95% JINR (Dubna); MON, RosAtom,SEIDI, RAS, CPAN, RFBR, PCTI, and and NRCcies FEDER KI (Switzerland); (Russia); (Spain); MST MESTD MOSTR (Taipei);TUBITAK (Serbia); (Sri and ThEPCenter, Lanka); TAEK IPST, Swiss (Turkey); NASU STAR,DOE Funding and and and Agen- SFFR NSF NSTDA (U.S.A.). (Ukraine); (Thailand); STFC (United Kingdom); MoER, ERC IUT, andCEA ERDF (Estonia); and Academy CNRS/IN2P3 of (France);NKFIA Finland, BMBF, (Hungary); MEC, DAE DFG, and and and DST HIP (India);and HGF (Finland); IPM NRF (Germany); (Iran); (Republic SFI of GSRT (Ireland); Korea); (Greece); BUAP, INFN MES CINVESTAV, CONACYT, (Italy); (Latvia); LNS, MSIP LAS SEP, (Lithuania); and MOE UASLP-FAIgro); (Mexico); and MBIE MOS UM (New (Montene- (Malaysia); Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); analyses. Finally, we acknowledge theof enduring support the for LHC the and constructionand and the FWF operation CMS (Austria); detector FNRS providedand and by FAPESP the FWO (Brazil); (Belgium); following MES funding CNPq,CIENCIAS (Bulgaria); (Colombia); agencies: CAPES, MSES CERN; FAPERJ, and BMBWF CAS, CSF FAPERGS, (Croatia); MoST, RPF (Cyprus); and SENESCYT NSFC (Ecuador); (China); COL- the top squark massand for and 95% CL ranges of the expected upper limits. Computing Grid for delivering so effectively the computing infrastructure essential to our Figure 5 JHEP03(2019)101 ]. SPIRE Ann. Rev. IN (2013) , Nucl. Phys. [ (1971) 86 ]. , C 73 B 31 SPIRE IN [ (1981) 513 ]. ]. B 188 Nucl. Phys. Eur. Phys. J. , , SPIRE (1971) 2415 IN SPIRE [ Precision predictions for electroweak IN D 3 ][ Nucl. Phys. , (1971) 323 Phys. Rev. 13 , – 15 – Extension of the algebra of Poincar´egroup generators ´ arXiv:1003.0904 UNKP, the NKFIA research grants 123842, 123959, ]. [ Upper bounds on supersymmetric particle masses JETP Lett. ), which permits any use, distribution and reproduction in Factorizable dual model of , SPIRE ]. IN ][ (2010) 495 SPIRE 48 invariance IN CC-BY 4.0 [ p This article is distributed under the terms of the Creative Commons Dual theory for free fermions Dynamical breaking of supersymmetry Dark matter candidates from and methods of detection ]. (1988) 63 arXiv:1304.0790 [ SPIRE IN 2480 Astron. Astrophys. and violation of [ production at hadron colliders with Resummino B 306 Individuals have received support from the Marie-Curie program and the European P. Ramond, Yu. A. Golfand and E.P. Likhtman, A. Neveu and J.H. Schwarz, B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, J.L. Feng, R. Barbieri and G.F. Giudice, E. Witten, [5] [6] [7] [3] [4] [1] [2] References C-1845; and the Weston Havens Foundation (U.S.A.). Open Access. Attribution License ( any medium, provided the original author(s) and source are credited. netgc´nin´fia ´ciade T´ecnica Investigaci´onCient´ıficay Excelencia Mar´ıade Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoagrams del cofinanced Principado by de EU-ESF Asturias;Postdoctoral and the Fellowship, the Chulalongkorn Thalis University Greek and and NSRF;Its Aristeia the 2nd the pro- Chulalongkorn Century Rachadapisek Academic Project Sompot Advancement into Project Fund (Thailand); for the Welch Foundation, contract European Union, Regionalistry Development of Fund, Science the andHarmonia Mobility Higher 2014/14/M/ST2/00428, Plus Education, Opus program the 2014/13/B/ST2/02543,and of 2015/19/B/ST2/02861, National 2014/15/B/ST2/03998, the Sonata-bis Science 2012/07/E/ST2/01406; Min- the Centersearch National (Poland), Program Priorities by Re- contracts Qatar National Research Fund; the Programa Estatal de Fomento de la the “Excellence of Science — EOS”Youth — and be.h Sports project n. (MEYS) of 30820817;and the the the Ministry Czech of J´anosBolyai Republic; Education, Research theNew Lend¨ulet(“Momentum”) Scholarship Program National of Excellence the124845, Program Hungarian 124850 Academy and of 125105India; Sciences, the (Hungary); HOMING the the PLUS program Council of of the Foundation Science for and Polish Science, Industrial cofinanced Research, from Research Council and HorizonLeventis 2020 Foundation; the Grant, A. contracttion; P. No. the Sloan Belgian Foundation; 675440 Federal the Science (European Policy Alexanderdans Union); Office; l’Industrie von the et the Humboldt Fonds dans pour l’Agriculture Founda- la (FRIA-Belgium);Wetenschap Formation en the `ala Recherche Agentschap Technologie voor (IWT-Belgium); Innovatie the door F.R.S.-FNRS and FWO (Belgium) under JHEP03(2019)101 , ] , (1972) TeV B 70 C 76 ]. (2017) B 193 16 (1982) 36 = 13 (1998) 1 (1984) 1 s ]. SPIRE C 77 √ IN 18 (2014) 124 [ 110 B 199 Nucl. Phys. 06 SPIRE Nucl. Phys. , JETP Lett. arXiv:1711.00752 Erratum ibid. IN , [ [ ][ collisions with the ATLAS JHEP SU(5), (1978) 575 ]. collisions at Eur. Phys. J. , , pp ]. Phys. Rept. Nucl. Phys. pp (2014) 201803 , , ]. 76B (2015) 510 SPIRE TeV 113 IN SPIRE collisions with the ATLAS detector (2018) 032009 [ IN = 8 SPIRE C 75 pp ][ s IN √ ][ D 97 arXiv:1706.04402 Phys. Lett. [ TeV , (1975) 104 ]. = 13 – 16 – s Phys. Rev. Lett. Adv. Ser. Direct. High Energy Phys. Eur. Phys. J. √ , B 90 , Phys. Rev. (2017) 019 , , ]. SPIRE ]. TeV with the ATLAS detector IN 10 arXiv:1606.03903 TeV ][ [ arXiv:1407.0583 Possible universal neutrino interaction Softly broken supersymmetry and Cancellation of quadratically divergent mass corrections in [ = 8 SPIRE ]. ]. s SPIRE collisions with the ATLAS detector IN ]. JHEP = 13 Phenomenology of the production, decay and detection of new √ [ IN Nucl. Phys. , s Supergauge transformations in four-dimensions A Lagrangian model invariant under supergauge transformations pp , ][ Search for top squarks in final states with one isolated lepton, jets ATLAS Run 1 searches for direct pair production of third-generation Search for top squark pair production in final states with one isolated Search for direct top-squark pair production in final states with two Search for direct top squark pair production in final states with two √ SPIRE SPIRE SPIRE IN IN Search for top squark pair production in Search for top squarks and dark matter particles in opposite-charge ]. TeV (2014) 118 IN ]. ][ ][ Closing the stop gap (2016) 052009 ][ (1974) 52 11 = 13 SPIRE collisions at ]. A supersymmetry primer SPIRE arXiv:1506.08616 s Supersymmetry, supergravity and particle physics IN 49B D 94 IN pp √ [ Supergauge invariant extension of the Higgs mechanism and a model for the [ JHEP collaboration, collaboration, collaboration, collaboration, collaboration, ]. ]. ]. , SPIRE collaboration, collaboration, arXiv:1708.03247 IN [ [ SPIRE SPIRE SPIRE IN arXiv:1403.4853 arXiv:1407.1043 hep-ph/9709356 IN IN leptons in ATLAS and missing transverse momentum in ATLAS ATLAS leptons in (1981) 150 hadronic states associated with supersymmetry [ [ globally supersymmetric spontaneously broken gauge[ theories electron and its neutrino [ 438 Phys. Lett. (1974) 39 CMS using single lepton events CMS dilepton final states at [ [ Phys. Rev. (2016) 153] [ ATLAS lepton, jets and missingdetector transverse momentum in 898 ATLAS squarks at the G.R. Farrar and P. Fayet, M. Czakon et al., R.K. Kaul and P. Majumdar, S. Dimopoulos and H. Georgi, P. Fayet, H.P. Nilles, S.P. Martin, J. Wess and B. Zumino, J. Wess and B. Zumino, D.V. Volkov and V.P. Akulov, [9] [8] [18] [16] [17] [14] [15] [11] [12] [13] [10] [23] [24] [22] [20] [21] [19] JHEP03(2019)101 ] C ]. ] TeV , ]. B 767 (2014) SPIRE ]. Erratum = 13 07 IN [ s SPIRE ][ events with TeV using (2017) 005 √ IN (2010) 043 S08004 SPIRE 13 Eur. Phys. J. eµ ][ 10 JHEP 3 IN , 06 ]. Phys. Lett. , ]. ][ , arXiv:1603.02303 (2016) 027 arXiv:1609.02366 [ [ ]. JHEP (2016). SPIRE 07 JHEP JINST , SPIRE IN , IN variable ][ ][ TeV TeV using the ATLAS SPIRE T P01020 arXiv:1308.1586 α 2008 IN JHEP , [ (2016) 029 , ][ = 8 12 arXiv:0709.2092 = 13 s [ 08 s √ TeV √ arXiv:1710.11188 [ JINST = 8 ]. JHEP s (2013) 2677 ]. , √ TeV using the (2007) 070 production cross-section using arXiv:1412.4742 arXiv:1612.03877 2017 TeV with the ATLAS detector CMS-PAS-TOP-16-021 , ¯ t [ ]. [ , TeV SPIRE 8 t 11 C 73 collisions at = 8 SPIRE IN 8 arXiv:1009.2450 s ]. A general framework for implementing NLO IN – 17 – [ pp TeV ][ √ and (2018) 012007 ][ SPIRE and 13 Matching NLO QCD computations with Parton Shower JHEP IN , = 7 SPIRE ][ (2017) 327 s = 7 IN ]. D 97 and s √ ][ (2015) 142001 ]. √ Eur. Phys. J. ]. (2011) 1547 = 8 , C 77 SPIRE s 114 IN √ TeV SPIRE Measurement of the Measurement of spin correlation in top-antitop quark events and ][ C 71 SPIRE hep-ph/0409146 at IN Phys. Rev. arXiv:1602.03169 [ IN The CMS trigger system The CMS experiment at the CERN LHC Measurement of the t-tbar production cross section in the e-mu channel Search for top squark pair production in compressed-mass-spectrum Searches for pair production of third-generation squarks in Search for direct production of supersymmetric partners of the top quark Search for supersymmetry in proton-proton collisions at Search for top-squark pair production in the single-lepton final stateSearch in for direct pair production of scalar top quarks in the single- and ¯ t Investigations of the impact of the parton shower tuning in PYTHIA 8 , ][ t = 8 collisions at ][ s arXiv:1406.5375 The automated computation of tree-level and next-to-leading order pp √ [ Eur. Phys. J. , arXiv:1605.08993 [ (2004) 040 A new method for combining NLO QCD with shower Monte Carlo algorithms Phys. Rev. Lett. collaboration, collaboration, ]. ]. ]. (2016) 056] [ Eur. Phys. J. , , Single-top Wt-channel production matched with parton showers using the POWHEG 11 collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, 09 arXiv:1405.0301 [ (2014) 3109 collisions collisions at SPIRE SPIRE SPIRE IN arXiv:1002.2581 IN IN arXiv:1707.03316 JHEP in the modelling of [ ATLAS b-tagged jets in [ scenarios in proton-proton collisions at ibid. CMS method differential cross sections and their079 matching to parton shower simulations simulations: the POWHEG method [ calculations in shower Monte[ Carlo programs: the POWHEG BOX search for top squarkdetector pair production in CMS [ CMS 74 ATLAS CMS identified top quarks CMS in proton-proton collisions at (2017) 403 CMS pp CMS in the all-jets final state in proton-proton collisions at pp CMS dilepton channels in proton-proton collisions at CMS CMS collaboration, E. Re, J. Alwall et al., P. Nason, S. Alioli, P. Nason, C. Oleari and E. Re, S. Frixione, P. Nason and C. Oleari, [39] [27] [40] [41] [38] [36] [37] [34] [35] [32] [33] [30] [31] [28] [29] [26] [25] JHEP03(2019)101 ]. ]. ]. , ]. ] ]. JHEP SPIRE SPIRE , JHEP (2015) , SPIRE IN IN SPIRE (2011) Z IN ]. PoS A 506 ][ ][ SPIRE IN ¯ t , ][ 191 IN ][ (2012) 061 ][ (2015) 040 ]. A 26 SPIRE 12 ]. and t IN 04 − ][ + SPIRE arXiv:0905.4749 ]. SPIRE [ JHEP IN , ¯ IN t W JHEP ][ t , ][ arXiv:1407.5066 arXiv:1112.5675 SPIRE [ [ arXiv:1303.6254 IN arXiv:0807.2405 [ Nucl. Instrum. Meth. [ ][ , arXiv:1512.00815 Int. J. Mod. Phys. [ , Simplified models for LHC new Squark and production at (2009) 095004 arXiv:0810.3921 Comput. Phys. Commun. [ , ]. (2014) 3174 (2014) 2930 ]. D 80 arXiv:1105.2838 hep-ph/9610490 [ (2013) 252004 [ (2016) 155 185 SPIRE (2009) 111802 C 74 pair production at the LHC SPIRE IN ]. ]. IN 110 ][ arXiv:1208.5967 collaboration, 102 – 18 – ][ C 76 [ (2009) 075020 Total top-quark pair-production cross section at hadron SPIRE SPIRE (1997) 51 Phys. Rev. Simplified models for a first characterization of new IN IN , ]. ][ ][ ]. (2012) 105005 D 79 Eur. Phys. J. B 492 , ]. ]. Merging meets matching in MC@NLO SPIRE Soft resummation for the production of gluino-gluino and Threshold resummation for squark-antisquark and gluino-pair SPIRE Top++: a program for the calculation of the top-pair cross-section G 39 IN (2012) 094034 Eur. Phys. J. GEANT4 — a simulation toolkit TeV Phys. Rev. Lett. IN , Parton distributions for the LHC Run II ][ Phys. Rev. Lett. Combining QCD and electroweak corrections to dilepton production in ][ ), Squark and gluino production cross sections in pp collisions at , SPIRE SPIRE arXiv:1506.04072 arXiv:1208.2665 4 S Soft-gluon resummation for squark and gluino hadroproduction [ 100 [ IN IN Event generator tunes obtained from underlying event and multiparton Phys. Rev. Squark and gluino hadroproduction ]. α Comput. Phys. Commun. An introduction to PYTHIA 8.2 D 86 , ( ][ ][ , J. Phys. O Nucl. Phys. and , , arXiv:0909.4418 arXiv:1105.0020 Theoretical results for electroweak-boson and single-top production [ [ SPIRE 33 , IN collaboration, [ (2015) 170 (2012) 056 14 collaboration, ]. , Phys. Rev. 11 , collaboration, arXiv:1105.1110 arXiv:1410.3012 [ = 13 [ (2009) 041 (2011) 018 SPIRE s IN arXiv:1410.8849 arXiv:1209.6215 [ production at the LHC hadron colliders 2637 12 squark-antisquark pairs at the LHC physics at the LHC at hadron colliders √ Hadroproduction at NLO accuracy inJHEP QCD with Parton Shower and Hadronization effects colliders through DIS2015 07 scattering measurements GEANT4 (2003) 250 FEWZ LHC New Physics Workingphysics Group searches NNPDF [ CMS [ 159 A. Kulesza and L. Motyka, W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, W. Beenakker et al., A. Kulesza and L. Motyka, W. Beenakkeret al., M. Czakon and A. Mitov, C. Borschensky et al., M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Tr´ocs´anyi, M. Czakon, P. Fiedler and A. Mitov, N. Kidonakis, J.M. Campbell, R.K. Ellis and C. Williams, Y. Li and F. Petriello, T. Sj¨ostrandet al., J. Alwall, P. Schuster and N. Toro, R. Frederix and S. Frixione, [59] [60] [57] [58] [56] [54] [55] [52] [53] [50] [51] [48] [49] [45] [46] [47] [43] [44] [42] JHEP03(2019)101 eµ JHEP (2008) ]. ] , ]. = 13 Eur. 04 , s , TeV (2012) 1896 √ collision SPIRE SPIRE IN (2008) 063 pp JHEP IN = 13 ]. ][ C 72 , ]. 12 ][ s √ TeV SPIRE 13 SPIRE P08010 P06005 IN JHEP arXiv:1804.04528 IN , ][ [ 2 ]. 10 10 ][ (2017) 172 ]. T m Eur. Phys. J. , hep-ph/9906349 SPIRE P06015 C 77 [ SPIRE ]. JINST JINST IN ]. IN arXiv:1509.04044 13 ][ [ ][ (2016). jet clustering algorithm SPIRE 2015 2015 , , t SPIRE IN k (1999) 99 IN JINST ][ arXiv:1405.6569 arXiv:1712.07158 ][ TeV TeV [ [ ]. Eur. Phys. J. production cross section using events in the , = 8 = 8 ¯ t t 2018 B 463 – 19 – s s , (2016) 072004 The anti- FastJet user manual √ √ SPIRE TeV P10009 P05011 Tuning PYTHIA 8.1: the Monash 2013 Tune IN TeV 9 arXiv:1607.03663 ][ 13 arXiv:1706.04965 [ D 93 ]. [ = 13 Measuring masses of semiinvisibly decaying particles pair s = 13 ]. ]. ]. Phys. Lett. √ CMS-PAS-JME-16-004 s ]. ]. , arXiv:1404.5630 JINST arXiv:1802.02613 , √ P02014 [ JINST SPIRE [ Minimal kinematic constraints and P10003 IN (2017). SPIRE SPIRE SPIRE 12 ][ SPIRE SPIRE 12 Phys. Rev. 2014 IN IN IN , , IN IN Description and performance of track and primary-vertex reconstruction Measurement of the inelastic proton-proton cross section at Measurements of differential cross sections of top quark pair production Measurement of the top quark mass using proton-proton data at Performance of reconstruction and identification with the CMS Performance of the CMS muon detector and muon reconstruction with Measurement of the Performance of electron reconstruction and selection with the CMS Jet energy scale and resolution in the CMS experiment inIdentification pp of collisions heavy-flavour jets with the CMS detector in pp Particle-flow reconstruction and global event description with the CMS 2018 CMS luminosity measurements for the 2016 data taking period Performance of missing energy reconstruction in , ][ ][ ][ ][ ][ collisions at TeV (2018) 161 TeV JINST arXiv:1803.03991 (2014) 3024 JINST 8 [ pp 13 07 and 2017 C 74 , ]. 