TCML – an XML-Based Test Case Format

Total Page:16

File Type:pdf, Size:1020Kb

TCML – an XML-Based Test Case Format TCML – An XML-Based Test Case Format Mohd Farid Jaafar, Mohd Hasan Selamat, Abdul Azim Abdul Ghani Faculty of Computer Science and Information Technology University Putra Malaysia 43400 UPM Serdang Selangor, MALAYSIA {mfarid, hasan, azim}@fsktm.upm.edu.my Abstract - Testing is important and gives the confident software [2, 3]. This cost is just for a normal to the developer and user; but it is expensive and may application but if it involves extreme and critical consume at least 50% of the total costs involved in software, the number might increases. The main developing software. This cost is just for a normal concern in testing is the effectiveness of finding an application but if it involves extreme and critical error. If it doesn’t find any error, it can be considered software, the number might increases. As we know, designing test suite for testing is a tedious and as failed. This can be avoided by careful design of meticulous work. We need to have a deep test case and good selection of test suite. understanding of the program before we could design a good test suite and even an expert tends to miss some Most studies in designing test cases are using test cases. Manual testing for large-scale program is requirement specification, complex technique i.e. Z very expensive and frustrating for humans. The same and third-party tools that require novices and non- scenario applies in Visual Programming Language expert user to supply information that are not (VPL). Visual Programming (VP) is a much complex familiar to them. It is certain that what they supplied program than conventional one. Testing VP program might be inaccurate and thus affects the test suite give users the confidence on what they visualize is correctly transformed according to their perception. produced. Furthermore, there are no standard Most studies in designing test suites are using structures in exchanging the data about a program. requirement specification, complex technique (i.e. Z) and third-party tools that require novices and non- 2. XML expert user to supply information that is not familiar to them. It is certain that the information they supplied is The eXtensible Markup Language (XML) is an more or less inaccurate and thus affects the test suite industry-standard format for representing structured produced. Furthermore, there are no standard documents, storing and transferring data. Data stored structures in exchanging the data about a program. in XML is all text, identified by tags, similar to The objective of this paper is to propose an XML-based test case language called Test Case Markup Language HTML tags. The tags in XML are not predefined as (TCML). they are in HTML. The tags can identify fields by name. In addition to an XML file, there are also 1. INTRODUCTION XML schema file. The schema describes the fields, data types, and any constraints, such as required Testing is a process of examining the functionality fields. The schema is also defined with XML tags. and correctness of a program by running it with a The format of XML data offers several advantages certain condition. It is also known as any activity for programming [5]. Some of XML most important aimed at evaluating an attribute or capability of a features are: program or system and determining that it meets its required results. Simplicity. Structure information obtained by named opening and closing tags. As a text format, XML can Software testing is a process used to identify the be easily read, produced, and transmitted. correctness, completeness and quality of the developed software. It is an important process in Generality. From its general structure any desirable supporting quality assurance [1, 2] and represents the data format can be instantiated. ultimate review of specification, design and coding [3]. It impacts all phases of the development, Standardization. The XML standard is developed including the requirements and specifications and controlled by the World Wide Web Consortium. preparation [4]. Testing usually performs for one or Many large and important companies are supporting two reasons: (1) defect detection, and (2) reliability XML. estimation. Altogether, these characteristics make XML a first Testing is important and give confidence to the choice data format for data exchange and developer and user; it is expensive and may consume representing data. Many applications for XML have at least 50% of the total costs involved in developing 1-42440220-4/$20.00 © 2006 IEEE. 1 been created for structuring data in various fields enables applications to extend the standard GraphML includes: vocabulary by custom data labels that are transparent to other applications not aware of the extension. • Mathematics (MathML), With the use of XML syntax, GraphML can be used • Chemistry (CML), in combination with other XML based formats. • Speech (SpeechML) and GraphML uses a SQL-like language mainly extended • Financial Report (XFRML). by path expressions. There exist quite a few graph languages for XML by Furthermore, applications are free to ignore unknown now. The flavor of formulating graph differs, though, concepts appearing in the structural layer, such as and there are also differences in their expressiveness. <port>s, <hyperedge>s or nested <graph>s. They are There have been number of research on graph even powerful enough to specify advanced representation using XML, among them are transformations that go beyond mapping XML GraphXML, GraphML, XGMML and GXL. elements directly to other XML elements or other simple text units. However, advanced 2.1 GraphXML transformations may result in long-winded style sheets that are intricate to maintain, and most likely GraphXML is a graph description language in XML to be inefficient. Extension functions appear to be the that can be used as an interchange format for graph natural way out of such difficulties. We found that, drawing and visualization packages. The generality as rule-of-thumb, XSLT should be used primarily to and rich features of XML make it possible to define do the structural parts of a transformation, such as an interchange format that not only supports the creating new elements or attributes, whereas pure, mathematical description of a graph, but also specialized extensions are better for complex the needs of information visualization applications computations that are difficult to express or that view graph-based data structures. A list of inefficient to run using pure XSLT. features supported by GraphXML includes: embedded and hyperlinked data references, 2.3 XGMML hierarchical (nested) graphs, graph metadata such as graph theoretic properties, presentation styles such as XGMML (eXtensible Graph Markup and Modeling color and geometry, and edit actions for graph Language) is an XML application based on GML, transformations and history capture. which is used for graph description. XGMML uses tags to describe nodes and edges of a graph. The The goal of GraphXML is to provide a general purpose of XGMML is to make possible the interchange format for graph drawing and exchange of graphs between different authoring and visualization systems, and to connect those systems browsing tools for graphs. The conversion of graphs to other applications. What we are trying here is to written in GML to XGMML is trivial. Using XSL map the source code of the VPL using graph. The with XGMML allows the translation of graphs to requirements of information visualization have different formats. XGMML was created to be use for greatly influenced design decisions during the the WWWPAL System that visualizes web sites as a development of GraphXML. Although GraphXML graph. Web Robots can navigate through a web site can be used for the description of purely and save the graph information as an XGMML file. mathematical graphs, restricted to the set of nodes XGMML, as any other XML application, can be and edges, information visualization applications mixed with other markup languages to describe require more features. The simplicity of GraphXML additional graph, node and/or edge information. is great but when in come to the complex source code, it seems complex and not suitable for test case An XGMML document describes a graph structure. representation. Furthermore, we do not care about The root element is graph and it can contain node, the visual appearance of the graphs, such as the color edge and att elements. The node element describes a of the edges, images used in a window containing a node of a graph and the edge element describes an specific graph, only the value and operation of the edge of a graph. Additional information for graphs, node. nodes and edges can be attached using the att element. A graph element can be contained in an att 2.2 GraphML element and this graph will be considered as sub graph of the main graph. The graphics element can GraphML (Graph Markup Language) is an XML- be included in a node or edge element, and it based format for the description of graph structures, describes the graphic representation either of a node designed to improve tool interoperability and reduce or an edge. communication overhead [6]. A key feature of GraphML is the separation into structural and data XGMML documents can be validated against the layer, both conceptually and syntactically; this DTD, xgmml.dtd. XGMML well formed documents 2 can be part of other XML documents. XGMML is <graph> based on Graph Modeling Language (GML), but <node key="id1" type="2"> uses XML to express the information rather than the … text format used by GML. Because XGMML is an </node> XML application, it can take advantage of XML <edge source="id5" target="id2"/> tools, notably XSLT. XGMML is useful for general </graph> graphing functionality and it can be used for Web site mapping as well. XGMML can also be used to Fig.
