Memorial to Roland Blanchard

Total Page:16

File Type:pdf, Size:1020Kb

Memorial to Roland Blanchard Memorial to Roland Blanchard 1891-1966 GEORGE TUNELL Department of Geological Sciences, University of California, Santa Barbara 93106 Geological exploration for deposits of metalliferous ores and the application of geology to the development and exploitation of such deposits constituted the life work of Roland Blanchard, in the course of which he investigated many areas of the western United States, southern British Columbia, Mexico, Australia, and New Guinea. Comprehensive and detailed mapping, both surface and underground, was carried out by him at Bisbee, Arizona, in the 1920s, and his reports on this district are regarded as classics by geologists of this district and are still valid after forty years. Blanchard was the first Chief Geologist of Mount Isa Mines Limited, in Queensland, Australia, holding this position from 1931 until 1948. Together with one of the Queensland government geologists, S.R.L. Shepherd, he made a detailed surface and underground geological survey of the Mount Isa leases in the early 1930s, which has been the basis of the tremendous develop­ ments there in the past twenty-five years. Subsequently, he planned the opening up of the copper ore bodies at Mount Isa in the early 1940s. The late S. R. Carter, formerly Exploration Manager of a subsidiary of Mount Isa Mines Limited, stated that under Blanchard’s direction the Geological Department at Mount Isa set an example of day-to-day guidance for the min­ ing operations that was later followed by other mining companies throughout Australia. Roland Blanchard was born in Big Stone City, South Dakota, on December 12, 1891. His heritage was Swiss and German. Roland’s father, a largely self-educated man, was an itinerant Methodist minister. It was on one of these itineraries that he met and later married Elizabeth Gaulke. Roland’s childhood was spent in various small towns in North Dakota, South Dakota, and Minnesota. When Roland was ten years old, the family was moved to a farming community in the Red River Valley of North Dakota. Here he attended a one-room country school for two years, passing the eighth-grade examinations when he was in the seventh grade. Roland was then sent to live with an uncle, who resided near the town in which Roland began his high school education. At that time he had his first job, that of “buckin’ straw.” Two boys, riding horses that were hitched to the two ends of a long plank, dragged away the straw as it piled up under the blower of a threshing machine. The pay was fifty cents a day, and with the money Roland earned, he bought his mother a meat grinder, an appliance which other women of the community had but which she lacked. The following year the family moved to Thief River Falls, Minnesota, a small lumber­ ing town on the Red River. There Roland completed his high school education. Thief River Falls High School had three teachers, a mandolin club, and a football team. 2 TI Ili GEOLOGICAL SOCIETY OE AMERICA Roland played a guitar in the mandolin club, on the football team he was the quarter­ back, and with his teachers he did not always agree on all points. During Roland’s senior year in high school, his father died. Roland had determined that the University of Minnesota was the school where he wanted to continue his education. (Subsequently he told one of his sisters that actually the deciding factor had been the fact that Minnesota had the strongest football team at that time.) To finance his first year at the university, he remained at home and obtained a job as a printer’s devil for the local weekly newspaper, at the same time working part- time in an attorney’s office. Then in 1909 he entered the University of Minnesota. About this time the government was opening arid land in Montana for dry-farming. Anyone could obtain title to 320 acres of this land by living on the plot for three years and putting a certain number of acres under cultivation each year. Roland interrupted his education to take up one of these claims and lived on it for the three required years. When not working on the land, he spent his time writing short stories and studying the geology of the region, carrying out two major interests he had developed at the university. It appears that he really enjoyed those three years, for he was always a pioneer at heart. In this way he obtained the means to finish his university education, and during this period he had some time to think. After proving up his claim, he returned to the Univer­ sity of Minnesota. Under the influence of Professor W. H. Emmons, whom he greatly admired, he decided to make geology his life’s work. At the University of Minnesota his principal courses in geology were those given by Professors