2017 , collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, JHEP arXiv:0802.1189 TeV ) = 7 , [ (2018) 002 s 8 SPIRE ( arXiv:1502.02702 arXiv:0810.5178 arXiv:1611.04040 IN arXiv:1502.02701 arXiv:1111.6097 TeV 06 Phys. J. data using the CMS detector CMS final state in [ with the CMS tracker CMS CMS-PAS-LUMI-17-001 CMS detector in proton-proton collisions at [ CMS as a function of kinematic event variables in proton-proton collisions at CMS p [ produced at hadron colliders CMS [ CMS collisions at CMS proton-proton collisions at CMS detector in proton-proton collisions at [ CMS at detector 063 [ CMS CMS collaboration, P. Skands, S. Carrazza and J. Rojo, H.-C. Cheng and Z. Han, C.G. Lester and D.J. Summers, CMS collaboration, M. Cacciari, G.P. Salam and G. Soyez, M. Cacciari, G.P. Salam and G. Soyez, [77] [78] [75] [76] [73] [74] [70] [71] [72] [68] [69] [66] [67] [64] [65] [62] [63] [61] JHEP03(2019)101 Nucl. , (2011). (2002) 2693 Procedure for , (2013) 2501] G 28 C 73 J. Phys. , ]. CMS-NOTE-2011-005 , SPIRE Erratum ibid. IN [ ][ Asymptotic formulae for likelihood-based ]. LHC Higgs combination group (2011) 1554 – 20 – SPIRE hep-ex/9902006 C 71 IN [ [ The SysCalc code: a tool to derive theoretical systematic ]. (1999) 435 SPIRE Eur. Phys. J. IN , ][ A 434 arXiv:1801.08401 , Presentation of search results: the CL(s) technique Confidence level computation for combining searches with small statistics ]. SPIRE IN arXiv:1007.1727 the LHC search combination in Summer 2011 [ uncertainties tests of new physics [ Instrum. Meth. A.L. Read, ATLAS and CMS collaborations and the G. Cowan, K. Cranmer, E. Gross and O. Vitells, T. Junk, A. Kalogeropoulos and J. Alwall, [82] [83] [80] [81] [79] JHEP03(2019)101 , 1 , E. Coelho, E.M. Da Costa, 3 , D. Poyraz, C. Roskas, D. Trocino, 2 , V.M. Ghete, J. Hrubec, M. Jeitler 1 – 21 – , F. Torres Da Silva De Araujo, A. Vilela Pereira 3 , D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, 4 , M. Zarucki , R. M. Sch¨ofbeck, Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, 1 1 E. Belchior Batista Das Chagas,G.G. W. Da Carvalho, Silveira J. Chinellato H. Malbouisson, D. Matos Figueiredo,H. M. Nogima, Melo De W.L. Almeida, Prado C. DaE.J. Mora Silva, Tonelli Herrera, L.J. Manganote L. Sanchez Mundim, Rosas, A. Santoro, A. Sznajder, M. Thiel, A. Saggio, M. Vidal Marono, P. Vischia,Centro S. Brasileiro Wertz, de J. Pesquisas Zobec Fisicas,F.L. Alves, Rio G.A. de Alves, Janeiro, G. Brazil Correia Silva,Universidade C. do Hensel, A. Estado Moraes, do M.E. Rio Pol, de P. Rebello Janeiro, Teles Rio de Janeiro, Brazil T. Cornelis, D. Dobur, A. Fagot,M. M. Gul, Tytgat, I. W. Khvastunov Verbeke, B. Vermassen, M.Universit´eCatholique de Vit, N. Louvain, Zaganidis Louvain-la-Neuve, Belgium H. Bakhshiansohi, O.M. Bondu, Delcourt, S. A. Brochet, Giammanco, G. G. Bruno, Krintiras, C. V. Caputo, Lemaitre, P. A. David, Magitteri, C. K. Delaere, Piotrzkowski, Universit´eLibre de Bruxelles, Bruxelles, Belgium D. Beghin, B. Bilin,G. H. Fasanella, Brun, L. B. Favart,N. R. Clerbaux, Postiau, Goldouzian, G. E. A. Starling, De L. Grebenyuk, Lentdecker, Thomas, H. A.K. C.Ghent Delannoy, Kalsi, Vander University, B. Ghent, Velde, T. P. Belgium Dorney, Vanlaer, Lenzi, D. J. Vannerom, Q. Luetic, Wang Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F.tkovskyi, Blekman, S. J. Lowette, D’Hondt,S. I. Tavernier, J. Marchesini, W. De Van S. Doninck, Clercq, P. Moortgat, Van K. Mulders, L. Deroover, I. Moreels, Van G. Parijs Q. Flouris, Python, D. K. Lon- Skovpen, V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium E.A. De Wolf, D. Dimaet, Croce, P. Van X. Mechelen, Janssen, N. J. Van Lauwers, Remortel A. Lelek, M. Pieters, H. Van Haever- A. Escalante Del Valle,N. M. Krammer, Flechl, I. R. D.J. Kr¨atschmer, Fr¨uhwirth Liko, Schieck T. Madlener,C.-E. Wulz I. Mikulec, N. Rad,Institute H. for Nuclear Rohringer, Problems, Minsk, Belarus Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut f¨urHochenergiephysik, Wien, Austria W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Er¨o, The CMS collaboration JHEP03(2019)101 , b , J. Zhao 6 , T. Susa 7 , S˜aoPaulo, b , E.M. Gregores a a – 22 – , T.R. Fernandez Perez Tomei a , Universidade Federal do ABC a , SandraS. Padula a , A. Spiezia, J. Tao, E. Yazgan, H. Zhang, S. Zhang 6 , L. Calligaris a 8 , L. Yuan 5 , S.F. Novaes b , M. Finger Jr. 8 , C.A. Bernardes , X. Gao 5 a Charles University, Prague, Czech Republic M. Finger Escuela Politecnica Nacional, Quito,E. Ecuador Ayala Institute Rudjer Boskovic, Zagreb,V. Croatia Brigljevic, D. Ferencek, K. Kadija,University B. of Mesic, M. Cyprus, Roguljic, Nicosia, A.M.W. Cyprus Starodumov Ather, A.F. Ptochos, Attikis, P.A. Razis, M. H. Rykaczewski Kolosova, G. Mavromanolakis, J. Mousa, C. Nicolaou, and Naval Architecture, Split, Croatia B. Courbon, N. Godinovic, D. Lelas,University I. of Puljak, Split, T. Faculty Sculac ofZ. Science, Antunovic, M. Split, Kovac Croatia Y. Wang Universidad de Los Andes,C. Bogota, Colombia Avila,C.F. A. Gonz´alezHern´andez,M.A. Segura Delgado Cabrera, C.A.University of Carrillo Split, Faculty of Montoya, Electrical Engineering, L.F. Mechanical Chaparro Engineering Sierra, C. Florez, State Key Laboratory ofBeijing, Nuclear China Physics andY. Technology, Ban, Peking G. University, Chen, A. Levin,Tsinghua J. University, Li, Beijing, L. China Li, Q. Li, Y. Mao, S.J. Qian, D. Wang Beihang University, Beijing, China W. Fang Institute of High EnergyM. Physics, Ahmad, Beijing, J.G. China Bian, G.M.H. Liao, Chen, Z. H.S. Liu, Chen, S.M. M. Shaheen Chen, Y. Chen, C.H. Jiang, D. Leggat, A. Aleksandrov, R.M. Shopova, Hadjiiska, G. Sultanov P. Iaydjiev,University of A. Sofia, Sofia, Marinov,A. Bulgaria Dimitrov, M. L. Litov, Misheva, B. Pavlov, M. P. Petkov Rodozov, Brazil S. Ahuja P.G. Mercadante Institute for NuclearSciences, Research Sofia, Bulgaria and Nuclear Energy, Bulgarian Academy of Universidade Estadual Paulista JHEP03(2019)101 , V. Sordini, 15 – 23 – 12 , ¨ O. Sahin, M. Titov 10 , D. Gel´e,U. Goerlach, M. Jansov´a,A.-C. Le Bihan, N. Tonon, 14 , E. Salama 11 , C. Amendola, I. Antropov, F. Beaudette, P. Busson, C. Charlot, 13 , J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, V. Cherepanov, C. Collard, , S. Khalil 14 10 , , J.-C. Fontaine 9 14 de Physique Nucl´eairede Lyon, Villeurbanne,S. France Beauceron, C. Bernet,H. G. El Mamouni, Boudoul, J. N. Fay, L. Chanon, Finco,I.B. S. Laktineh, R. Gascon, H. Chierici, M. Gouzevitch, Lattaud, D. G. M.G. Grenier, Contardo, Lethuillier, Touquet, B. P. M. Ille, L. Depasse, F. Vander Mirabito, Lagarde, Donckt, S. S. Perries, Viret A. Popov P. Van Hove Centre de Calcul dedes l’Institut Particules, National CNRS/IN2P3, de Villeurbanne, PhysiqueS. France Nucleaire Gadrat et de Physique Universit´ede Lyon, Universit´eClaude Bernard Lyon 1, CNRS-IN2P3, Institut M. Nguyen, C. Ochando,Y. G. Sirois, Ortona, A.G. Stahl P. Leiton, Paganini, A. J.Universit´ede Strasbourg, Zabi, Rembser, A. CNRS, R. Zghiche IPHC Salerno, UMRJ.-L. J.B. Agram 7178, Sauvan, Strasbourg, France E. Conte Laboratoire Leprince-Ringuet, Ecole polytechnique,Paris-Saclay, CNRS/IN2P3, Palaiseau, Universit´e France A. Abdulsalam R. Granier de Cassagnac, I. Kucher, A. Lobanov, J. Martin Blanco, C. Martin Perez, T. Tuuva IRFU, CEA, Universit´eParis-Saclay, Gif-sur-Yvette, France M. Besancon, F.A. Couderc, Givernaud, P. M. Gras, G. Dejardin, HamelG. de D. Monchenault, Negro, P. J. Jarry, Denegri, C. Rander, Leloup, J.L. A. E. Rosowsky, Locci, Faure, M. J. F. Malcles, Ferri, S. Ganjour, Helsinki Institute of Physics,J. Helsinki, Finland Havukainen, J.K.K. Heikkil¨a, Lassila-Perini, T. S. J¨arvinen, V. Laurila,E. S. Tuominen, Karim¨aki, R. J. Lehti, Tuominiemi Kinnunen, T. Lind´en,P. T.Lappeenranta Luukka, Siikonen, University T. Lamp´en, of M¨aenp¨a¨a,H. Technology, Lappeenranta, Finland S. Bhowmik, A. Carvalho AntunesM. De Raidal, Oliveira, C. R.K. Veelken Dewanjee, K. Ehataht,Department M. of Kadastik, Physics, University ofP. Eerola, Helsinki, H. Helsinki, Kirschenmann, Finland J. Pekkanen, M. Voutilainen E. Carrera Jarrin Academy of Scientific Research andEgyptian Technology of Network the of Arab High RepublicY. Energy of Assran Egypt, Physics, Cairo, Egypt National Institute of Chemical Physics and Biophysics, Tallinn, Estonia Universidad San Francisco de Quito, Quito, Ecuador JHEP03(2019)101 , 17 , S. Kudella, 15 , R. Mankel, I.