Recommended publications
  • Networkx: Network Analysis with Python
    NetworkX: Network Analysis with Python Salvatore Scellato Full tutorial presented at the XXX SunBelt Conference “NetworkX introduction: Hacking social networks using the Python programming language” by Aric Hagberg & Drew Conway Outline 1. Introduction to NetworkX 2. Getting started with Python and NetworkX 3. Basic network analysis 4. Writing your own code 5. You are ready for your project! 1. Introduction to NetworkX. Introduction to NetworkX - network analysis Vast amounts of network data are being generated and collected • Sociology: web pages, mobile phones, social networks • Technology: Internet routers, vehicular flows, power grids How can we analyze this networks? Introduction to NetworkX - Python awesomeness Introduction to NetworkX “Python package for the creation, manipulation and study of the structure, dynamics and functions of complex networks.” • Data structures for representing many types of networks, or graphs • Nodes can be any (hashable) Python object, edges can contain arbitrary data • Flexibility ideal for representing networks found in many different fields • Easy to install on multiple platforms • Online up-to-date documentation • First public release in April 2005 Introduction to NetworkX - design requirements • Tool to study the structure and dynamics of social, biological, and infrastructure networks • Ease-of-use and rapid development in a collaborative, multidisciplinary environment • Easy to learn, easy to teach • Open-source tool base that can easily grow in a multidisciplinary environment with non-expert users
    [Show full text]
  • Fcastone - FCA file Format Conversion and Interoperability Software
    FcaStone - FCA file format conversion and interoperability software Uta Priss Napier University, School of Computing, [email protected] www.upriss.org.uk Abstract. This paper presents FcaStone - a software for FCA file format con- version and interoperability. The paper both describes the features of FcaStone and discusses FCA interoperability issues (such as the specific difficulties en- countered when connecting FCA tools to other tools). The paper ends with a call to the FCA community to develop some sort of standard FCA Interchange For- mat, which could be used for data exchange between stand-alone applications and across the web. 1 Introduction FcaStone1 (named in analogy to ”Rosetta Stone”) is a command-line utility that con- verts between the file formats of commonly-used FCA2 tools (such as ToscanaJ, Con- Exp, Galicia, Colibri3) and between FCA formats and other graph and vector graph- ics formats. The main purpose of FcaStone is to improve the interoperability between FCA, graph editing and vector graphics software. Because it is a command-line tool, FcaStone can easily be incorporated into server-side web applications, which generate concept lattices on demand. FcaStone is open source software and available for down- load from Sourceforge. FcaStone is written in an interpreted language (Perl) and thus platform-independent. Installation on Linux and Apple OS X consists of copying the file to a suitable location. Installation on Windows has also been tested and is also fairly easy. The need for interoperability software was highlighted in discussions among ICCS participants in recent years. Several ICCS authors expressed disappointment with the lack of progress in conceptual structures (CS) research with respect to applications and software (Chein & Genest (2000); Keeler & Pfeiffer (2006)) and with respect to current web developments (Rudolph et al., 2007).
    [Show full text]
  • The Hitchhiker's Guide to Graph Exchange Formats
    The Hitchhiker’s Guide to Graph Exchange Formats Prof. Matthew Roughan [email protected] http://www.maths.adelaide.edu.au/matthew.roughan/ Work with Jono Tuke UoA June 4, 2015 M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 1 / 31 Graphs Graph: G(N; E) I N = set of nodes (vertices) I E = set of edges (links) Often we have additional information, e.g., I link distance I node type I graph name M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 2 / 31 Why? To represent data where “connections” are 1st class objects in their own right I storing the data in the right format improves access, processing, ... I it’s natural, elegant, efficient, ... Many, many datasets M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 3 / 31 ISPs: Internode: layer 3 http: //www.internode.on.net/pdf/network/internode-domestic-ip-network.pdf M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 4 / 31 ISPs: Level 3 (NA) http://www.fiberco.org/images/Level3-Metro-Fiber-Map4.jpg M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 5 / 31 Telegraph submarine cables http://en.wikipedia.org/wiki/File:1901_Eastern_Telegraph_cables.png M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 6 / 31 Electricity grid M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 7 / 31 Bus network (Adelaide CBD) M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 8 / 31 French Rail http://www.alleuroperail.com/europe-map-railways.htm M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 9 / 31 Protocol relationships M.Roughan (UoA) Hitch Hikers Guide June 4, 2015 10 / 31 Food web M.Roughan (UoA) Hitch Hikers
    [Show full text]
  • A DSL for Defining Instance Templates for the ASMIG System
    A DSL for defining instance templates for the ASMIG system Andrii Kovalov Dissertation 2014 Erasmus Mundus MSc in Dependable Software Systems Department of Computer Science National University of Ireland, Maynooth Co. Kildare, Ireland A dissertation submitted in partial fulfilment of the requirements for the Erasmus Mundus MSc Dependable Software Systems Head of Department : Dr Adam Winstanley Supervisor : Dr James Power Date: June 2014 Abstract The area of our work is test data generation via automatic instantiation of software models. Model instantiation or model finding is a process of find- ing instances of software models. For example, if a model is represented as a UML class diagram, the instances of this model are UML object diagrams. Model instantiation has several applications: finding solutions to problems expressed as models, model testing and test data generation. There are sys- tems that automatically generate model instances, one of them is ASMIG (A Small Metamodel Instance Generator). This system is focused on a `problem solving' use case. The motivation of our work is to adapt ASMIG system for use as a test data generator and make the instance generation process more transparent for the user. In order to achieve this we provided a way for the user to interact with ASMIG internal data structure, the instance template graph via a specially designed graph definition domain-specific language. As a result, the user is able to configure the instance template in order to get plausible instances, which can be then used as test data. Although model finding is only suitable for obtaining test inputs, but not the expected test outputs, it can be applied effectively for smoke testing of systems that process complex hierarchic data structures such as programming language parsers.
