Modified Atmosphere Packaging— Toward 2000 and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Modified Atmosphere Packaging— Toward 2000 and Beyond Modified Atmosphere Packaging— Toward 2000 and Beyond Adel A. Kader1 and Christopher B. Watkins2 ADDITIONAL INDEX WORDS. postharvest, storage, plastics, minimal processing, carbon dioxide, oxygen SUMMARY. Rapid expansion of modified atmosphere packaging (MAP) for horticultural produce has occurred during the last 10 years, especially for fresh cut (minimally processed) products, but limitations to further expansion reside in both responses of products and available technology. We introduce the workshop on Modified Atmosphere Packaging— Toward 2000 and Beyond by reviewing the current status of MAP technology for fresh and minimally processed products, highlighting research needs and future advances, and providing a list of selected references on MAP published since 1989. odified atmosphere packaging (MAP) requires little intro- duction to any reader of the postharvest literature. The Mconcept of using polymeric films that will allow develop- ment, and/or maintenance of atmospheres other than air, dates from the first availability of plastics. However, commercial utilization of MAP for storage and transportation of horticultural products has been limited to a few commodities for reasons that are described below. However, in recent years, a rapid growth of MAP for preservation of fresh cut (minimally processed) products has occurred (Lange, 2000). MAP is especially important for these products because of their greater susceptibility to water loss, cut surface browning, higher respiration rates, enhanced ethylene biosynthesis and action, and microbial growth (Gorny, 1997). MAP, for example, has allowed marketing of value added produce such as broccoli florets (Brassica oleracea L. Italica Group) and asparagus tips (Asparagus officinalis L.) (Lange, 2000). The use of MAP for both whole and fresh cut products can be restricted for a number of reasons. • The unavailability of appropriate films that provide safe modified atmospheres (MAs), especially under abusive temperature conditions that can occur in the handling chain. Packages that provide safe atmo- spheres at one temperature may result in anaerobic conditions at higher temperature (Clarke and DeMoor, 1997). The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact. 1Department of Pomology, University of California, Davis CA 95616. 2Department of Horticulture, Cornell University, Ithaca NY 14853. ● July–September 2000 10(3) 483 • The expense of using MAP technol- processed fruit and vegetables , but his placement for N2 in MAP of fresh pro- ogy, both on the basis of film cost and paper is not reported in these proceed- duce. on the need for modifications to pack- ings. Many types of plastic films are ing line systems. These expenses nor- available for packaging, but relatively mally fall on the producer/processor Current applications of few have been used to wrap fresh pro- and unless costs are recovered, or appli- MAP technology for fresh duce. Low-density polyethylene, poly- cation of MAP provides penetrations of and minimally processed vinyl chloride, and polypropylene are markets that were previously unavail- products the main films used to package fruit able, the use of MAP will result in and vegetables. Polystyrene has been reduced profit margins. For example, MA can be created inside a pack- used, but polyvinylidene, and polyes- use of MAP permits sea freight of per- age either passively through product ter have such low gas permeabilities simmons (Diospyros kaki L) from New respiration or by actively by replacing that they would be suitable only for Zealand to Japan (MacRae, 1987), but the atmosphere in the package with a commodities with very low respiration can rarely be justified on fruit condition desired gas mixture. With commod- rates. However, perforating these films alone for export of apples (Malus domes- ity-generated or passive MA, if prod- can expand their use to many com- tica Borkh.) with lower profit margins uct and film permeability characteris- modities. Recent advances in the tech- in the marketplace (Watkins et al., 1998). tics are properly matched, the desired nology of manufacturing polymeric • Problems associated with maintain- MA can passively evolve within a sealed films have permitted tailoring films for ing package integrity during storage package through consumption of O2 specific gas diffusion needs of some and transport operations. The plastic and production of CO2 by respiration. fruit, vegetables, and their products. must be flexible and easy to use, but The gas permeability of the selected MAP is most commonly used for fresh- strong enough to survive normal han- film must allow O2 to enter the pack- cut (minimally processed) fruit and dling operations. age at a rate offset by the consumption vegetables and for highly perishable, However, the time periods for stor- of O2 by the commodity. Similarly, high value commodities, such as cherry age required for cut produce are gener- CO2 must be vented from the package (Prunus