- 19 – 24 – 16 , S.M. Heindl, U. Husemann, I. Katkov 16 , A. Geiser, J.M. Grados Luyando, A. Grohsjean, M. Guthoff, 18 8 8 Karlsruher Institut fuer Technologie, Karlsruhe,M. Akbiyik, Germany C. Barth, M.W. Baselga, S. De Baur, E. Boer, Butz,M.A. R. Harrendorf, Caspart, A. T. F. Chwalek, Dierlamm, F. Hartmann S. Colombo, K. Mitra, El M.U. Morabit, Mozer, N. Th. Faltermann, M¨uller, M. B. Musich, Freund, M. M. Plagge, Giffels, G. Quast, K. Rabbertz, zalez, P. Gunnellini, J.R. Haller, Kogler, A. N. Hinzmann,M. Kovalchuk, A. Niedziela, S. Karavdina, C.E.N. Kurz, G.C. Niemeyer, Scharf, Kasieczka, V. P. R. D. Schleper, Kutzner, S. Klanner, F.M. Nowatschin, Schumann, J. Stober, J. A. Schwandt, M. Lange, B. J. St¨over, Perieanu, Vormwald, Sonneveld, D. I. H. A. Zoi Marconi, Stadie, Reimers, G. J. Steinbr¨uck, O. Multhaup, Rieger, C. Schwanenberger, R.M. Shevchenko, Van De A. Klundert,O. Singh, G.P. Zenaiev Van H. Onsem, R. Tholen, Walsh,University O. Y. of Hamburg, Wen, Turkot, Hamburg, K. A. Germany R. Wichmann, Aggleton, C. Vagnerini, S. Wissing, Bein, L. Benato, A. Benecke, T. Dreyer, A. Ebrahimi, E. Garutti, D. Gon- wood, E. Eren, E.M. Gallo Haranko, A.D. Harb, W. Kr¨ucker, H. Lange, Jung, T.A. M. Lenz, Melzer-Pellmann, Kasemann, A.B. J. Meyer, J. Leonard,ronenko, M. Keaveney, K. S.K. Meyer, C. Lipka, M. Pflitsch, Kleinwort, W. Missiroli, D. J. Lohmann G. Knolle, Pitzl, Mittag, J. A. Mnich, Raspereza, V. My- M. Savitskyi, P. Saxena, P. Sch¨utze, Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin,O. Behnke, T. U. Behrens, Arndt, A. Mart´ınez,D. Bertsche,V. Berm´udez A.A. C. Bin Botta, Anuar, Asawatangtrakuldee, K. A. Borras I.M.M. Defranchis, Campbell, C. Babounikau, Diez P. Pardos, K. D. Connor, Dom´ınguezDamiani, G. Beernaert, Eckerlin, C. T. Eichhorn, Contreras-Campana, A. El- V. Danilov, A. De Wit, A. Meyer, P. Millet, S. Mukherjee, T.D. Pook, Teyssier, M. S. Radziej, Th¨uer H. Reithler, M. Rieger,RWTH A. Aachen Schmidt, University, III. PhysikalischesG. Institut Fl¨ugge,O. B, Hlushchenko, Aachen, Germany T.O. Kress, Pooth, D. T. Roy, A. M¨uller, H. Sert, Nehrkorn, A. A. Stahl Nowack, C. Pistone, C. Schomakers, J. Schulz, M. Teroerde, B.RWTH Aachen Wittmer University, III. PhysikalischesA. Institut Albert, A, D. Aachen, Duchardt, Germany M.T. Erdmann, Hebbeker, S. C. Erdweg, T. Heidemann, Esch, K. R. Hoepfner, Fischer, H. S. Ghosh, Keller, A. L. G¨uth, Mastrolorenzo, M. Merschmeyer, A. Khvedelidze Tbilisi State University, Tbilisi, Georgia Z. Tsamalaidze RWTH Aachen University, I. PhysikalischesC. Institut, Aachen, Autermann, Germany L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch, Georgian Technical University, Tbilisi, Georgia JHEP03(2019)101 , 23 ´ A. V´ami,V. Veszpremi, , S. Roy Chowdhury, D.K. Sahoo 24 – 25 – ´ A. Hunyadi, F. Sikler, T. , 21 , A. Makovec, J. Molnar, Z. Szillasi 20 † , C. Kar, P. Mal, K. Mandal, A. Nayak 23 , M. Csanad, N. Filipovic, P. Major, M.I. Nagy, G. Pasztor, O. Sur´anyi, 20 A. Kaur, M. Kaur,S. Sharma, S. J.B. Kaur, Singh, P. A.K. Kumari, Virdi,University G. M. of Walia Lohan, Delhi, M. Delhi, India A. Meena, Bhardwaj, A. B.C. Choudhary, Mehta, R.B. Garg, K.M. M. Naimuddin, Sandeep, Gola, P. S. Priyanka, Keshri, K. Ashok Ranjan, Kumar, Aashaq S. Malhotra, Shah, R. Sharma S. Bahinipati S.K. Swain Panjab University, Chandigarh, India S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of ScienceS. (IISc), Choudhury, Bangalore, J.R. India Komaragiri, P.C. Tiwari National Institute ofIndia Science Education and Research, HBNI, Bhubaneswar, G. Vesztergombi Institute of Nuclear ResearchN. ATOMKI, Debrecen, Beni, S. Hungary Czellar, J. Karancsi Institute of Physics, University of Debrecen, Debrecen, Hungary University, Budapest, Hungary M. Bart´ok G.I. Veres Wigner Research Centre for Physics,G. Budapest, Bencze, Hungary C. Hajdu, D. Horvath University of Io´annina,Io´annina,Greece I. Evangelou, C. Foudas,I. P. Papadopoulos, Gianneios, E. P. Paradas, Katsoulis, J. P. Strologas, Kokkas,MTA-ELTE Particle F.A. Lend¨uletCMS and S. Triantis, Nuclear D. Mallios, Physics Tsitsonis Group, N. E¨otv¨osLor´and Manthos, A. Agapitos, G. Karathanasis, P. Kontaxakis,E. A. Tziaferi, Panagiotou, K. I. Vellidis Papavergou, N. Saoulidou, National Technical University of Athens,K. Athens, Kousouris, Greece I. Papakrivopoulos, G. Tsipolitis C. W¨ohrmann,R. Wolf Institute of NuclearParaskevi, and Greece Particle Physics (INPP),G. NCSR Anagnostou, G. Demokritos, Daskalakis, Aghia T. Geralis,National A. Kyriakis, and D. Kapodistrian Loukas, University G. of Paspalaki Athens, Athens, Greece M. Schr¨oder,I. Shvetsov, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, JHEP03(2019)101 , , , , , , , , , , a 25 25 a,b a,b a,b a,b a,b a,b a,b , S. My a,b , Bari, Italy , A. Gelmi , E. Fontanesi, c a , A.M. Rossi , S. Marcellini , G. Selvaggi a,b a,b a 29 , L. Cristella , S.S. Chhibra a, a a,c a,b , K. Mondal, S. Nandan, , L. Fiore , M. Sharan, B. Singh 26 26 , G. Miniello , S. Braibant-Giacomelli a,b a , M. Zeinali , A. Fanfani a,b , Bologna, Italy a , A. Ranieri , Catania, Italy 28 b b , C. Tuve a , F. Primavera , S. Lo Meo a a,b a,b , M. Khakzad, M. Mohammadi Na- a 27 , F.R. Cavallo , D. Creanza , F. Errico a , Politecnico di Bari b , M. Maggi a,b a,b , F. Fabbri a a,c , L. Borgonovi , A. Perrotta , F. Iemmi , R. Radogna , A. Tricomi a,b – 26 – a,b a,b a,c a,b , P. Verwilligen a , A. Castro , G. Maggi , A. Colaleo a , A. Di Florio a,b a,b a,b a,b , S. Dutta, S. Ghosh, M. Maity , Universit`adi Bologna , Universit`adi Catania , G.M. Dallavalle a , R. Bhattacharya, S. Bhattacharya, U. Bhawandeep a 25 , D. Bonacorsi , R. Potenza 25 a,b , L. Guiducci , G. Pugliese a , F.L. Navarria , Universit`adi Bari a,b , N. Tosi a a , R. Venditti a a,b a a,b , S. Lezki a,b , P. Capiluppi , C. Calabria , M. De Palma , M. Bharti , M. Cuffiani a,b a,b , E. Eskandari Tadavani, S.M. Etesami , C. Grandi a,c a 25 , C. Battilana , A. Di Mattia a,b 27 , G.P. Siroli a , A. Pompili , L. Silvestris , M. Ince , A. Montanari a a a,b 25 a,b a,b a,c P. Giacomelli G. Masetti T. Rovelli INFN Sezione di Catania S. Albergo A. Sharma INFN Sezione di Bologna G. Abbiendi R. Campanini G. Codispoti INFN Sezione di Bari M. Abbrescia N. De Filippis G. Iaselli S. Nuzzo S. Chenarani jafabadi, M. Naseri, F. Rezaei Hosseinabadi,University B. College Safarzadeh Dublin, Dublin, Ireland M. Felcini, M. Grunewald Indian Institute of ScienceS. Education Chauhan, and S. Research Dube, (IISER), V.S. Hegde, Pune, Sharma A. India Kapoor, K. Kothekar, S. Pandey,Institute A. for Rane, A. Research Rastogi, in Fundamental Sciences (IPM), Tehran, Iran Tata Institute of Fundamental Research-A,T. Mumbai, Aziz, India M.A. Bhat, S. Dugad,Tata G.B. Institute Mohanty, N. of Sur, Fundamental RavindraKumar Research-B,S. Verma Mumbai, Banerjee, India S. Bhattacharya,S. S. Kumar, Chatterjee, G. P. Majumder, Das, K. M. Mazumdar, Guchait, N. Sa. Sahoo Jain, S. Karmakar, P.K. Behera, A. Muhammad Bhabha Atomic Research Centre, Mumbai,R. India Chudasama, D. Dutta,P. V. Shukla, Jha, P. Suggisetti V. Kumar, D.K. Mishra, P.K. Netrakanti, L.M. Pant, R. Bhardwaj D. Bhowmik, S. Dey, S.A. Dutt Purohit, P.K. Rout,S. A. Thakur Roy, G. Saha, S.Indian Sarkar, Institute T. of Sarkar Technology