    [Show full text]
  • Comm 645 Handout – Nodexl Basics
    COMM 645 HANDOUT – NODEXL BASICS NodeXL: Network Overview, Discovery and Exploration for Excel. Download from nodexl.codeplex.com Plugin for social media/Facebook import: socialnetimporter.codeplex.com Plugin for Microsoft Exchange import: exchangespigot.codeplex.com Plugin for Voson hyperlink network import: voson.anu.edu.au/node/13#VOSON-NodeXL Note that NodeXL requires MS Office 2007 or 2010. If your system does not support those (or you do not have them installed), try using one of the computers in the PhD office. Major sections within NodeXL: • Edges Tab: Edge list (Vertex 1 = source, Vertex 2 = destination) and attributes (Fig.1→1a) • Vertices Tab: Nodes and attribute (nodes can be imported from the edge list) (Fig.1→1b) • Groups Tab: Groups of nodes defined by attribute, clusters, or components (Fig.1→1c) • Groups Vertices Tab: Nodes belonging to each group (Fig.1→1d) • Overall Metrics Tab: Network and node measures & graphs (Fig.1→1e) Figure 1: The NodeXL Interface 3 6 8 2 7 9 13 14 5 12 4 10 11 1 1a 1b 1c 1d 1e Download more network handouts at www.kateto.net / www.ognyanova.net 1 After you install the NodeXL template, a new NodeXL tab will appear in your Excel interface. The following features will be available in it: Fig.1 → 1: Switch between different data tabs. The most important two tabs are "Edges" and "Vertices". Fig.1 → 2: Import data into NodeXL. The formats you can use include GraphML, UCINET DL files, and Pajek .net files, among others. You can also import data from social media: Flickr, YouTube, Twitter, Facebook (requires a plugin), or a hyperlink networks (requires a plugin).
    [Show full text]
  • A Model-Driven Approach for Graph Visualization
    A Model-Driven Approach for Graph Visualization Celal Çı ğır, Alptu ğ Dilek, Akif Burak Tosun Department of Computer Engineering, Bilkent University 06800, Bilkent, Ankara {cigir, alptug, tosun}@cs.bilkent.edu.tr Abstract part of the geometrical information and they should be adjusted either manually or automatically in order to produce an understandable and clear graph. This Graphs are data models, which are used in many areas operation is called “graph layout ”. Many complex graphs from networking to biology to computer science. There can be laid out in seconds using automatic graph layouts. are many commercial and non-commercial graph visualization tools. Creating a graph metamodel with Many different graph visualization tools are available graph visualization capability should provide either commercially or freely and they present a variety of interoperability between different graph visualization features. Among one of these, CHISIO [1] is general tools; moreover it should be the core to visualize graphs purpose graph visualization and editing tool for proper from different domains. A detailed and comprehensive creation, layout and modification of graphs. CHISIO research study is required to construct a fully model includes compound graph visualization support among with different styles of layouts that can also work on driven graph visualization software. However according compound graphs. Another example for graph to the study explained in this paper, MDSD steps are visualization software is Graphviz which consists of a successfully applied and interoperability is achieved graph description language named the DOT language and between CHISIO and Graphviz visualization tools. a set of tool that can generate and process DOT files [2] .