Emmons, F. F. Grout, and C. R. Stauffer. When the United States entered World War I, he volunteered for service and was accepted by the United States Army Air Corps, the only branch of the service from which he was not barred because of his small stature. He served as Private First Class from September 18, 1917, to December 4, 1918, at Minneapolis, Minnesota, and at Fort Monroe, Virginia. He had been assigned to active service and was about to be sent overseas when the armistice was signed. Blanchard then returned to the University of Minnesota, where he was elected to Phi Beta Kappa in 1919, and from which he was graduated the same year. From 1919 to 1922 Blanchard was engaged in geological scouting work at many mining properties in the southwestern United States, British Columbia, Alaska, and Mexico for the Calumet and Hecla Consolidated Copper Company, the General Develop­ ment Company, and the Holly Development Company, in the course of which he made examinations and valuations of many mining properties. He investigated the geology and mining possibilities of the Silver Bell and Bagdad Districts in Arizona for the Calumet and Hecla Consolidated Copper Company from 1922 to 1924. It was at Silver Bell that Blanchard began to learn how to discriminate leached cappings that overlay ore from leached cappings that overlay barren rock, although the reasons for the observed dif­ ferences had not yet been discovered at that time. Blanchard also prepared a report on the geology and valuation of the Boleo Copper Mine, Santa Rosalia, Baja California, jointly with H. W. Morse, R. Marsh, Jr., and A. Locke during this period. The following account of Blanchard’s work at Bisbee, Arizona, has been contributed by Dr. Augustus Locke: Blanchard moved to Bisbee in the middle 1920s. Development of the ore bodies there had taken place over a period of 40 years, from the surface down the structural slope, by stopes, by penetration into walls and along leads, and now and then by forays into trackless blocks. These actions were controlled by management policy to which elements were added by bosses, engineers, staff geologists, and shrewd miners, all of whom by long familiarity were at home in the workings. The equations of MEMORIAL TO ROLAND BLANCHARD 3 probability had to include wide unknowns: a predominating footage in waste rock was integral to the game of which the strikingly successful outcome was a first-order yield of metal. But now World War I depletion had called for outside help and brought in Blanchard. It is of interest that Blanchard had not been professionally seasoned by the day- to-day prophesy of advances among intricate intrusions, thrusts and slumps; and by the lessons of repeated defeats threatening to smother the occasional victories. More­ over, of conspicuously slight stature, he was in face-to-face competition with the burly, self-assured, competent veterans. In certain other ways, however, he had an advantage, he was exclusively dedicated to the problems of ore position in the rock, which they were not. In addition, he was tireless in the pursuit and endowed with muscle and endurance to match. Even in the first week, when he offered vigorous opinions patently sharper than the evidence, his sincerity was so unmistakable that miners began to accept him. Within a few months, the accumulating data, the cold realities of operational result, and Blanchard’s overarching honesty served to bring his high-powered ideas under control. His reports became notably clear, specific, and convincing. The study, which included four other geologists, lasted two years and yielded no soaring achieve­ ments in discovery. One old miner in friendly extenuation explained, “You know, we did something of a job here before you fellows came. And another thing: your geologist may spot the trap, but he can’t put the stuff in it.” For Blanchard, the result was that these two years carried him a long distance toward the balance between vigor and judgment which served him so well in his long, later, productive career. In 1928 Blanchard was engaged in geological work for the Consolidated Coppermines Corporation at Ely, Nevada, in the course of which he discovered ore-localizing faults with vertical displacements of more than 5,000 feet that had not been recognized previously. In 1929 Blanchard was in charge of a diamond-drilling program for the American Smelting and Refining Company at Gold Gulch, New Mexico. He also spent part of his time during this year examining various properties in Arizona and New Mexico for Asarco. Julius Kruttschnitt, who was then General Manager of Asarco’s Exploration and Mine Operation Division, stated in a letter to Professor Tunell dated October 7, 1968, that: One incident in my long association with [Blanchard] might be of interest to you.