Madras, Madras, India Saha Institute of , HBNI, Kolkata, India JHEP03(2019)101 , , , , , , , , , , , , , , , a a a a a,b a,b a,b a,b a,b a,b a,b a,b a,b a,b a,b a,c , Roma, d , Milano, b , P. Lujan, , D. Strom , F. Fienga a , A. Rossi a , R. Rossin a , L. Borrello, , E. Focardi a,c , G. Zumerle , U. Dosselli , S. Malvezzi a , C. Sciacca , P. Lariccia a,b a , S. Ragazzi , Napoli, Italy, a,b , A. Messineo a,b , L. Giannini 16 a b a,b , M.E. Dinardo a,b , M. Ressegotti a, a,c 16 a,c a a,b, , F. Fabozzi , P. Zotto , G. Sguazzoni , V. Re , L. Fan`o a,b , T. Boccali , T. Dorigo , M. Menichelli 30 , P. Ronchese a,b a b a a,b , F. Fiori , Perugia, Italy a, a,b , D. Pedrini , Firenze, Italy , Genova, Italy b a,b a b b , M. Malberti , Padova, Italy, Universit`adi , A. Bragagnolo, R. Carlin , P. Paolucci b a,b , G. Mandorli , R. D’Alessandro 16 a,b a,b a , Pavia, Italy , S. Di Guida a,c b a,d, 16 , Scuola Normale Superiore di Pisa , S.Y. Hoh, S. Lacaprara b a , L. Russo , M. Zanetti a,b, a , M. Presilla , G. Fedi , S.P. Ratti a,b a a,b a,b , V. Mariani a,b a,b , L. Bianchini , A. Di Crescenzo a a,b , P. Govoni , C. Civinini – 27 – , D. Ciangottini , E. Manca , A. Boletti a,b , Universit`adi Milano-Bicocca , S. Meola a , M. Paganoni a,b a,b a a,b a,c a,b a , S. Tosi a , V. Ciriolo , M. Tosi a , S. Paoletti , P. Vitulo a a,b , J. Pazzini , A. Gozzelino a,b a,b , Potenza, Italy, Universit`aG. Marconi , P. De Castro Manzano a,b c a,b , Universit`adi Perugia , R. Dell’Orso , Universit`adi Firenze , Universit`adi Genova , Universit`adi Napoli ‘Federico II’ , Universit`adi Padova , V. Ciulli a a,b a a a , A. De Iorio , P. Montagna , G. Bagliesi , L. Lista a , Universit`adi Pavia a,b a a , G. Mantovani , A. Ghezzi a,b a , C. Cecchi a,c a a,b , Universit`adi Pisa a , F. Ligabue a a , D. Bisello , I. Vai a a , E. Robutti a a , F. Brivio b , D. Zuolo a,b , M. Meschini a,b a,b , D. Spiga , U. Gasparini , A. Tiko, E. Torassa , N. Cavallo , P. Azzurri , E. Manoni , A.T. Meneguzzo , S. Gennai a , P. Salvini a,b , A. Magnani , M. Dall’Osso , F. Monti, L. Moroni a a,b , G.M. Bilei , M.A. Ciocci a,b a,b a , A. Beschi , K. Chatterjee a a a a,b a a,b a,b a a,b , A.O.M. Iorio a,b , M.T. Grippo a a a , Trento, Italy , R. Mulargia , N. Bacchetta c a a , Pisa, Italy INFN Sezione di Pisa c K. Androsov R. Castaldi A. Giassi C. Riccardi INFN Sezione di Perugia M. Biasini R. Leonardi A. Santocchia M. Margoni F. Simonetto INFN Sezione di Pavia A. Braghieri INFN Sezione di Padova Trento P. Azzi P. Checchia F. Gasparini Universit`adella Basilicata Italy S. Buontempo G. Galati E. Voevodina A. Benaglia S. Fiorendi D. Menasce T. Tabarelli de Fatis INFN Sezione di Napoli INFN Sezione di Genova F. Ferro INFN Sezione diItaly Milano-Bicocca G. Barbagli G. Latino, P. Lenzi L. Viliani INFN Laboratori Nazionali diL. Frascati, Benussi, Frascati, S. Italy Bianco, F. Fabbri, D. Piccolo INFN Sezione di Firenze JHEP03(2019)101 , , , , , , , , , a a a a a,b a,b a,b a,b a,b a , A. Venturi , R. Bellan a,b , M. Diemoz a , N. Pastrone , F. Pandolfi , M. Costa , R. Sacchi a,b a , E. Migliore a,b a,b a,b a a,c , G. Della Ricca a,b , A. Staiano , Rome, Italy b a,b , G. Tonelli , N. Bartosik a , L. Pacher a,c , S. Maselli a,b , S. Cometti , M. Ruspa a , E. Di Marco , F. Santanastasio , G. Organtini , Trieste, Italy a a a,b , Torino, Italy, Universit`adel b a,b a,b , A. Da Rold b , D. Soldi a a,b , R. Tenchini a , M. Arneodo , C. Rovelli , C. Mariotti a,b , F. Cenna , D. Del Re a,b a , M.M. Obertino , P. Meridiani – 28 – , A. Romero , F. Cossutti a,b a a,b , A. Solano a a a,b a,b , P. Spagnolo , S. Argiro 31 a,c , V. Sola , B. Kiani , Universit`adi Trieste , S. Rahatlou , Universit`adi Torino a a , Sapienza Universit`adi Roma a,b a , M. Casarsa , M. Monteno a , M. Cipriani , N. Cartiglia a,b a a,b a a,b a,b , Novara, Italy , B. Marzocchi c a,b , T.J. Kim , G. Rolandi 32 a,b , F. Preiato , G.L. Pinna Angioni , R. Arcidiacono , N. Demaria , K. Shchelina a , A. Zanetti , E. Monteil a,b , F. Cavallari a,b a,b a a,b , V. Candelise a,b a,b a , A. Cappati , E. Longo a,b a , A. Rizzi a a,b University of Seoul, Seoul, Korea D. Jeon, H. Kim, J.H. Kim,Sungkyunkwan J.S.H. University, Lee, Suwon, I.C. Korea Park Y. Choi, C. Hwang, J. Lee, I. Yu Sejong University, Seoul, Korea H.S. Kim Seoul National University, Seoul, Korea J. Almond, J. Kim,S.h. Seo, J.S. U.K. Kim, Yang, H. H.D. Yoo, Lee, G.B. K. Yu Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, B. Francois, J. Goh Korea University, Seoul, Korea S. Cho, S. Choi, Y.S.K. Go, Park, D. Y. Gyun, Roh S. Ha, B. Hong, Y. Jo, K. Lee, K.S. Lee, S. Lee, J. Lim, Chonnam National University, Institute for UniverseKwangju, and Korea Elementary Particles, H. Kim, D.H. Moon, G. Oh Hanyang University, Seoul, Korea S. Belforte F. Vazzoler Kyungpook National University, Daegu, Korea D.H. Kim, G.N. Kim, M.S.S. Kim, Sekmen, J. D.C. Lee, Son, Y.C. S. Yang Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, V. Monaco M. Pelliccioni R. Salvatico INFN Sezione di Trieste INFN Sezione di Torino Piemonte Orientale N. Amapane C. Biino R. Covarelli P.G. Verdini INFN Sezione di Roma L. Barone S. Gelli R. Paramatti F. Palla JHEP03(2019)101 , 35 , W.A.T. Wan Abdullah, M.N. Yusli, 34 – 29 – , F. Mohamad Idris 33 , K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, 36 Laborat´oriode F´ısicaExperimental Instrumenta¸c˜aoe de Lisboa, Part´ıculas, Portugal M. Araujo, P.B. Bargassa, Galinhas, M. C.J. Gallinaro, Beir˜ao Varela Da J. Cruz Hollar, E N. Leonardo, Silva, J. A. Seixas, Di G. Francesco, Strong, P. O. Faccioli, Toldaiev, P. Traczyk, P. Zalewski Institute of Experimental Physics,Warsaw, Poland Faculty of Physics,K. University Bunkowski, of Warsaw, A.M. Byszuk Misiura, M. Olszewski, A. Pyskir, M. Walczak A. Ahmad, M. Ahmad,M. M.I. Shoaib, Asghar, M. Q. Waqas Hassan, H.R.National Hoorani, Centre W.A. for Khan, Nuclear M.A.H. Research, Shah, Swierk, Bialkowska, Poland M. Bluj, B. Boimska, T. Frueboes, M. G´orski,M. Kazana, M. Szleper, D. Krofcheck University of Canterbury, Christchurch, NewS. Zealand Bheesette, P.H. Butler National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan Benemerita Universidad Autonoma deJ. Puebla, Eysermans, Puebla, I. Mexico Pedraza, H.A. SalazarUniversidad Ibarguen, Aut´onomade C. San Uribe Luis Estrada Potos´ı,San LuisA. Morelos Potos´ı,Mexico Pineda University of Auckland, Auckland, New Zealand R. Lopez-Fernandez,G. Ramirez-Sanchez, J. R. Reyes-Almanza, A. Mejia Sanchez-Hernandez Universidad Guisao, Iberoamericana, Mexico City, R.I. Mexico S. Carrillo Rabadan-Trejo, Moreno, C. Oropeza M. Barrera, F. Vazquez Ramirez-Garcia, Valencia Universidad de Sonora (UNISON),J.F. Hermosillo, Benitez, Mexico A. Castaneda Hernandez, J.A.Centro Murillo de Quijada Investigacion y de EstudiosH. Avanzados del Castilla-Valdez, IPN, E. Mexico De City, Mexico La Cruz-Burelo, M.C. Duran-Osuna, I. Heredia-De La Cruz V. Dudenas, A. Juodagalvis, J. Vaitkus National CentreMalaysia for Particle Physics,Z.A. Ibrahim, M.A.B. Universiti Md Ali Z. Malaya, Zolkapli Kuala Lumpur, Vilnius University, Vilnius, Lithuania JHEP03(2019)101 43 , Y. Skovpen 43 , P. Levchenko, V. Murzin, V. Ore- 40 , P. Moisenz, V. Palichik, V. Perelygin, 38 , 37 , L. Kardapoltsev – 30 – 43 , M. Kirakosyan, A. Terkulov , L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, , E. Kuznetsova 38 42 39 , T. Dimova , P. Parygin, E. Tarkovskii 43 41 , V. Blinov 43 , M. Danilov 41 , P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic 44 National Research Tomsk Polytechnic University,A. Tomsk, Russia Babaev, S. Baidali, V. Okhotnikov University of Belgrade,Sciences, Belgrade, Faculty Serbia of PhysicsP. Adzic and Vinca Institute of Nuclear Institute’, Protvino, Russia I. Azhgirey, I. Bayshev, S.drik, Bitioukov, V. V. Petrov, Kachanov, R. A. Ryutin, Kalinin,A. S. D. Volkov