avium L.), fig (Ficus carica ally shorter than for whole products, to offset the production of CO2 by the L.), raspberry (Rubus idaeus L.), and leading to shorter exposure times to commodity. Furthermore, the desired strawberry (Fragaria ×ananassa atmospheres that might injure products MA must be established within 1 to 2 Duch.). over longer time periods. Also, quality d without creating anoxic conditions Benefits of film packaging, other control factors, such as temperature, are or injuriously high levels of CO2 that than creation of MA conditions can more consistently applied because the may induce fermentative metabolism. include maintenance of high relative products tend to be high value, and Because of the limited ability to humidity and reduction of water loss; because of heightened concern about regulate a passively established atmo- improved sanitation by reducing con- food safety. Therefore, the growth of sphere, actively establishing the atmo- tamination of the products during han- MAP usage for cut produce is expand- sphere is becoming more preferred. dling; minimized surface abrasions by ing rapidly. Advances in film technol- This can be done by pulling a slight avoiding contact between the com- ogy are occurring, but it is also the vacuum and replacing the package at- modity and the material of the ship- responses of the commodities that are mosphere with the desired gas mix- ping container; reduced spread of de- critical. It can be argued that in some ture. This mixture can be further ad- cay from one produce item to another; cases it is less the limitation of technol- justed through the use of absorbing or use of the film as carrier of fungicides, ogy than the ability of the commodities adsorbing substances inside the pack- scald inhibitors, ethylene absorbers, or to withstand the technology that is lim- age with the respiring commodity that other chemicals; facilitation of brand iting. Therefore, the Postharvest Work- scavenge O2, CO2, and/or ethylene identification and providing relevant ing Group sponsored a workshop at (C2H4). Although active establishment information to the consumers. ASHS-99 to consider the future of MAP. implies some additional costs, its main In many cases the benefits of us- We have taken two approaches. First, in advantage is that it ensures the rapid ing MAP relate more to one or more of this paper, we briefly review the current establishment of the desired atmo- these positive effects than to the sphere. Ethylene absorbers can help applications of MAP technology for changes in O2 and CO2 concentrations fresh and minimally processed com- delay the climacteric rise in respiration within the package. In contrast, the modities, and then Diana Lange out- and associated ripening for some fruit. negative effects include slowing down lines new film technologies for horticul- Carbon dioxide absorbers can prevent cooling of the packaged products and tural commodities. Second, Randolph a buildup of CO2 to injurious levels, increased potential for water conden- Beaudry and Chris Watkins review the which can occur for some commodi- sation within the package, which may responses of horticultural commodities ties during passive modification of the encourage fungal growth. to oxygen (O ) and carbon dioxide package atmosphere. Superat- The design of modified atmo- 2 mospheric O levels (>21%) may be (CO2), respectively, and then Jim 2 sphere packages requires knowledge Mattheis and John Fellman review the used in combination with fungistatic of mass transport properties of poly- effects of MAP on aroma and other CO2 levels (>15%) for a few commodi- meric films and the respiration rates of quality attributes of horticultural com- ties that do not tolerate these elevated fresh produce placed inside the pack- modities. At the workshop, Tom CO2 atmospheres when combined with ages. Mathematical models are useful Hankinson of Pure Produces (Worces- air or low O2 atmospheres. There is no in determining the changes in gas con- ter, Mass.) outlined interactions between evidence supporting the use of argon, centrations in a package caused by the MAP and microbiology of minimally helium, or other noble gases as a re- respiring products inside the package 484 ● July–September 2000 10(3) Table 1. Selected references published since 1989 on modified atmosphere packaging. Brody, A.L. (ed.). 1989. Controlled/modified atmosphere/vacuum packaging of foods. Food & Nutr. Press, Trumbully, Conn. Calderon, M. and R. Barkai-Golan (eds.). 1990. Food preservation by modified atmospheres. CRC Press, Boca Raton, Fla. Cameron, A.C., P.C. Talasila, and D.W. Joles. 1995. Predicting film permeability needs for modified-atmosphere packaging of lightly processed fruits and vegetables. HortScience 30:25-34. Christie, G.B.Y., J.I. Macdiarmid, K. Schliephake, and R.B. Tomkins. 1995. Determination of film requirements and respiratory behavior of fresh produce in modified atmosphere packaging. Postharvest Biol. Technol. 6:41-54. Church, I.J. and A.L. Parsons. 1995. Modified atmosphere packaging technology: A review. J. Sci. Food Agr. 67:143-152. Emond, J.P., F. Castaigne, C.J.