Recommended publications
  • From Base Metals and Back – Isamills and Their Advantages in African Base Metal Operations
    The Southern African Institute of Mining and Metallurgy Base Metals Conference 2013 H. de Waal, K. Barns, and J. Monama From base metals and back – IsaMills and their advantages in African base metal operations H. de Waal, K. Barns, and J. Monama Xstrata IsaMill™ technology was developed from Netzsch Feinmahltechnik GmbH stirred milling technology in the early 1990s to bring about a step change in grinding efficiency that was required to make Xstrata’s fine-grained lead/zinc orebodies economic to process. From small-scale machines suited to ultrafine grinding, the IsaMill™ has developed into technology that is able to treat much larger tonnages, in coarser applications, while still achieving high energy efficiency, suited for coarser more standard regrind and mainstream grinding applications. The unique design of the IsaMillTM, combining high power intensity and effective internal classification, achieves high energy efficiency and tight product distribution which can be effectively scaled from laboratory scale to full-sized models. The use of fine ceramic media also leads to significant benefits in downstream flotation and leaching operations. These benefits are key drivers for the adoption of the technology into processing a diverse range of minerals worldwide, and offer major opportunities for power reduction and improved metallurgy for the African base metal operations. Keywords: IsaMill, regrind, energy efficiency, inert grinding. Introduction The development of the IsaMillTM, by MIM (now GlencoreXstrata) and Netzsch Feinmahltechnik GmbH, was initiated to enable the development of the fine-grained ore deposits at Mt Isa and McArthur River in Northern Australia. To liberate the valuable minerals and so produce a saleable concentrate this ultrafine-grained ore needed to be ground to a P80 of 7 μm.
    [Show full text]
  • Orica's Flotation Reagents Increase Copper Recovery Rates, Resulting in a $2M Increase in Gross Revenue
    Greater understanding, improved performance Orica’s flotation reagents increase copper recovery rates, resulting in a $2M increase in gross revenue WHO WAS THE CLIENT? combined with sodium isobutyl Xstrata Mount Isa Mines form one xanthate (SIBX). As a result, DSP 330 “The best flotation of the largest underground mining was chosen for plant trial. operations in the world. The plant trial supported the initial performance was The mines, based in North laboratory results, with copper achieved with the Queensland, produce both copper recovery improving by 3%. 50:50 addition ratio and zinc-lead-silver. Established Further laboratory testing and plant in 1924, 5,700 employees and trials conducted by Mount Isa Mines of DSP 330 and contractors today work across found an improvement in overall SIBX, with a copper Xstrata Mount Isa’s twin mining recovery of 3.5%. As a result, and processing streams. DSP 330 was adopted as specialty recovery of 92.4% for collector of choice when treating a head grade of 5.4% WHAT WERE THE CHALLENGES? slow cooled copper slag. Xstrata needed to improve copper and a cut-off copper recovery and called on Orica to WHAT WERE THE KEY grade of 24-25%.” identify and test collectors. OUTCOMES? Orica formulated a collector that would enhance milling and Pengfu Tan, Alberto Galvez, Lucya Yunus– Mount Isa Mines flotation of slow cooled copper slag. Identification of Ultimately, the process needed to achieve superior recovery of copper superior collector at a natural pH over a specific grind fineness. Xstrata’s key requirements were to: Optimised flotation • Identify superior collectors performance • Reduce reagent costs • Optimise flotation performance • Integrate improvements into 3.5% improvement existing operations in copper recovery HOW DID ORICA HELP? Orica developed a laboratory test work program using Xstrata’s current Reduction in performance as a benchmark.
    [Show full text]
  • Grained Pyrite in the Mount Isa Copper System
    Trace Element Variation of Coarse- Grained Pyrite in the Mount Isa Copper System Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology Shauna Maguire-Olstad November 2016 Shauna Maguire-Olstad Mt. Isa Coarse-grained Pyrite TRACE ELEMENT VARIATIONOF COARSE-GRAINED PYRITE IN THE MOUNT ISA COPPER SYSTEM MT.ISA COARSE-GRAINED PYRITE ABSTRACT The unique Mount Isa system, northwest Queensland, contains two world class deposits of copper and lead-zinc, which have a complex spatial relationship. The formation of the copper mineralization has long been debated, and occurs in a close spatial and temporal association with silica-dolomite alteration and coarse-grained pyrite (Pyrite 2). The geochemical characteristics of coarse-grained pyrite has not previously been studied and it is believed to hold valuable insight into the fluid evolution of the Mount Isa Copper System. Using LA-ICP-MS analysis, trace element variation of Pyrite 2 was investigated for numerous elements including Ag, As, Ba, Co, Cu, Mo, Ni, Pb and Zn across an explorative transect (drill hole 0406ED2), which passed through the alteration halo of the 1100 orebody. The trace element composition of Pyrite 2 was not consistent throughout the 0406ED2 transect and it does not appear to be controlled by host lithology. The analysis determined the Pyrite 2 grains formed during, or in close association with, the ore-mineral enriched hydrothermal fluid. Pyrite 2 data is consistent with the Mount Isa system having undergone multiple hydrothermal fluid events or from an evolving hydrothermal fluid. The trace element variation of Pyrite 2 is consistent with the currently established paragenesis and is indicative of the concurrent Cu, Pb and Zn mineralising system formed during protracted hydrothermal events.