Konstantinov, Slabospitskii, P. A. Man- Sobol, S. Troshin, N. Tyurin, A. Uzunian, O. Kodolova, I. Lokhtin, S. Obraztsov, S.Novosibirsk Petrushanko, State V. University Savrin, (NSU), A. Novosibirsk, Snigirev A. Russia Barnyakov Institute for High Energy Physics of National Research Centre ‘Kurchatov P.N. Lebedev Physical Institute, Moscow,V. Russia Andreev, M. Azarkin, I. Dremin Skobeltsyn Institute of NuclearMoscow, Physics, Russia Lomonosov Moscow State University, A. Belyaev, E. Boos, M. Dubinin T. Aushev National Research Nuclear University(MEPhI), ‘Moscow Engineering Moscow, Physics Russia Institute’ R. Chistov Institute for Theoretical and ExperimentalV. Physics, Epshteyn, Moscow, Russia V.A. Gavrilov, Spiridonov, A. N. Stepennov, V. Lychkovskaya, Stolin, V. M.Moscow Toms, Popov, Institute E. of Vlasov, I. Physics A. Pozdnyakov, and Zhokin Technology, G. Moscow, Russia Safronov, shkin, I. Smirnov, D. Sosnov, V. Sulimov,Institute L. for Uvarov, Nuclear S. Vavilov, Research, A. Moscow,Yu. Vorobyev Russia Andreev, A.N. Krasnikov, Dermenev, A. Pashenkov, S. A. Shabanov, Gninenko, D. Tlisov, N. A. Toropin Golubev, A. Karneyeu, M. Kirsanov, S. Afanasiev, P. Bunin,javine, M. A. Gavrilenko, Lanev, I. A.S. Golutvin, Malakhov, Shmatov, I. S. V. Gorbunov, Shulha, Matveev N. A. Skatchkov, Kamenev, V.Petersburg V. Smirnov, Nuclear N. Kar- Physics Voytishin, A. Institute, Zarubin GatchinaV. (St. Golovtsov, Y. Petersburg), Russia Ivanov, V. Kim Joint Institute for Nuclear Research, Dubna, Russia JHEP03(2019)101 , L. Pape, 16 , J. Kieseler, 19 , F. Moortgat, 46 , D. Fasanella, G. Franzoni, J. Fulcher, 45 – 31 – , A. Stakia, J. Steggemann, D. Treille, A. Tsirou, 47 , C. Lange, P. Lecoq, C. L. Louren¸co, Malgeri, M. Mannelli, 1 , M. Verzetti, W.D. Zeuner ´ Alvarez Fern´andez,I. Bachiller, M. Barrio Luna, J.A. Brochero Ci- 48 , K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, 49 A. Sharma, P.A. Silva, Vartak, V. P. Veckalns Sphicas Paul Scherrer Institut, Villigen, Switzerland L. Caminada D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr A. Kornmayer, M. Krammer A. Massironi, F. Meijers,M. J.A. Mulders, Merlin, J. S. Ngadiuba,E. Mersi, S. Nourbakhsh, E. Perez, S. Meschi, M. Orfanelli, P.D. Peruzzi, L. Milenovic Rabady, Orsini, A. A. F. Racz, Petrilli, Pantaleo T. G. Reis, M. Petrucciani, Rovere, A. H. Sakulin, Pfeiffer, C. M. Sch¨afer,C. Schwick, Pierini, M. Selvaggi, F.M. Pitters, G. Cerminara, E. Chapon,V. Y. Daponte, Chen, A. G.A. Cucciati, David, Elliott-Peisert, D. A. P. d’Enterria, De Everaerts, A.W. Roeck, Dabrowski, F. Funk, N. D. Fallavollita N. Daci, Gigi, Deelen,J. A. Hegeman, M. Gilbert, C. Heidegger, K. Dobson, V. Gill, M. Innocente, F. A. D¨unser,N. Glege, Jafari, P. Dupont, M. Janot, Gruchala, O. Karacheban M. Guilbaud, D. Gulhan, University of Ruhuna, Department ofN. Physics, Wickramage Matara, Sri Lanka CERN, European Organization forD. Nuclear Research, Abbaneo, Geneva, Switzerland B.J. Akgun, Bendavid, M. E. Bianco, Auffray, A. G. Bocci, Auzinger, C. P. Botta, Baillon, E. Brondolin, A.H. T. Ball, Camporesi, D. M. Barney, Cepeda, I.J. Cabrillo, A.P.J. Fern´andezManteca, A. Calderon, Garc´ıaAlonso, J. B. Garcia-Ferrero,J. G. Chazin Marco, Gomez, C. A. Quero, Martinez Lopez Rivero,C. Virto, J. P. Martinez Prieels, Duarte Ruiz del T. Campderros,lar Arbol, Cortabitarte Rodrigo, F. M. Matorras, A. J. Fernandez, Piedra Ruiz-Jimeno, Gomez, L. Scodellaro, N. Trevisani, I. Vila, R. Vi- J.R. Gonz´alezFern´andez,E. Palencia Cortezon,J.M. V. Vizan Rodr´ıguezBouza, Garcia S. Sanchez Cruz, Instituto de F´ısica deSantander, Spain Cantabria (IFCA), CSIC-Universidad de Cantabria, L. Romero, S. Navas, S´anchez M.S. Soares, A.Universidad Triossi Aut´onomade Madrid, Madrid, Spain C. Albajar, J.F. de Troc´oniz Universidad de Oviedo, Oviedo,J. Spain Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, (CIEMAT), Madrid, Spain J. Alcaraz Maestre, A. fuentes, M. Cerrada, N.J.P. Colino, Fern´andezRamos, J. B. De Flix, La M.C.nandez, Cruz, Fouz, M.I. O. A. Josa, Gonzalez Delgado D. Lopez, Peris, Moran, C. S. A. Fernandez Goy Yzquierdo, Bedoya, P´erez-Calero Lopez, J. J.M. Puerta Her- Pelayo, I. Redondo, Centro de Investigaciones Energ´eticas Medioambientales y Tecnol´ogicas JHEP03(2019)101 , 61 55 , O. Kara, 53 , S. Ozturk 54 , S. Tekten, E.A. Yetkin 60 62 , C. Isik, E.E. Kangal 52 , S. Ozkorucuklu 59 – 32 – , O. Kaya 58 , D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, , S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, I. Du- , M. Yalvac, M. Zeyrek 50 , U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez 51 57 51 , B. Tali 51 , G. Karapinar 56 Kharkov, Ukraine B. Grynyov National ScientificKharkov, Center, Ukraine Kharkov InstituteL. Levchuk of Physics and Technology, I.O. Atakisi, E. G¨ulmez,M. Kaya Istanbul Technical University, Istanbul, Turkey M.N. Agaras, A. Cakir, K. Cankocak,Institute Y. for Komurcu, Scintillation S. Materials Sen of National Academy of Science of Ukraine, D. Sunar Cerci Middle East Technical University, PhysicsB. Department, Isildak Ankara, Turkey Bogazici University, Istanbul, Turkey ¸krv University,C¸ukurova Physics Department, ScienceTurkey and Art Faculty,A. Adana, Bat, F. Boran, S.manoglu, Cerci G. Gokbulut, Y.A. Guler, E. Kayis Gurpinar, Topaksu, I. U. Hos Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir P. Chang, Y. Chao,A. K.F. Psallidas, Chen, A. Steen P.H. Chen, W.-S.Chulalongkorn University, Hou, Faculty of Y.F. Science, Department Liu, ofThailand R.-S. Physics, Bangkok, Lu, E. Paganis, B. Asavapibhop, N. Srimanobhas, N. Suwonjandee P. Robmann, D. Salerno, K. Schweiger, C.National Seitz, Central Y. University, Takahashi, Chung-Li, A. Taiwan Zucchetta T.H. Doan, R. Khurana, C.M. Kuo,National W. Taiwan Lin, University A. (NTU), Pozdnyakov, S.S. Taipei, Yu Taiwan M. L. Sch¨onenberger, Shchutska, V.R. Tavolaro, K.R. Theofilatos, Wallny, M.L. D.H. Vesterbacka Zhu Olsson, Zurich, Switzerland Universit¨atZ¨urich, T.K. Aarrestad, C.S. Amsler Donato, C. Galloni, T. Hreus, B. Kilminster, S. Leontsinis, I. Neutelings, G. Rauco, Switzerland M. Backhaus, L. P. Berger, B¨ani, N. Chernyavskaya, G.C. Dissertori, M. Dorfer, Dittmar, M. Doneg`a, T.A.R.A. Manzoni, G´omez Espinosa, M. Marionneau, C.F. M.T. Meinhard, Pauss, Grab, F. G. D. Micheli, Perrin, P. Hits, L. Musella, Perrozzi, F. T. Nessi-Tedaldi, S. Klijnsma, Pigazzini, C. W. Reissel, Lustermann, D. Ruini, D.A. Sanz Becerra, ETH Zurich — Institute for Particle Physics and Astrophysics (IPA), Zurich, JHEP03(2019)101 , , 7 66 , R. Syarif, 67 , A. Nikitenko 65 , S. Paramesvaran, 63 – 33 – , C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, 64 , N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz 16 University of California, Davis, Davis,R. U.S.A. Band, C.M. Chertok, Brainerd, J. R. Conway,O. R. Breedon, Conway, Kukral, P.T. R. Cox, D. Lander, R.D. M. Burns, Erbacher, Taylor, K. C. Mulhearn, Tos, M. Flores, D. M. G. Pellett, Tripathi, Calderon Z. Funk, J. Wang, W. De Pilot, F. Ko, Zhang S. La Shalhout, Barca M. Shi, Sanchez, D. Stolp, Brown University, Providence, U.S.A. G. Benelli, B. Burkle, X. Coubez,K.H.M. D. Kwok, Cutts, E. M. Hadley, Laird, J.E. Hakala, G. U. Usai, Landsberg, Heintz, D. J.M. J. Yu Hogan Lee, Z. Mao, M. Narain, S. Sagir The University of Alabama, Tuscaloosa,A. U.S.A. Buccilli, S.I. Cooper, C. Henderson,Boston P. Rumerio, University, C. Boston, West U.S.A. D. Arcaro, T. Bose,D. D. Zou Gastler, S. Girgis, D. Pinna, C. Richardson, J. Rohlf, L. Sulak, K. Call, J.C. Dittmann, Smith K. Hatakeyama, H.Catholic Liu, University C. of America, Madrid, Washington,R. B. DC, Bartek, U.S.A. McMaster, A. Dominguez N. Pastika, Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R.L. Hobson, Teodorescu, S. A. Zahid Khan,Baylor P. University, Kyberd, Waco, U.S.A. C.K. Mackay, A. Morton, I.D. Reid, P. Dauncey, G. Davies, M. DellaC. Negra, R. Laner, Di Maria, L. G.V. Hall, Lyons, G. Palladino, Iles, A.