    [Show full text]
  • Review Article Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis
    Hindawi Advances in Bioinformatics Volume 2017, Article ID 1278932, 8 pages https://doi.org/10.1155/2017/1278932 Review Article Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis Georgios A. Pavlopoulos,1 David Paez-Espino,1 Nikos C. Kyrpides,1 and Ioannis Iliopoulos2 1 Department of Energy, Joint Genome Institute, Lawrence Berkeley Labs, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA 2Division of Basic Sciences, University of Crete Medical School, Andrea Kalokerinou Street, Heraklion, Greece Correspondence should be addressed to Georgios A. Pavlopoulos; [email protected] and Ioannis Iliopoulos; [email protected] Received 22 February 2017; Revised 14 May 2017; Accepted 4 June 2017; Published 18 July 2017 Academic Editor: Klaus Jung Copyright © 2017 Georgios A. Pavlopoulos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. We comment on their strengths and their weaknesses and empirically discuss their scalability, user friendliness, and postvisualization capabilities.
    [Show full text]
  • A New Method and Format for Describing Canopen System Topology
    iCC 2012 CAN in Automation A New Method and Format for Describing CANopen System Topology Matti Helminen, Jaakko Salonen, Heikki Saha*, Ossi Nykänen, Kari T. Koskinen, Pekka Ranta, Seppo Pohjolainen, Tampere University of Technology, *Sandvik Mining and Construction In this article, we present a new method for describing CANopen network topology. A new format using GraphML, an XML-based graph format, is introduced. By using a subset of GraphML along with CANopen-specific new elements and attributes, topology of single as well as multiple CANopen networks can be captured in a well established graph format with existing tool support. The new format is specified in a manner that allows CANopen design applications to adopt it while providing a mechanism for fallback in unsupported software. Methods for extending the format to contain other CAN- and CANopen-specific data as well as transforming the GraphML- based network structure to other formats are described. Finally, the implications of the introduced method and format are discussed. 1. Introduction and Background connection between the nodes as edges in a graph. However since the specific When designing mobile machines in structure within and between nodes is not practice, multiple CANopen networks may defined in actual design data, some need to be used. What may then become structure needs to be generated for the problematic is that the current CANopen purposes of visualization. This is design programs and specification support problematic since the visualized structure only description of individual CANopen may or may not correspond to the actual networks. Specificially, formats and structure of the network. For accurately applications for specifying topology representing CANopen network structures, between and within networks.
    [Show full text]
  • An Exchange Format for Graph Transformation Systems
    Electronic Notes in Theoretical Computer Science 127 (2005) 51–63 www.elsevier.com/locate/entcs A New Version of GTXL : An Exchange Format for Graph Transformation Systems Leen Lambers Institut f¨ur Softwaretechnik und Theoretische Informatik Technische Universit¨at Berlin Germany Abstract GTXL (Graph Transformation Exchange Language) is designed to support and stimulate develop- ers to provide their graph transformation-based tools with an exchange functionality regarding the integration with other tools. For this exchange XML was chosen as underlying technology. The exchange of graphs is facilitated by the exchange format GXL which is also XML-based. GTXL uses GXL to describe the graph parts of a graph transformation system. A first version of GTXL arose from the format discussion within the EU Working Group APPLIGRAPH. Trying to restim- ulate the discussion on a common exchange format for graph transformation systems, this paper presents a new version of GTXL. Three important changes have been made. At first, an integrated presentation of rules is introduced, secondly the expression of more general conditions is supported and finally the storage of the underlying semantics of a graph transformation system by means of special attributes is proposed. Keywords: exchange format, graph transformation system, graph transformation-based tools, XML 1 Introduction Graph transformation systems (GTSs) comprise graphs and rules changing these graphs. Comparing them with term rewrite systems, terms correspond to graphs and term rewrite rules to graph rewrite rules. Since graphs are widely used to model various data structures in computer science, graph trans- formation systems can be used to define various modifications of these data 1 Email: [email protected] 1571-0661/$ – see front matter © 2005 Elsevier B.V.
    [Show full text]
  • An XML-Based Description of Structured Networks
    Massimo Ancona, Walter Cazzola, Sara Drago, and Francesco Guido. An XML-Based Description of Structured Networks. In Proceedings of Interna- tional Conference Communications 2004, pages 401–406, Bucharest, Romania, June 2004. IEEE Press. An XML-Based Description of Structured Networks Massimo Ancona£ Walter Cazzola† Sara Drago£ Francesco Guido‡ £ DISI University of Genova, e-mail: fancona,[email protected] † DICo University of Milano, e-mail: [email protected] ‡ Marconi Selenia Communication, e-mail: [email protected] Abstract In this paper we present an XML-based formalism to describe hierarchically organized communication networks. After a short overview of existing graph description languages, we discuss the advantages and disadvantages of their application in network optimization. We conclude by extending one of these formalisms with features supporting the description of the relationship between the optimized logical layout of a network and its physical counterpart. Elements for describing traffic parameters are also given. 1 Introduction The problem of network design and optimization has a strategical importance especially for military networks. In this case, design for fault tolerance and security plays a role more and more crucial than the equivalent importance required for commercial and research networks. The reengineering of a large communication network is a complex problem, which consists of different aspects that can be strongly affected by the way of describing data. The plainest way to describe a communication network is to model the relationship among sites and links by means of a weighted undirected graph, but unless some more assumptions are taken, this approach can raise several problems. A first issue is encountered when an analysis and a visualization of the network has to be realized: practical networks include hundreds or often thousands of nodes and links, so that even a simple description and documentation of the network structure is hard to maintain and update.
    [Show full text]
  • Characterizing the Hypergraph-Of-Entity and the Structural Impact of Its Extensions
    Devezas and Nunes Appl Netw Sci (2020) 5:79 https://doi.org/10.1007/s41109‑020‑00320‑z Applied Network Science RESEARCH Open Access Characterizing the hypergraph‑of‑entity and the structural impact of its extensions José Devezas* and Sérgio Nunes *Correspondence: [email protected] Abstract INESC TEC and Faculty The hypergraph-of-entity is a joint representation model for terms, entities and their of Engineering, University of Porto, Rua Dr. Roberto relations, used as an indexing approach in entity-oriented search. In this work, we Frias, s/n, 4200-465 Porto, PT, characterize the structure of the hypergraph, from a microscopic and macroscopic Portugal scale, as well as over time with an increasing number of documents. We use a random walk based approach to estimate shortest distances and node sampling to estimate clustering coefcients. We also propose the calculation of a general mixed hypergraph density measure based on the corresponding bipartite mixed graph. We analyze these statistics for the hypergraph-of-entity, fnding that hyperedge-based node degrees are distributed as a power law, while node-based node degrees and hyperedge cardinali- ties are log-normally distributed. We also fnd that most statistics tend to converge after an initial period of accentuated growth in the number of documents. We then repeat the analysis over three extensions—materialized through synonym, context, and tf_bin hyperedges—in order to assess their structural impact in the hypergraph. Finally, we focus on the application-specifc aspects of the hypergraph-of-entity, in the domain of information retrieval. We analyze the correlation between the retrieval efectiveness and the structural features of the representation model, proposing ranking and anom- aly indicators, as useful guides for modifying or extending the hypergraph-of-entity.
    [Show full text]
  • Drawing Graphs with Graphviz
    Drawing graphs with Graphviz Emden R. Gansner June 11, 2012 1 Graphviz Drawing Library Manual, June 11, 2012 2 Contents 1 Introduction 3 1.1 String-based layouts . 3 1.1.1 dot . 4 1.1.2 xdot . 4 1.1.3 plain . 5 1.1.4 plain-ext . 6 1.1.5 GXL and GML . 6 1.2 Graphviz as a library . 6 2 Basic graph drawing 7 2.1 Creating the graph . 7 2.1.1 Attributes . 9 2.2 Laying out the graph . 15 2.3 Rendering the graph . 15 2.3.1 Drawing nodes and edges . 17 2.4 Cleaning up a graph . 18 3 Inside the layouts 19 3.1 dot ............................................... 19 3.2 neato ............................................. 20 3.3 fdp ............................................... 21 3.4 twopi ............................................. 22 3.5 circo .............................................. 22 4 The Graphviz context 22 4.1 Application-specific data . 24 5 Graphics renderers 24 5.1 The GVJ t data structure . 27 5.2 Inside the obj state t data structure . 28 5.3 Color information . 29 6 Adding Plug-ins 30 6.1 Writing a renderer plug-in . 32 6.2 Writing a device plug-in . 33 6.3 Writing an image loading plug-in . 33 7 Unconnected graphs 34 A Compiling and linking 40 B A sample program: simple.c 41 C A sample program: dot.c 42 D A sample program: demo.c 43 E Some basic types and their string representations 44 Graphviz Drawing Library Manual, June 11, 2012 3 1 Introduction The Graphviz package consists of a variety of software for drawing attributed graphs.
    [Show full text]