    [Show full text]
  • Evolution of the Isamill™ Into Magnetite Processing
    EVOLUTION OF THE ISAMILL™ INTO MAGNETITE PROCESSING Greg Rasmussen, Xstrata Technology Pty Ltd Tommy Do , Ernest Henry Mining Michael Larson, Xstrata Technology Pty Ltd Katie Barns, Xstrata Technology Pty Ltd Xstrata Technology • Mount Isa Mines (MIM), a large Australian mining company, was acquired by Xstrata in 2003 who then merged with Glencore in 2013 • MIM internal technology group was re-named Xstrata Technology (XT) and became an independent technology developer and supplier to the global minerals industry with 250 staff worldwide • The equipment and processes which are marketed by XT are developed in our own operations • XT offers full-package solutions including: • Equipment and processes • Engineering • Commissioning and Training • Dedicated after-market support IsaMill™ Technology Development ™ • Development of IsaMill driven by inability Broken Hill to efficiently treat fine grained orebodies • Late 1980s, Xstrata required 7µm grind for new Pb/Zn orebodies in Australia • Conventional mining technologies tested (1975-1990), but 0 40 micron − Too high power consumption to achieve target size McArthur River − Ball/tower mills ineffective below 20-30μm − Negative influence of steel grinding on flotation 0 40 micron IsaMill™ Technology Development A technology was found... • Horizontal Bead Mills − Used in industries other than mining (pharmaceuticals, paint, food, etc.) − Small, batch scale − Very expensive and exotic media types • Cross-over into mining required: − Much larger scale − Continuous operation − Ability to use cheap,
    [Show full text]
  • Gomposition and Occurrence of Electrum Atthe
    L37 The Canadian M inerala g i st Vol.33,pp. 137-151(1995) GOMPOSITIONAND OCCURRENCEOF ELECTRUM ATTHE MORNINGSTAR DEPOSIT, SAN BERNARDINOCOUNTY, GALIFORNIA: EVIDENCEFOR REMOBILIZATION OF GOLD AND SILVER RONALD WYNN SIIEETS*, JAMES R. CRAIG em ROBERT J. BODNAR Depanmen of Geolngical Sciences, Virginin Polytechnic h stitate and Stale (Jniversity, 4A44 Dening Hall, Blacl<sburg, Virginin 24060, U.S-A,. Arsrnacr Elecfum, acanthiteand uytenbogaardtite have been examined from six depthswithin the tabular quartzt calcite sockwork and breccia-filled veins in the fault-zone-hostedMorning Star depositof the northeasternMojave Desert, Califomia. Six distinct types of electrum have been identified on the basis of minerat association,grain moryhology and composition. Two types, (1) p1'rite-hostedand (2) quartz-hostedelectrum, occur with acanthite after argentite and base-metalsulfide minerals in unoxidized portions of the orebody; the remaining forr types, (3) goethite-hostedelectrum, (4) electnrm cores, (5) electrumrims and (6) wire electrum,are associatedwith assemblagesof supergeneminerals in its oxidizedportions. Pyrite- hosted quartz-hostedand goethite-hostedelectrum range in compositionfrom 6l ta 75 utt.7oAu and have uniform textures and no zoning. In lower portions ofthe oxidized ore zone, electrum seemsto replacegoethite and occursas small grains on surfacesof the goethite.Textural evidencefavors supergeneremobilization of Au and Ag, which were depositedas electrum on or replacinggoethite. This type of electrumis identical in appearanceand compositionto prinary electrum,In the upper portions of the oxidized zone,secondary electum occursas a gold-rich rim on a core of elechum and as wire-like grains,both with acanthiteand uytenbogaardtite.Such secondaryelectrum contains from 78 to 93 wt./o Au. Textural relations and asso- ciated minerals suggestthat the primary electrum was hydrothermally depositedand partially remobilized by supergene processes.
    [Show full text]
  • Isamill™ Technology Used in Efficient Grinding Circuits
    1 IsaMill™ Technology Used in Efficient Grinding Circuits B.D. Burford1 and L.W. Clark2 High intensity stirred milling is now an industry accepted method to efficiently grind fine and coarse particles. In particular, the IsaMill™, which was invented for, and transformed the fine grinding industry, is now being included in many new comminution circuits in coarser applications. While comminution has always been regarded as important from a processing perspective, the pressure being applied by environmental concerns on all large scale power users, now make highly energy efficient processes more important than ever. The advantages that were developed in fine grinding in the early IsaMill™ installations have been carried over into coarse grinding applications. These advantages include a simple grinding circuit that operates in open circuit with a small footprint, the ability to offer sharp product size classification, as well as the use of inert media in a high energy intensive environment. This paper will examine the use of IsaMill™ technology in fine grinding (P80 below 15 micron), and examine the use of the technology in conventional grinding applications (P80 20 - 150 µm). Recent installations will be examined, including fine and coarse grinding applications, as well as the recent test work that was undertaken using an IsaMill™ in a primary grinding circuit, and the resulting circuit proposal for this site. While comminution has been relatively unchanged for the last century, the need to install energy efficient technology will promote further growth in IsaMill™ installations, and result in one of the biggest challenges to traditional comminution design. 1. Senior Process Engineer, Xstrata Technology, L4, 307 Queen Street, Brisbane 4000, Qld, Australia 2.
    [Show full text]
  • Supergene Mineralisation of the Boyongan Porphyry Copper-Gold Deposit, Surigao Del Norte, Philippines
    Supergene Mineralisation of the Boyongan Porphyry Copper-Gold Deposit, Surigao del Norte, Philippines by Allan Maglaya Ignacio B.Sc. Geology, National Institute of Geological Sciences University of the Philippines Thesis submitted in partial fulfilment of the requirements of the Masters of Economic Geology Degree Centre for Ore Deposit Research, University of Tasmania December, 2005 DECLARATION OF ORIGINALITY This thesis contains no material which has been accepted for a degree of diploma by the University of Tasmania or any other institution, except by way of background information and duly acknowledged in the thesis, and contains no previous material previously pub- lished or written by another person except where due acknowledgement is given. Allan Maglaya Ignacio 01 December 2005 _________________________ STATEMENT OF AUTHORITY OF ACCESS This thesis may not to be made available for loan or copying for 1.5 years following the date this statement was signed. Following that time, the thesis may be available for loan and lim- ited copying in accordance with Copyright Act 1968. Allan Maglaya Ignacio 01 December 2005 _________________________ TABLE OF CONTENTS Page (s) LIST OF FIGURES …………………………………………………….. i - iii LIST OF APPENDICES ………………………………………………… iv ACKNOWLEDGMENTS ………………………………………………. v ABSTRACT ……………………………………………………………... vi - vii 1.0 INTRODUCTION ………………………………………………………. 1 - 8 1.1 Introduction …………………………………………………………. 1 1.2 Aims and Objectives ……………………………………………….. 1 1.3 Methods Employed …………………………………………………. 2 1.4 Location and Accessibility …………………………………………. 3 1.5 Climate ……………………………………………………………... 5 1.6 Previous Work ……………………………………………………… 5 2.0 GEOLOGICAL SETTING ………………………………………………. 9 - 37 2.1 Introduction ………………………………………………………. 9 2.2 Regional Tectonics …………….…………………………………. 9 2.3 Regional and Local Stratigraphy ………………………………... 11 2.3.1 Basement (Cretaceous-Paleogene) ………………………. 11 2.3.2 Bacuag Formation (Oliogocene-Miocene) .……………..
    [Show full text]
  • CU PERU 2 Proof 22/02/2016 13:13 Page 1
    IM COVER MARCH 2016_proof 23/02/2016 15:13 Page 1 www.im-mining.com MARCH 2016 Informed and in-depth editorial on the world mining industry BAUMA PREVIEW COMMINUTION & FRAGMENTATION GERMAN TECHNOLOGY WATER MANAGEMENT PERU COPPER MINING II OPERATION FOCUS: Kaltim Prima Coal CU PERU 2_proof 22/02/2016 13:13 Page 1 PERU COPPER Cu Peru 2 John Chadwick continues his detailed examination of Peru’s copper projects and its growing world stature. The first part was published last month ccording to Ministerio de Energía y Minas some 278,000 t of copper and 6,000 t of The expansion of Cerro Verde primarily involved (MINEM) in November 2015, national molybdenum beginning in 2016. First building a new 240,000 t/d copper concentrator, bringing the total capacity of the Aproduction of copper reached 1.5 Mt, a concentrate from this massive expansion project concentrator facilities to 360,000 t/d and new historical record for Peru. Marcos Villegas – it is now the largest milling and flotation providing incremental annual production of of MINEM said that “with this level of concentrator complex in the world – was some 278,000 t of copper and 6,000 t of molybdenum beginning in 2016. It is now the production, Peru would be close to reclaiming produced on time on September 17, 2015. largest milling and flotation concentrator second place as a copper producer in the world, Commissioning was completed at the end of complex in the world. Building a 240,000 t/y a place that is currently in dispute with China.
    [Show full text]
  • Mount Isa Mines Employee Lead Information Guide July 2010 Xstrata Mount Isa Mines Conducts Personal Dust Monitoring On-Site
    Mount Isa Mines Employee Lead Information Guide July 2010 Xstrata Mount Isa Mines conducts personal dust monitoring on-site Xstrata Mount Isa Mines’ zinc-lead operations has in place a ‘Site Use Only’ clothing policy, which reduces Recycled process water is used to hose down potential hygiene risks for workers on-site and the Mount Isa community and recover fine lead dust at the lead smelter Continued uncontrolled exposure to lead has at Xstrata Mount Isa Mines the health and safety the potential to cause more serious symptoms of our employees and the Mount Isa community such as: ■ kidney damage; is our highest priority ■ nerve and brain damage. Of course, these symptoms can also be the result of reasons other than lead exposure. Our operations How lead is absorbed into the body If you are a woman capable of having children Xstrata Mount Isa Mines has comprehensive you should take special care to follow good programs in place to manage and minimise Lead can be absorbed into the body through work practices and a high standard of occupational exposure to lead and other two main pathways: personal hygiene. contaminants. We also have a strict ‘clean in/clean out’ policy to minimise the risk of ■ Inhalation: Lead may be absorbed through lead and other contaminants being taken the lungs by breathing fine particles of dust Occupational exposure to lead into the community. or fumes containing lead. Potential sources of lead exposure in your ■ Ingestion: Lead may be absorbed through Lead exists in a number of our mine’s work occupational settings include: the stomach and intestine after it enters areas.
    [Show full text]
  • Thermochemical Modelling of the Isasmelt Process
    A thermochemical model is also essential to determine the process conditions when comparing processing Thermochemical Modelling of the Isasmelt options. Process Since 1992 a model of the Isasmelt process has been under development which uses a spreadsheet as the front end for the CHEMIX module of the CSIRO Thermochemistry System1 and the following solution models: • The activity coefficient correlations of Shimpo et al 2 for James S. Edwards the matte phase, and Mount Isa Mines Limited • The Regular Solution Model (RSM)3 for the slag phase. Mount Isa, Qld 4825, Australia Telephone (077) 442011 Thermodynamic data for all species, except Al203, is taken from the CSIRO Thermochemistry System. Thermodynamic data for Alz03 is taken from Barin, Knacke and Kubaschewski4. ABSTRACT The CHEMIX model has been verified against plant 5 control samples and campaign heat and mass balances . A A thermochemical model of the Isasmelt process as good fit is obtained between the model and plant above a applied to copper smelting has been developed. The model 55% Cu matte grade. Shortcomings of the model include: uses a commercial free energy minimisation method and • FeS as the iron sulfide species in the matte rather than thermodynamic databases. The slag is assumed to be a FeS1.09. regular solution; The matte solution model is based on • All condensed species in the liquid standard state, published activity coefficient correlations. i.e. thermodynamic data for some species has been extrapolated over several hundred degrees. For a 60% Cu matte the calculated Fe and S in matte 3 2 • Oxidised Fe + /oxidised Fe + • in matte as calculated were 16% and 23% respectively.
    [Show full text]
  • Mount Isa Mines Incident
    News release Mount Isa, Wednesday 18 June 2014 Mount Isa Mines incident Mount Isa Mines confirms we are currently searching for one of our employees who was last seen underground at Mount Isa Mine’s Copper operations around 11.30am today (Wednesday 18 June 2014). Emergency procedures were activated and we are currently trying to locate the missing person in conjunction with the Police. Operations in the area have ceased while we search for our missing employee. Ends Media contacts Michelle Connolly Maryann Wipaki Telephone +61 7 4744 3144 Telephone +61 7 4744 8805 Mobile +61 478 325 738 Mobile +61 419 736 685 Email [email protected] Email [email protected] Mount Isa Mines Limited ABN 87 009 661 447 Notes to editors About Glencore Xstrata Glencore Xstrata is one of the world’s largest global diversified natural resource companies. As a leading integrated producer and marketer of commodities with a well-balanced portfolio of diverse industrial assets, we are strongly positioned to capture value at every stage of the supply chain, from sourcing materials deep underground to delivering products to an international customer base. The Group’s industrial and marketing activities are supported by a global network of more than 90 offices located in over 50 countries. Our diversified operations comprise over 150 mining and metallurgical sites, offshore oil production assets, farms and agricultural facilities. We employ approximately 190,000 people, including contractors. For more information visit www.glencorexstrata.com. About Mount Isa Mines Mount Isa Mines operates two separate mining and processing streams, copper and zinc-lead-silver, to deliver natural resources that have enduring roles in our society.
    [Show full text]
  • Mount Isa Mines Rehabilitation Materials Sampling and Analysis
    Mount Isa Mines Rehabilitation Material Sampling and Analysis Program for Closure Planning Matt Landers1, Greg Maddocks1, Candice Nucifora2, Kristian Mandaran2, Jason Jones2, Amanda Forbes3, Ward Wilson4, Steven Newman5 1RGS Environmental Pty Ltd, PO Box 3091, Sunnybank South, Queensland, Australia, 4109, [email protected] 2Mount Isa Mines, Glencore Pty Ltd, Australia 3Deswik Mining Consultants Pty Ltd, Level 22, Riparian Plaza, 71 Eagle St, Brisbane, QLD 4000, Australia 4Unsaturated Soils Engineering Ltd., 960 Massey Court NW, Edmonton, AB, Canada, T6R 3S8 5Newman Engineering Pty Ltd, Melbourne, Australia Abstract Glencore’s Mount Isa Mines Limited (MIM) has completed the second phase of the rehabilitation materials sampling and analysis plan (RMSaAP) to identify and quan- tify potential materials that can be used to rehabilitate the large tailings storage facility (TSF) with an earthen cover system sourced from adjoining hills. Samples, collected from a test pit/ drilling program, were analysed to evaluate chemical/ physical proper- ties of regolith within major rock/ soil types. Results were used with Deswik so ware to develop a stratigraphic 3-D overburden model to delineate rehabilitation borrow sourc- es and schedule the TSF cover placement, and to undertake unsaturated zone modelling to evaluate the cover performance. Keywords: Soil Cover | Deswik | Mount Isa Mines | Rehabilitation | TSF | AMD | Mine planning Introduction period of weathering, as ANC is depleted, the Glencore’s Mount Isa Mines Limited (MIM) neutral pH drainage may contain elevated operates the Mount Isa open cut and under- concentrations of some elements including ground copper (Cu) and zinc-lead (Zn/Pb) sulfate, manganese and zinc. Only when the mines near Mount Isa in Queensland, Aus- ANC is depleted would the tailings then be- tralia.
    [Show full text]