-M. T. M. James, Magnan,A. M. Pesaresi, Komm, S. Shtipliyski, D.M. Malik, G. Raymond,T. A. Singh, Virdee A. Martelli, M. Richards, J. Stoye, A. Nash T. Rose, Strebler, E. S. Scott, Summers, C. A. Seez, Tapper, K. Uchida, K. Harder, S. Harper,Themistocleous, J. A. Linacre, Thea, K. I.R. Manolopoulos, Tomalin, T. E. Williams,Imperial Olaiya, W.J. D. College, Womersley Petyt, London, C.H. United Shepherd- Kingdom R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, D. Colling, F. Ball, J.J.J. Brooke, Goldstein, G.P. D. Heath,B. Burns, Penning, H.F. T. E. Heath, Sakuma, D. L. Clement, Smith, Kreczko, V.J. D.Rutherford Smith, D.M. Appleton Cussans, J. Newbold Laboratory, Taylor, Didcot, A. O. United Titterton K.W. Davignon, Kingdom Bell, A. H. Belyaev Flacher, University of Bristol, Bristol, United Kingdom JHEP03(2019)101 , B. Schneider, E. Sexton-Kennedy, 68 – 34 – J. Hanlon, R.M. Harris,M. S. Johnson, Hasegawa, J. U. Hirschauer,R. Joshi, Lipton, Z. M. B. Liu, Hu, T. B. Liu, Klima,P. J. Jayatilaka, Lykken, Merkel, M.J. S. K. S. Maeshima, Jindariani, Kortelainen, Mrenna, J.M. Marraffino, S.F. B. D. Nahn, Mason, Ravera, Kreis, P. A. V. McBride, Reinsvold, O’Dell, S. L. K. Ristori, Lammel, A. Pedro, Savoy-Navarro C. D. Pena, Lincoln, O. Prokofyev, G. Rakness, Fermi National Accelerator Laboratory, Batavia,S. U.S.A. Abdullin, M. Albrow,L.A.T. Bauerdick, M. A. Alyari, Beretvas, J. G. Berryhill,G.B. P.C. Apollinari, Bhat, K. A. Cerati, Burkett, J.N. Apresyan, Butler, H.W.K.J. A. A. Canepa, Apyan, Cheung, Freeman, S. Z. F. Banerjee, Gecse, Chlebana, E. M. Gottschalk, L. Cremonesi, Gray, J. D. Duarte, Green, S. V.D. Gr¨unendahl,O. Elvira, Gutsche, A. Perloff, K. Stenson, K.A. Ulmer,Cornell S.R. University, Wagner Ithaca, U.S.A. J. Alexander, J.J.R. Patterson, Chaves, D. Quach, Y. A.J. Rinkevicius, Cheng, Thom, A. J. Ryd, J. Tucker, L. P. Skinnari, Chu, Wittich, L. M. A. Soffi, Zientek S.M. Datta, Tan, Z. Tao, K. Mcdermott, N. Mirman, Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, T. Mudholkar, M.University Paulini, of M. Sun, Colorado I. Boulder, Vorobiev, Boulder,J.P. M. Cumalat, U.S.A. Weinberg W.T. Ford, F. Jensen, A. Johnson, E. MacDonald, T. Mulholland, R. Patel, R. Heller, J. Incandela,S. H. Wang, Mei, J. Yoo A. Ovcharova, H.California Qu, Institute J. of Richman, Technology, D. Pasadena,D. Stuart, U.S.A. Anderson, I. A. Suarez, Bornheim,M. J.M. Spiropulu, Lawhorn, J.R. N. Vlimant, Lu, R. H.B. Wilkinson, Newman, S. Xie, T.Q. Z. Nguyen, Zhang, J. R.Y. Pata, Zhu G. Zevi Della Porta University of California,Barbara, U.S.A. Santa BarbaraN. Amin, — R. Bhandari, C. Department Campagnari, M. of Citron, V. Dutta, Physics, M. Franco Sevilla, Santa L. Gouskos, H. Wei, S. Wimpenny, B.R. Yates University of California, San Diego,J.G. La Branson, Jolla, P. Chang, U.S.A. A. S. Cittolin, Holzner, M. D. Derdzinski,D. R. Olivito, Klein, Gerosa, S. G. D. Padhi, Gilbert, M. Kole, Pieri, B. V. Hashemi, V. Sharma, Krutelyov, M. Tadel, J. J. Letts, Wood, F. M. A. W¨urthwein, Yagil, Masciovecchio, S. May, M. Bachtis, C.M. Ignatenko, Bravo, N. Mccoll, R. S. Regnard, Cousins,University D. of Saltzberg, A. California, C. Dasgupta, Schnaible, Riverside, V. Riverside,E. S. Valuev U.S.A. Bouvier, K. Erhan, Burt, R.toli, A. Clare, E. J.W. Kennedy, Florent, F. Gary, Lacroix, S.M.A. O.R. J. Ghiasi Long, Shirazi, M. Hauser, G. Olmedo Hanson, Negrete, M.I. G. Paneva, Karapos- W. Si, L. Wang, University of California, Los Angeles, U.S.A. JHEP03(2019)101 , S. Durgut, R.P. Gandrajula, M. Hayt- 70 – 35 – , A. Penzo, C. Snyder, E. Tiras, J. Wetzel 72 , W. Clarida, K. Dilsiz 69 , Y. Onel, F. Ozok 71 S. Duric, A. Ivanov, K. Kaadze,A. D. Mohammadi Kim, Y. Maravin, D.R. Mendis, T. Mitchell,Lawrence A. Livermore Modak, National Laboratory, Livermore,F. U.S.A. Rebassoo, D. Wright The University of Kansas, Lawrence,A. U.S.A. Al-bataineh, P. Baringer, A. Bean,A. S. Boren, Kropivnitskaya, J. Bowen, D. A.E. Bylinkin, Majumder, Schmitz, J. J.D. Castle, Tapia W. S. Takaki, Khalil, Q. Mcbrayer, Wang M.Kansas State Murray, University, Manhattan, C. U.S.A. Rogan, S. Sanders, H. Ogul Johns Hopkins University, Baltimore, U.S.A. B. Blumenfeld, A. Cocoros,P. N. Maksimovic, Eminizer, J. D. Roskes, U. Fehling, L. Sarica, M. Feng, A.V. Swartz, M. Gritsan, Xiao W.T. Hung, M.B. Tonjes, N. Varelas, H. Wang, X. Wang,The Z. University Wu, of J. Zhang Iowa, IowaM. City, U.S.A. Alhusseini, B. Bilki myradov, V. Khristenko, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, T. Roy, M. Saunders, F. Yumiceva University of Illinois at ChicagoM.R. (UIC), Adams, Chicago, L. U.S.A. Apanasevich, D.O. Berry, Evdokimov, R.R. C.E. Betts, R. Gerber, Cavanaugh, D.A. X. Chen, Hangal, S. D.J. Dittmer, Hofman, K. Jung, J. Kamin, C. Mills, Florida State University, Tallahassee, U.S.A. A. Ackert, T. Adams,G. A. Martinez, Askew, T. Perry, S. H. Hagopian, Prosper, V. A.Florida Saha, Hagopian, Institute C. K.F. Schiber, of Johnson, R. Technology, Melbourne, T. Yohay M.M. U.S.A. Kolberg, Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, M. Rahmani, K. Matchev, G. Mitselmakher, D. Rosenzweig, K. Shi, D.Florida Sperka, J. International Wang, S. University, Wang, Miami, X. Zuo U.S.A. Y.R. Joshi, S. Linn N.V. Tran, L. Uplegger, E.W.H.A. Vaandering, Weber, C. A. Vernieri, Whitbeck M. Verzocchi, R. Vidal,University M. of Wang, Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon,D. D. Curry, R.D. Bourilkov, Field, A. S.V. Brinkerhoff, Gleyzer, L. B.M. Cadamuro, Joshi, A. J. Konigsberg, Carnes, A. Korytov, K.H. Lo, P. Ma, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, JHEP03(2019)101 , M. Planer, R. Ruchti, 37 – 36 – , R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, S. Kalafut, † T.Y. Ling, W. Luo, B.L. Winer Princeton University, Princeton, U.S.A. S. Cooperstein, P. Elmer, J. Hardenbrook,los, N. S. Haubrich, S. Kwan, Higginbotham, D. A.C. Kalogeropou- Lange, Palmer, M.T. P. Pirou´e,J. Lucchini, Salfeld-Nebgen, D. J. Stickland, Luo, C. D. Tully Marlow, K. Mei, I. Ojalvo, J. Olsen, R. Bucci, N. Dev, M. Hildreth,W. K. Li, Hurtado N. Anampa, Loukas, C. N. Jessop, Marinelli,P. D.J. Karmgard, Siddireddy, F. G. K. Meng, Lannon, Smith, C. Mueller, S. Y. Taroni, Musienko M.The Wayne, Ohio A. State Wightman, M. University, Columbus,J. Wolf, A. U.S.A. Alimena, Woodard L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, C. Hill, W. Ji, Northwestern University, Evanston, U.S.A. S. Bhattacharya, J. Bueghly, O.K. Charaf, Sung, M. T. Trovato, Gunter, M. K.A. Velasco Hahn,University N. of Odell, Notre M.H. Dame, Schmitt, Notre Dame, U.S.A. A. Godshalk, C. Harrington, I.S. Iashvili, Rappoccio, A. B. Kharchilava, C. Roozbahani Mclean, D.Northeastern Nguyen, A. University, Boston, Parker, U.S.A. G. Alverson, E. Barberis, C. Freer,T. Y. Haddad, Orimoto, A. A. Hortiangtham, Tishelman-charny, G. T. Madigan, D.M. Wamorkar, B. Morse, Wang, A. Wisecarver, D. Wood University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, K. Bloom,malieddin, D.R. I. Kravchenko, Claes, J. C. Monroy, J.E. Fangmeier, Siado,State F. G.R. University Golf, Snow, of R. B. New Stieger Gonzalez York Suarez, at Buffalo, R. Buffalo, Ka- U.S.A. University of Minnesota, Minneapolis,A.C. U.S.A. Benvenuti M. Krohn, Y. Kubota, Z. Lesko,University J. of Mans, Mississippi, R. Oxford, Rusack,J.G. U.S.A. M.A. Acosta, Wadud S. Oliveros M. D’Alfonso, Z. Demiragli, G.Y. Gomez Ceballos, Iiyama, M. G.M. Goncharov, P. Innocenti,A.C. Harris, Marini, D. M. C. Mcginn, Hsu, Klute, C. M. Mironov, Hu, G. D. S. Narayanan, Kovalskyi, X. Roland, Niu, Y.