Recommended publications
  • Food Safety Reduced Oxygen Packaging- Including Vacuum Packaging
    Food Safety Reduced Oxygen Packaging- including Vacuum packaging UVM Extension Fact Sheet- June 2013 Many food processors are interested in using vacuum packaging and other types of Reduced Oxygen Packaging (ROP). However, it is also important to know the food safety concerns and regulations associated with this packaging option. Benefits of ROP - Removal of oxygen prevents growth of aerobic spoilage organisms responsible for off-odors and texture changes. - Reduces oxidation of foods, retards rancidity and color deterioration. - Increases quality and shelf-life of refrigerated foods, which increases marketing appeal. Types of Reduced Oxygen Packaging include: a) Vacuum packaging: air is removed from a package of food and the package is hermetically sealed, so that a vacuum remains inside the package, such as sous vide. b) Modified atmosphere packaging: the atmosphere of the package is modified so that its composition is different from outside air (21% oxygen), but the atmosphere may change over time due to permeability of the packaging material or respiration of the food. Note that this method is generally considered safer than vacuum packaging as it generally maintains enough oxygen to control the growth of Clostridium botulinum. c) Controlled atmosphere packaging: the atmosphere of a food package is modified so that while the package is sealed, its composition is different from air, and continuous control of that atmosphere is maintained, such as by using oxygen scavengers or a combination of total replacement of oxygen, non-respiring food, and impermeable packaging material. What are the food safety concerns with vacuum packaging? A dangerous bacterium called Clostridium botulinum, which is not detectable by sight or smell, can grow in the absence of oxygen such as in vacuum packaged or canned foods.
    [Show full text]
  • Impacts of Modified Atmosphere Packaging and Controlled Atmospheres on Aroma, Flavor, and Quality of Horticultural Commodities
    Impacts of Modified Atmosphere Packaging and Controlled Atmospheres on Aroma, Flavor, and Quality of Horticultural Commodities James Mattheis1 and John K. Fellman2 ADDITIONAL INDEX WORDS. anaerobiosis, volatiles, ethanol, acetaldehyde, esters SUMMARY. The commercial use of modified atmosphere packaging (MAP) technology provides a means to slow the processes of ripening and senescence during storage, transport, and marketing of many fresh fruit and vegetables. The benefits of MAP and controlled atmosphere (CA) technologies for extending postharvest life of many fruit and vegetables have been recognized for many years. Although both technologies have been and continue to be exten- sively researched, more examples of the impacts of CA on produce quality are available in the literature and many of these reports were used in development of this review. Storage using MAP, similar to the use of CA storage, impacts most aspects of produce quality although the extent to which each quality attribute responds to CA or modified atmosphere (MA) condi- tions varies among commodities. Impacts of MAP and CA on flavor and aroma are dependent on the composition of the storage atmosphere, avoidance of anaerobic conditions, storage duration, and the use of fresh-cut technologies before storage. number of factors modify the impact of MAP on produce quality. Package gas composition determines the effectiveness of any packaging system. Reduced O and elevated CO con- A 2 2 centrations must be sufficiently stringent to slow metabolism and provide shelf-life extension while also being within the tolerance range of the stored commodity to avoid induction of anaerobic stress. Tem- perature management is critical as gas composition within packages changes with temperature (see Kader et al., 1989).
    [Show full text]
  • IJMPERD) ISSN (P): 2249-6890; ISSN (E): 2249-8001 Vol
    International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN (P): 2249-6890; ISSN (E): 2249-8001 Vol. 7, Issue 3, Jun 2017, 43-50 © TJPRC Pvt. Ltd. A STUDY ON THE EMERGING PACKAGING TECHNOLOGIES–ON THE BASIS OF THE PACKING TECHNIQUE’S CURRENT SITUATION AND SMART PACKAGING DEVELOPMENT SUNG MIN KIM 1, INSOO KIM 2, HEEDON JANG 3, MOONBONG KO 4 & SEUNGCHEON KIM 5 1Hansung University, Department of Smart Convergence Consulting, Seoul, Korea 2Yonsei University, Department of Packaging, Wonju Kangwon-do, Korea 3,4 Hansung University, Department of Smart Convergence Consulting, Seoul, Korea 5Hansung University, Department of Applied IT Engineering. Seoul, Korea ABSTRACT Background/Objectives Nowadays, a protective packaging such as active packaging, various packaging techniques beyond simple packaging are emerging. Ultimately the smart packaging technique has be emerged based on new packaging techniques. Methods/Statistical Analysis Article Original The purpose of this study is to look into the history of past packaging and the present packaging techniques. And this study is going to suggest the future development method of the smart packaging based on the research of the past and present packaging techniques. Findings The most basic function of packaging is to protect a product. In case of smart packaging, there’s a one more meaning that is indicating. In other words, smart packaging is a product protection by indicating status of food or something in packaging material. Some packaging methods have been often seen around us. Smart packaging is surely best available technology but it causes rise in packaging cost. Also, some electronic tag and RFID have problems such as regulations especially between countries and personal privacy.
    [Show full text]
  • Suitability of Biodegradable Materials in Comparison with Conventional Packaging Materials for the Storage of Fresh Pork Products Over Extended Shelf-Life Periods
    foods Article Suitability of Biodegradable Materials in Comparison with Conventional Packaging Materials for the Storage of Fresh Pork Products over Extended Shelf-Life Periods Luzia M. Hawthorne 1, Anel Beganovi´c 2, Matthias Schwarz 3, Aeneas W. Noordanus 4, Markus Prem 5, Lothar Zapf 6, Stefan Scheibel 3, Gerhard Margreiter 4 , Christian W. Huck 2 and Katrin Bach 1,* 1 Department of Food Technology and Nutrition, Management Center Innsbruck, Universitaetsstrasse 15, 6020 Innsbruck, Tyrol, Austria; [email protected] 2 Institute for Analytical Chemistry and Radiochemistry, Leopold Franzens University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Tyrol, Austria; [email protected] (A.B.); [email protected] (C.W.H.) 3 MULTIVAC Sepp Haggenmüller SE & Co. KG, Bahnhofstrasse 4, 87787 Wolfertschwenden, Bayern, Germany; [email protected] (M.S.); [email protected] (S.S.) 4 NATURABIOMAT GmbH, Oberer Feldweg 64, 6130 Schwaz, Tyrol, Austria; [email protected] (A.W.N.); [email protected] (G.M.) 5 Department for Food and Packaging Technology, Kempten University of Applied Sciences, Bahnhofstrasse 61, 87435 Kempten, Bayern, Germany; [email protected] 6 ZLV-Zentrum für Lebensmittel- und Verpackungstechnologie e.V., Ignaz-Kiechle-Strasse 20-22, 87437 Kempten, Bayern, Germany; [email protected] * Correspondence: [email protected]; Tel.: +43-5122-070-3811; Fax: +43-5122-070-3899 Received: 10 November 2020; Accepted: 29 November 2020; Published: 4 December 2020 Abstract: The packaging of fresh meat has been studied for decades, leading to improved packaging types and conditions such as modified atmosphere packaging (MAP). While commonly used meat packaging uses fossil fuel-based materials, the use of biodegradable packaging materials for this application has not been studied widely.
    [Show full text]
  • Development and Characterization of Equilibrium Modified Atmosphere Bio-Based Packaging Systems for Blueberries (Vaccinium Corymbosum L., Bluecrop)
    DEVELOPMENT AND CHARACTERIZATION OF EQUILIBRIUM MODIFIED ATMOSPHERE BIO-BASED PACKAGING SYSTEMS FOR BLUEBERRIES (VACCINIUM CORYMBOSUM L., BLUECROP) By Hayati Samsudin A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Packaging 2010 ABSTRACT DEVELOPMENT AND CHARACTERIZATION OF EQUILIBRIUM MODIFIED ATMOSPHERE BIO-BASED PACKAGING SYSTEMS FOR BLUEBERRIES (VACCINIUM CORYMBOSUM L., BLUECROP) By Hayati Samsudin Equilibrium Modified Atmosphere Packaging (EMAP) is an effective technology for delaying senescence and prolonging the shelf life of fresh produce. An EMA that meets the fresh produce requirements can be achieved by using microperforated materials. So far, EMAP technology has been used only with petroleum-based materials. The goals of this research were: 1) to develop the first bio-based (poly(lactic acid), PLA) microperforated packaging systems for blueberries (Vaccinium corymbosum L., Bluecrop), 2) to assess the effect of the number of microperforations (0, 3, and 15 perforations) and temperatures (3, 10, and 23°C) on the physico-chemical, microbiological, and sensorial properties of blueberries, and 3) to characterize barrier properties of the packaging systems. Petroleum-based (poly(ethylene terephthalate), PET) microperforated packaging systems were used as controls. Blueberry weight loss was found to be material dependent regardless of number of perforations. Non-perforated PLA and PET packages showed the highest CO2 and the lowest O2 levels, and therefore, exhibited less fungal growth but a development of fermentative metabolites at all temperatures. The results of headspace analysis and weight loss were supported by the permeation rate of O2, and water vapor permeance, respectively. Based on the outcomes of this research, PLA and PET packages with 3 perforations have demonstrated potential for maintaining the quality and prolonging the shelf life of blueberries for 19 days at 3°C.
    [Show full text]
  • Innovative Packaging Technologies to Enhance the Safety and the Quality of Fresh Raspberry
    INNOVATIVE PACKAGING TECHNOLOGIES TO ENHANCE THE SAFETY AND THE QUALITY OF FRESH RASPBERRY Jeanne S. Peters1, Ariane Vasilatis1, Thomas J. Gianfagna1 and Kit Yam2 Plant Biology Department, Rutgers University, New Brunswick, NJ 08901; 2Food Science Department, Rutgers University, New Brunswick, NJ 08901 Abstract The goal of this project is to develop innovative packaging systems for fresh raspberry and other Results fruit to enhance quality and safety, and to extend Raspberries held in shelf-life for the small grower. We are developing a clamshells fitted with these science-based approach to extend the shelf life of fresh sachets and then sealed with raspberry, and other small fruit using packaging as a MAP lost less weight and delivery system to minimize microbial contamination had less disease as seen in through the controlled release of thyme oil, and to Fig 2. and Table 1 and Table extend shelf life using modified atmosphere 2 packages(MAP). Introduction A The major postharvest pathogen of raspberry is Botrytis cinerea, the causal agent of gray mold disease. Essential oils (EO) from common herbs such as thyme and oregano have been known for centuries to have anti-microbial activity. We incorporated the EO’s into controlled release packaging (CRP) that releases the active compounds at differentiable rates suitable for short-term inhibition of microorganisms in fresh fruits. For our delivery system, we encapsulated the EO’s into cyclodextrin (CD), which stabilizes them, and then we wrap these capsules into a TyvekTM sachet, which can be placed inside the packaging (Fig. 1). CRP can prolong shelf life without overloading the fruit with additives and can continually B replenish the active compounds from the packaging to maintain Fig.
    [Show full text]
  • 10 Modified Atmosphere Packaging
    10 Modified Atmosphere Packaging Michael Mullan and Derek McDowell SECTION A: MAP GASES, PACKAGING MATERIALS AND EQUIPMENT 10.A1 INTRODUCTION The normal gaseous composition of air is nitrogen (N2) 78.08% (volume per volume will be used throughout this chapter), oxygen (O2) 20.96% and carbon dioxide (CO2) 0.03%, together with variable concentrations of water vapour and traces of inert or noble gases. Many foods spoil rapidly in air due to moisture loss or uptake, reaction with oxygen and the growth of aerobic micro-organisms, i.e. bacteria and moulds. Microbial growth results in changes in texture, colour, flavour and nutritional value of the food. These changes can render food unpalatable and potentially unsafe for human consumption. Storage of foods in a modified gaseous atmosphere can maintain quality and extend product shelf life, by slowing chemical and biochemical deteriorative reactions and by slowing (or in some instances preventing) the growth of spoilage organisms. Modified atmosphere packaging (MAP) is defined as ‘the packaging of a perishable product in an atmosphere that has been modified so that its composition is other than that of air’ (Hintlian & Hotchkiss, 1986). Whereas controlled atmosphere storage (CAS) involves maintaining a fixed concentration of gases surrounding the product by careful monitoring and addition of gases; the gaseous composition of fresh MAP foods is constantly changing due to chemical reactions and microbial activity. Gas exchange between the pack head space and the external environment may also occur as a result of permeation across the package material. Packing foods in a modified atmosphere can offer extended shelf life and improved product presentation in a convenient container, making the product more attractive to the retail customer.
    [Show full text]
  • Processing Parameters Needed to Control Pathogens in Cold-Smoked Fish
    Processing Parameters Needed to Control Pathogens in Cold-Smoked Fish A Report of the Institute of Food Technologists for the Food and Drug Administration of the U.S. Department of Health and Human Services submitted March 29, 2001 IFT/FDA Contract No. 223-98-2333 Task Order 2 Processing Parameters Needed to Control Pathogens in Cold-smoked Fish Table of Contents Preface ........................................................................ S-1058 7. Conclusions ....................................................................... S-1079 8. Research needs ................................................................. S-1079 Science Advisory Board .......................................... S-1058 References ............................................................................. S-1080 Scientific and Technical Panel ............................... S-1058 Chapter III. Potential Hazards in Cold-Smoked Fish: Clostridium botulinum type E Reviewers .................................................................. S-1058 Scope ...................................................................................... S-1082 1. Introduction ....................................................................... S-1082 Additional Acknowledgments ............................... S-1058 2. Prevalence in water, raw fish, and smoked fish .............. S-1083 3. Growth in refrigerated smoked fish ................................. S-1083 Background ...............................................................S-1059 4. Effect of processing
    [Show full text]
  • Design of Biodegradable Bio-Based Equilibrium Modified Atmosphere
    Postharvest Biology and Technology 111 (2016) 380–389 Contents lists available at ScienceDirect Postharvest Biology and Technology journal homepage: www.elsevier.com/locate/postharvbio Design of biodegradable bio-based equilibrium modified atmosphere packaging (EMAP) for fresh fruits and vegetables by using micro-perforated poly-lactic acid (PLA) films a, a a Antonis Mistriotis *, Demetrios Briassoulis , Anastasios Giannoulis , b Salvatore D’Aquino a Agricultural University of Athens, Laboratory of Agricultural Structures, 75 Iera Odos, Athens, 11855 Greece b National Council of Reserch of Italy—Institute of Sciences of Food Production (ISPA-CNR), Traversa La Crucca, 3, loc. Baldinca, Li Punti - 07100 Sassari, Italy A R T I C L E I N F O A B S T R A C T Article history: Equilibrium modified atmosphere packaging (EMAP) is used for prolonging the shelf life of fresh produce Received 12 February 2015 such as fruits and vegetables and preserving their quality characteristics such as freshness, colour and Received in revised form 3 September 2015 aroma. However, the resulting extensive use of plastic packaging films raises serious environmental Accepted 14 September 2015 concerns. Replacing conventional plastic films with novel biobased and biodegradable under composting conditions materials such as films made of poly-lactic acid (PLA), offers new sustainable solutions to the Keywords: problem. In the present work, the gas transport properties of three layer PLA films have been studied in EMAP relation to their potential as EMA packaging materials for fresh produce. A simple one-dimensional PLA film model simulating the combined gas diffusion through micro-perforations and the permeable membrane Gas diffusion Micro-perforation was developed as a designing tool for PLA based EMA packaging systems.
    [Show full text]
  • Achromobacter, 288 Acinetobacter, 290 Active Packaging, 251–62
    Index Achromobacter, 288 polybutylene succinate (PBS), 307 Acinetobacter, 290 polybutylene succinate adipate (PBSA), 307 active packaging, 251–62 polybutylene succinate terephthalate (PBST), 307 carbon dioxide scavengers/emitters, 254, 255 polybutyrate adipate terephthalate (PBAT), 307 definition, 251 polycaprolactone (PCL), 307 flavour/odour absorbers, 258, 259 polyester amide (PEA), 307 food applications, 252 polyethylene from bio-ethanol (Bio-PE), 306 food safety, consumer and regulatory issues, 260, polyethylene terephthalate (PET), modified, 307 261 poly (ethylene vinyl alcohol) (EVOH), 307, 308 adhesive lamination, plastics, 185, 186 polyglycolic acid (PGA), 306 Advisory Committee on the Microbiological Safety of polyhydroxyalkanoate (PHA), 308 Food (ACMSF), 291 polyhydroxybutyrate (PHB), 308 aerobes, 266, 290 polyhydroxyhexanoate (PHH), 308 Aeromonas hydrophilia, 266 polyhydroxyvalerate (PHV), 308 American Society of Testing and Materials (ASTM), polylactic acid or polylactide (PLA), 305, 306 97–9 polysaccharides, 300 anaerobic digestion (AD), 314, 315 polytetramethylene adipate terephthalate (PTMAT), anaerobic respiration, 292 307 antifogging properties, 276 polyurethane (PU), 304 argon, 264, 265 plant fibres, 300 polyvinyl alcohol (PVOH), 307, 308 biodegradable plastics, 209 proteins, animal-based & plant-based, 304 biodeterioration, agents of regenerated cellulose film (RCF), 302, 303 bacteria, 33–6 starch, starch blends, starch-based, 300, 301 enzymes, 32, 33 starch complex (starch blends with other fungi, 36–8 bioplastics), 301,
    [Show full text]
  • Modified Atmosphere Packaging of Fresh -Cut Sweetpotatoes
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 2000 Modified Atmosphere Packaging of Fresh -Cut Sweetpotatoes. Elif Erturk Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Erturk, Elif, "Modified Atmosphere Packaging of Fresh -Cut Sweetpotatoes." (2000). LSU Historical Dissertations and Theses. 7352. https://digitalcommons.lsu.edu/gradschool_disstheses/7352 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • The Influence of Packing Methods and Storage Time of Poultry Sausages with Liquid and Microencapsulated Fish Oil Additives on Their Physicochemical, Microbial and Sensory
    sensors Article The Influence of Packing Methods and Storage Time of Poultry Sausages with Liquid and Microencapsulated Fish Oil Additives on Their Physicochemical, Microbial and Sensory Properties Krzysztof Kawecki *, Jerzy Stangierski * and Renata Cegielska-Radziejewska Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; [email protected] * Correspondence: [email protected] (K.K.); [email protected] (J.S.); Tel.: +48-798-137-580 (K.K.); +48-618-487-324 (J.S.) Abstract: The aim of the study was to evaluate the influence of refined fish oil additives in liquid and microencapsulated forms, packing method (VP—vacuum packing, MAP—modified atmosphere packing) and storage time (1, 7, 14, 21 days) on selected physicochemical, microbiological and sensory characteristics of minced poultry sausage. Principle component analysis (PCA) showed that the fish oil additive, packing method and storage time significantly influenced some of the physicochemical characteristics of the sausages. The pH value was negatively correlated with the type of sample and packing method. The water activity decreased along with the storage time. The sausages with Citation: Kawecki, K.; Stangierski, J.; microcapsules had distinguishable hardness, gumminess and chewiness than the other samples. This Cegielska-Radziejewska, R. The tendency increased in the subsequent storage periods. The packing method and storage time of the Influence of Packing Methods and samples had a statistically significant influence on the growth of the total colony count and count Storage Time of Poultry Sausages of lactic acid bacteria (p < 0.05).
    [Show full text]