-J. C. Z. Paus, Lee,T.W. D. Rankin, Wang, Shi, P.D. C. B. Luckey, Roland, Wyslouch G.S.F. B. Stephans, Maier, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, A. Baden, O. Baron,G.Y. A. Jeng, Belloni, R.G. S.C. Eno, Kellogg,Y.H. Y. J. Shin, Feng, A. Kunkle, C. Skuja, A.C. Ferraioli, S.C. Mignerey, N.J. Tonwar,Massachusetts S. K. Hadley, Institute S. Wong Nabili, of Jabeen, F. Technology, Ricci-Tam, Cambridge,D. M. U.S.A. Abercrombie, Seidel, B. Allen, V. Azzolini, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, University of Maryland, College Park, U.S.A. JHEP03(2019)101 – 37 – , S. Luo, D. Marley, R. Mueller, D. Overton, L. Perni`e, 74 , A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, 73 University of Virginia, Charlottesville, U.S.A. M.W. Arenton, P. Barria,T. B. Sinthuprasith, Y. Cox, Wang, R. E. Wolfe, Hirosky, F. M.Wayne Xia State Joyce, University, A. Detroit, U.S.A. Ledovskoy,R. H. Harr, Li, P.E. Karchin, C. N. Neu, Poudyal, J. Sturdy, P. Thapa, S. Zaleski T. Mengke, S. Muthumuni, T. Peltola, S.Vanderbilt Undleeb, University, Nashville, I. U.S.A. Volobouev, Z.S. Wang Greene, A. Gurrola,F. R. Romeo, J.D. Janjam, Ruiz W. Alvarez, Johns, P. Sheldon, C. S. Maguire, Tuo, A. J. Velkovska, Melo, M. H. Verweij, Q. Ni, Xu K. Padeken, O. Bouhali J. Gilmore, T. Huang, T.D. Kamon Rathjens, A. Safonov Texas Tech University, Lubbock, U.S.A. N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, S. Kunori, K. Lamichhane, S.W. Lee, S. Thomas, P. Thomassen University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, J. Heideman, G. Riley, S.Texas Spanier A&M University, College Station, U.S.A. Rutgers, The State University ofB. New Chiarito, Jersey, J.P. Piscataway, U.S.A. Chou,S. Kaplan, Y. R. Gershtein, KunnawalkamK. E. Elayavalli, Nash, Halkiadakis, S. M. Osherson, Kyriacou, A. H. I. Saka, Hart, S. Laflotte, Salur, M. S. A. Heindl, Schnetzer, Lath, D. E. Sheffield, R. S. Hughes, Somalwar, Montalvo, R. Stone, B.P. Padley, R. Redjimi, J. Roberts, J.University Rorie, of W. Rochester, Shi, Rochester, Z. U.S.A. A. Tu, A. Bodek, Zhang P.M. de Galanti, Barbaro, A. R.P. Garcia-Bellido, Tan, Demina, R. J. Y.t. Taus Han, Duh, O. J.L. Hindrichs, Dulemba, A. C. Khukhunaishvili, Fallon, E. T. Ranken, Ferbel, Purdue University Northwest, Hammond, U.S.A. T. Cheng, J. Dolen, N. Parashar Rice University, Houston, U.S.A. Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, Arun Kumar, W. Li, S. Malik, S. Norberg Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes,hakud, S. D.H. Das, Miller, L. N. Gutay,F. Neumeister, M. Wang, C.C. R. Jones, Xiao, Peng, A.W. W. S. Jung, Xie Piperov, A. H. Khatiwada, Qiu, B. J.F. Ma- Schulte, J. Sun, University of Puerto Rico, Mayaguez, U.S.A. JHEP03(2019)101 , 75 – 38 – University, Tehran, Iran SUSTAINABLE ECONOMIC DEVELOPMENT, Bologna, Italy University, Budapest, Hungary Moscow, Russia Also at Institute forAlso Theoretical at and Joint Experimental Institute Physics, for Moscow,Also Russia Nuclear at Research, Suez Dubna, University, Suez, Russia Egypt Also at Vienna University ofAlso Technology, at Vienna, IRFU, Austria CEA,Also Gif-sur-Yvette, Universit´eParis-Saclay, France at Universidade Estadual deAlso Campinas, at Campinas, Federal University Brazil ofAlso Rio at Grande Universit´eLibre de do Bruxelles, Sul,Also Bruxelles, Porto at Belgium Alegre, University Brazil of Chinese Academy of Sciences, Beijing, China Deceased Also at Kyunghee University, Seoul,Also Korea at International Islamic UniversityAlso of at Malaysia, Malaysian Kuala Nuclear Lumpur, Agency,Also MOSTI, Malaysia at Kajang, Consejo Malaysia NacionalAlso de at Ciencia Warsaw y University Tecnolog´ıa,Mexico City, of Mexico Also Technology, Institute at of Institute Electronic for Systems, Nuclear Warsaw, Research, Poland Moscow, Russia Also at Plasma Physics ResearchAlso Center, at ITALIAN Science NATIONAL and AGENCY FOR Research NEW Branch,Also TECHNOLOGIES, at ENERGY Islamic Universit`adegli Studi AND Azad diAlso Siena, at Siena, Scuola Italy Normale e Sezione dell’INFN, Pisa, Italy Also at Indian InstituteAlso of at Technology Bhubaneswar, Institute Bhubaneswar, of India Also Physics, Bhubaneswar, at India Shoolini University, Solan,Also India at University of Visva-Bharati,Also Santiniketan, at India Isfahan University of Technology, Isfahan, Iran Also at RWTH Aachen University,Also III. at Physikalisches University Institut of A, Hamburg,Also Aachen, Hamburg, Germany at Germany Brandenburg University ofAlso Technology, at Cottbus, Institute Germany ofAlso Physics, University at of Institute Debrecen, of Debrecen,Also Nuclear Hungary Research at ATOMKI, Debrecen, MTA-ELTE Hungary Lend¨uletCMS Particle and Nuclear Physics Group, E¨otv¨osLor´and Now at Ain Shams University,Also Cairo, at Egypt Department of Physics,Also King at Abdulaziz Universit´ede Haute University, Alsace, Jeddah,Also Mulhouse, Saudi France Arabia at Skobeltsyn Institute ofAlso Nuclear at CERN, Physics, European Organization Lomonosov for Nuclear Moscow Research, Geneva, State Switzerland University, Now at British University inAlso Egypt, at Cairo, Zewail Egypt City of Science and Technology, Zewail, Egypt : † 7: 8: 9: 1: 2: 3: 4: 5: 6: 32: 33: 34: 35: 36: 37: 28: 29: 30: 31: 23: 24: 25: 26: 27: 17: 18: 19: 20: 21: 22: 12: 13: 14: 15: 16: 10: 11: J. Buchanan, C.M. Caillol, D. Grothe, Carlsmith, M.R. S. Loveless, Herndon, Dasu, T. Ruggles, A. I. A. De Savin, Herv´e, U. V. Bruyn, Sharma, Hussain, L. N. Smith, Dodd, P. W.H. B. Klabbers, Smith, N. Gomber A. Woods Lanaro, K. Long, University of Wisconsin — Madison, Madison, WI, U.S.A. JHEP03(2019)101 , Pavia, Italy b – 39 – , Universit`adi Pavia a Kingdom Belgrade, Serbia (MEPhI), Moscow, Russia Also at Mimar SinanAlso University, Istanbul, at Istanbul, Texas Turkey A&M UniversityAlso at at Qatar, Kyungpook Doha, National Qatar Also University, Daegu, at Korea University of Hyderabad, Hyderabad, India Also at Bethel University, St.Also Paul, at U.S.A. Karamano˘gluMehmetbey University, Karaman,Also Turkey at Purdue University, WestAlso Lafayette, at U.S.A. Beykent University, Istanbul,Also Turkey at Bingol University, Bingol,Also Turkey at Sinop University, Sinop, Turkey Also at Istanbul Bilgi University,Also Istanbul, at Turkey Hacettepe University, Ankara,Also Turkey at Rutherford AppletonAlso Laboratory, Didcot, at School United of Kingdom Physics and Astronomy, University of Southampton,Also Southampton, at United Monash University, Faculty of Science, Clayton, Australia Also at Gaziosmanpasa University, Tokat,Also Turkey at Ozyegin University, Istanbul,Also Turkey at Izmir InstituteAlso of at Technology, Izmir, Marmara Turkey University, Istanbul,Also Turkey at Kafkas University, Kars,Also Turkey at Istanbul University, Faculty of Science, Istanbul, Turkey Also Zurich, at Switzerland Universit¨atZ¨urich, Also at Stefan Meyer InstituteAlso for at Subatomic Adiyaman University, Physics Adiyaman, (SMI),Also Turkey Vienna, at Austria Istanbul Aydin University,Also Istanbul, at Turkey Mersin University, Mersin,Also Turkey at Piri Reis University, Istanbul, Turkey Also at Faculty of Physics,Also University at of INFN Belgrade, Sezione Belgrade,Also di Serbia Pavia at University of Belgrade, Faculty of PhysicsAlso and at Vinca National Institute and ofAlso Kapodistrian at Nuclear University Riga of Sciences, Technical Athens, University, Athens, Riga, Greece Latvia Also at St. PetersburgAlso State at Polytechnical University University, St. of Florida,Also Petersburg, Gainesville, Russia at U.S.A. P.N. Lebedev PhysicalAlso Institute, at Moscow, California Russia InstituteAlso of at Technology, Pasadena, Budker U.S.A. Institute of Nuclear Physics, Novosibirsk, Russia Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ 72: 73: 74: 75: 66: 67: 68: 69: 70: 71: 61: 62: 63: 64: 65: 55: 56: 57: 58: 59: 60: 49: 50: 51: 52: 53: 54: 44: 45: 46: 47: 48: 39: 40: 41: 42: 43: 38: