Structural Node Embedding in Signed Social Networks: Finding Online Misbehavior at Multiple Scales

Total Page:16

File Type:pdf, Size:1020Kb

Structural Node Embedding in Signed Social Networks: Finding Online Misbehavior at Multiple Scales Structural Node Embedding in Signed Social Networks: Finding Online Misbehavior at Multiple Scales Mark Heimann1, Goran Muric´2, and Emilio Ferrara2 1 Lawrence Livermore National Laboratory, Livermore, CA, USA?? [email protected] 2 Information Sciences Institute, Marina Del Rey, CA, USA [email protected], [email protected] Abstract. Entities in networks may interact positively as well as negatively with each other, which may be modeled by a signed network containing both positive and negative edges between nodes. Understanding how entities behave and not just with whom they interact positively or negatively leads us to the new problem of structural role mining in signed networks. We solve this problem by devel- oping structural node embedding methods that build on sociological theory and technical advances developed specifically for signed networks. With our meth- ods, we can not only perform node-level role analysis, but also solve another new problem of characterizing entire signed networks to make network-level predic- tions. We motivate our work with an application to social media analysis, where we show that our methods are more insightful and effective at detecting user- level and session-level malicious online behavior from the network structure than previous approaches based on feature engineering. 1 Introduction Networks are a natural model for many forms of data, in which entities exhibit com- plex patterns of interaction. In many applications, entities may form negative as well as positive interactions with each other. For example, users on a social network may form friendships and engage in prosocial behavior with each other, but they may also form animositities and engage in antisocial behavior, such as trolling [17] or cyberaggres- sion [10]. Signed networks, in which edges between node may be positive or negative, can naturally model these interactions of varying polarity. Existing work in signed network analysis often tries to characterize with whom each node interacts. For example, the common task of edge sign prediction [1] is to deter- mine whether two nodes would have a positive or negative interaction; node embedding objectives for signed networks [22, 2] encourage each node to have similar latent fea- ture representations to other nodes with whom it interacts positively, and dissimilar representations to those with whom it interacts negatively. Instead, we focus on the orthogonal and new problem of characterizing how a node forms positive or negative relationships, namely its structural role in the signed network. Existing methods for role analysis in networks [19] are designed for unsigned networks, so we introduce ?? Work done while author was an intern at the Information Sciences Institute. structural node embedding methods that build on sociological theories and technical advances designed specifically for signed networks. Not only can we perform node-level structural role analysis, but we can also char- acterize network-level behavior. For signed networks, this is another new problem, as methods for graph comparison and classification focus on unsigned networks. To solve it, we contribute baseline statistical signatures, graph kernels, and graph features derived from our signed structural node embeddings. The latter describe a signed network’s dis- tribution of structural roles, a very natural and powerful way to characterize a network. We motivate our methodology with an application to social media analysis. Several types of social media users are revealed by their patterns of negative behavior on plat- forms designed to encourage positive interactions. For instance, trolls on social media may try to stir up controversy or causing annoyance to others [17], while cyberbul- lies leave hurtful or aggressive comments for other social media users with the intent to shame, mock, and/or intimidate [11]. Further understanding the nature of antisocial online behavior can lead to more effective preventative measures and improve the so- cial media experience. Our node-level and graph-level methods respectively allow us to characterize social behavior at the level of individual users and larger media ses- sions. While recent work derived several insights about users’ social roles from the network structure alone using hand-engineered network statistics [15], we show that our embedding-based methods can improve on network feature engineering. Our contributions are thus as follows: 1. New Node-level Problem and Methods: we propose structural node embedding methods for the new problem of structural role analysis in signed networks. We pro- pose a simple scheme to leveraging existing (unsigned) methods directly, and also new embedding methods that can learn from multi-sign higher-order interactions. 2. New Graph-level Problem and Methods: we propose techniques for the new problem of signed network classification: baselines using hand-engineered features and more expressive methods that leverage our signed structural node embeddings. 3. Controlled Synthetic Test Cases for Signed Networks: We study the behavior of our techniques in synthetic networks, where we can tailor the signed structural roles of nodes. Our methods are more discriminative than the simpler feature engineering approaches that have recently been used to characterize similar social roles. 4. Applications to Social Media Analysis: We use social media datasets with explicit user-specified edge signs and implicit signs that must be inferred, which can serve as benchmarks for our new problems. In node-level and graph-level analysis of social roles, our methods yield quantitative improvements over feature engineering. For reproducibility, our code is available at https://github.com/markheimann/ Signed-Network-Roles. 2 Related Work The majority of works in graph mining focus on unsigned graphs. We first review rele- vant literature from the unsigned graphs, noting methods designed for signed networks usually outperform unsigned methods na¨ıvely applied to signed networks [2]. With this in mind, we also review relevant literature from signed networks. 2 2.1 Unsigned Network Methods We first review node embedding methods for unsigned networks, which enables node- level graph mining; we then discuss graph-level analysis. Node Embedding. Node embedding learns features for nodes in a network via an objec- tive that encourages similar nodes to have similar features. Often, similarity is defined based on node proximity. Unsupervised methods may model higher order proximities using random walks, matrix factorization, or deep neural networks; we refer the reader to a comprehensive survey on (proximity-preserving) node embedding [6] for more de- tails. In a semi-supervised setting, graph neural networks [16] have grown in popularity. A complementary line of work embeds nodes based on their structural roles: nodes will be embedded close to other nodes with similar local structure, regardless of proximity. Such structural embedding methods are surveyed and contrasted conceptually [20] and empirically [14] to proximity-preserving embedding methods. Graph Classification. While the above methods are often used for node-level analysis, many applications also require network-level predictions. Graph classification seeks to predict the class to which an entire network belongs using supervised machine learn- ing. Three major families of techniques include kernels operating on graph similarity functions [21], unsupervised graph feature learning [8], and end-to-end feature learning with deep neural networks on graphs [5]. Given node embeddings that are comparable across networks–in particular, embeddings capturing structural roles–the gap between node-level and graph-level features can be bridged by modeling the distribution of node embeddings in a sparse graph feature vector. [8]. 2.2 Signed Network Methods Many of the works involved in analyzing signed social networks have their underpin- nings sociological theory. One of the most influential theories on signed network mining is balance theory [7], which specifies some general rules for “balanced” and “unbal- anced” configurations of edge signs. It predicts that balanced configurations are more stable and thus more likely to occur than unbalanced configurations, and generalizes intuition often captured in expressions such as “my enemy’s enemy is my friend”. One of the principal tasks in signed network mining is edge sign prediction. This may be done by directly trying to minimize imbalance in the network, construction of hand-engineered signed features for supervised prediction, or matrix factorization [1]. Recent works have extended network embedding to signed networks based on shallow architectures and random walks [23] or deep architectures [22], applying them to node- level and edge-level tasks within a single network (to the best of our knowledge, multi- network tasks on signed social networks are largely unexplored). Existing approaches do not model structural roles, but rather preserve signed proximity in the network, trying to learn similar embeddings for positively connected nodes and different embeddings for negatively connected nodes. 3 Preliminaries Let G = (V; E) be a directed graph with vertex set V (jV j = n) and edge set E ⊆ V × V . In this work, we consider signed networks: a sign function ' : E ! f1; −1g 3 dictates the sign of each edge as being positive or negative. G has single-sign subgraphs G+ induced by the positive edges of G and G− induced by the negative edges. G has an adjacency matrix A, whose nonzero entries
Recommended publications
  • Arxiv:2003.05578V2 [Math.CO] 5 Apr 2021 Iegah a Efudi 7
    SIGNED ANALOGUE OF LINE GRAPHS AND THEIR SMALLEST EIGENVALUES ALEXANDER L. GAVRILYUK, AKIHIRO MUNEMASA, YOSHIO SANO, AND TETSUJI TANIGUCHI Abstract. In this paper, we show that every connected signed graph with smallest eigenvalue strictly greater than 2 and large enough minimum degree is switching equivalent to− a complete graph. This is a signed analogue of a theorem of Hoffman. The proof is based on what we call Hoffman’s limit theorem which we formulate for Hermitian matrices, and also the extension of the concept of Hoffman graph and line graph for the setting of signed graphs. 1. Introduction Let G be a simple graph with the vertices-versus-edges incidence (0, 1)-matrix N. It is well known that the line graph L(G) of G, whose vertices are the edges of G with two edges being adjacent whenever they are incident, has adjacency matrix A(L(G)) = N ⊤N 2I , − |E(G)| and hence its smallest eigenvalue λmin is at least 2. Although this property is not exclusive, a theorem of Cameron, Goethals,− Shult, and Seidel [4], which is one of the most beautiful results in algebraic graph theory, classifies connected graphs having λmin 2. Namely, such a graph L on at least 37 vertices must be a generalized≥ − line graph in the arXiv:2003.05578v2 [math.CO] 5 Apr 2021 sense that its adjacency matrix satisfies A(L)= N ⊤N 2I, − for some (0, 1)-matrix N. (A combinatorial definition of generalized line graphs can± be found in [7].) The proof relies on the classification of root systems in Euclidean space [4].
    [Show full text]
  • Common-Edge Signed Graph of a Signed Graph
    J. Indones. Math. Soc. Vol. 16, No. 2 (2010), pp. 105–113. COMMON-EDGE SIGNED GRAPH OF A SIGNED GRAPH P. Siva Kota Reddy1, E. Sampathkumar2 and M. S. Subramanya3 1Department of Mathematics, Acharya Institute of Technology, Soldevanahalli, Bangalore 560 090, India, [email protected] 2Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India, [email protected] 3Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India, subramanya ms@rediffmail.com Abstract. A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair S = (G, σ)(S = (G, µ)) where G = (V, E) is a graph called underlying graph of S and σ : E → (e1, e2, ..., ek)(µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+, −}. Particularly, a Smarandachely 2-signed graph or Smarandachely 2-marked graph is abbreviated a signed graph or a marked graph. The common- edge graph of a graph G = (V, E) is a graph CE (G) = (VE ,EE ), where VE = {A ⊆ V ; |A| = 3, and A is a connected set} and two vertices in VE are adjacent if they have an edge of G in common. Analogously, one can define the common-edge ′ signed graph of a signed graph S = (G, σ) as a signed graph CE (S) = (CE (G), σ ), where CE (G) is the underlying graph of CE (S), where for any edge (e1e2, e2e3) ′ in CE (S), σ (e1e2, e2e3) = σ(e1e2)σ(e2e3). It is shown that for any signed graph S, its common-edge signed graph CE (S) is balanced.
    [Show full text]
  • Voter Model on Signed Social Networks
    Voter Model on Signed Social Networks Yanhua Li†∗, Wei Chen§, Yajun Wang§ and Zhi-Li Zhang† †Dept. of Computer Science & Engineering, Univ. of Minnesota, Twin Cities § Microsoft Research {yanhua,zhzhang}@cs.umn.edu,{weic,yajunw}@microsoft.com Abstract Online social networks (OSNs) are becoming increasingly popular in recent years, which have generated great interest in studying the influence diffusion and influence maximization with applications to online viral mar- keting. Existing studies focus on social networks with only friendship re- lations, whereas the foe or enemy relations that commonly exist in many OSNs, e.g., Epinions and Slashdot, are completely ignored. In this paper, we make the first attempt to investigate the influence diffusion and influence maximization in OSNs with both friend and foe relations, which are mod- eled using positive and negative edges on signed networks. In particular, we extend the classic voter model to signed networks and analyze the dynamics of influence diffusion of two opposite opinions. We first provide systemat- ic characterization of both short-term and long-term dynamics of influence diffusion in this model, and illustrate that the steady state behaviors of the dynamics depend on three types of graph structures, which we refer to as balanced graphs, anti-balanced graphs, and strictly unbalanced graphs. We then apply our results to solve the influence maximization problem and de- velop efficient algorithms to select initial seeds of one opinion that maximize either its short-term influence coverage or long-term steady state influence coverage. Extensive simulation results on both synthetic and real-world net- works, such as Epinions and Slashdot, confirm our theoretical analysis on influence diffusion dynamics, and demonstrate the efficacy of our influence maximization algorithm over other heuristic algorithms.
    [Show full text]
  • List Homomorphism Problems for Signed Graphs
    List homomorphism problems for signed graphs Jan Bok Computer Science Institute, Faculty of Mathematics and Physics, Charles University, Czech Republic [email protected]ff.cuni.cz Richard Brewster Department of Mathematics and Statistics, Thompson Rivers University, Canada [email protected] Tomás Feder 268 Waverley St., Palo Alto, USA [email protected] Pavol Hell School of Computing Science, Simon Fraser University, Canada [email protected] Nikola Jedličková Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Czech Republic [email protected]ff.cuni.cz Abstract We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph (G, σ), equipped with lists L(v) ⊆ V (H), v ∈ V (G), of allowed images, to a fixed target signed graph (H, π). The complexity of the similar homomorphism problem without lists (corresponding to all lists being L(v) = V (H)) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. We illustrate this difficulty by classifying the complexity of the problem when H is a tree (with possible loops). The tools we develop will be useful for classifications of other classes of signed graphs, and we illustrate this by classifying the complexity of irreflexive signed graphs in which the unicoloured edges form some simple structures, namely paths or cycles. The structure of the signed graphs in the polynomial cases is interesting, suggesting they may constitute a nice class of signed graphs analogous to the so-called bi-arc graphs (which characterized the polynomial cases of list homomorphisms to unsigned graphs).
    [Show full text]
  • Arxiv:1911.01113V1 [Math.CO] 4 Nov 2019 Whenever 00MSC: 2000 Complement
    On eigenvalue multiplicity in signed graphs Farzaneh Ramezani Department of Mathematics, K.N. Toosi University of Technology P.O. Box 16315-1618, Teheran, Iran. Peter Rowlinson Mathematics and Statistics Group, Division of Computing Science and Mathematics, University of Stirling Scotland FK9 4LA, United Kingdom. Zoran Stani´c Faculty of Mathematics, University of Belgrade Studentski trg 16, 11 000 Belgrade, Serbia. Abstract Given a signed graph Σ with n vertices, let µ be an eigenvalue of Σ, and let t be the codimension of the corresponding eigenspace. We prove that t + 2 n ≤ 3 whenever µ / 0, 1, 1 . We show that this bound is sharp by providing ∈ { − } examples of signed graphs in which it is attained. We also discuss particular cases in which the bound can be decreased. Keywords: Signed graph, Eigenvalue multiplicity, Net-regular signed graph, Star complement. arXiv:1911.01113v1 [math.CO] 4 Nov 2019 2000 MSC: 05C22, 05C50 1. Introduction A signed graph Σ is a pair (G, σ), where G = (V, E) is an (unsigned) graph, called the underlying graph, and σ : E 1, 1 is the sign function −→ { − } Email addresses: [email protected] (Farzaneh Ramezani), [email protected] (Peter Rowlinson), [email protected] (Zoran Stani´c) Preprint submitted to DM. November 5, 2019 or the signature. The edge set E consists of positive and negative edges. Throughout the paper we interpret a graph as a signed graph in which all edges are positive. The degree di of a vertex i coincides with its degree in the underlying ± graph. Its net-degree di is the difference between the numbers of positive and negative edges incident with it.
    [Show full text]
  • Homomorphisms of Signed Graphs: an Update Reza Naserasr, Eric Sopena, Thomas Zaslavsky
    Homomorphisms of signed graphs: An update Reza Naserasr, Eric Sopena, Thomas Zaslavsky To cite this version: Reza Naserasr, Eric Sopena, Thomas Zaslavsky. Homomorphisms of signed graphs: An update. European Journal of Combinatorics, Elsevier, inPress, 10.1016/j.ejc.2020.103222. hal-02429415v2 HAL Id: hal-02429415 https://hal.archives-ouvertes.fr/hal-02429415v2 Submitted on 17 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Homomorphisms of signed graphs: An update Reza Naserasra, Eric´ Sopenab, Thomas Zaslavskyc aUniversit´ede Paris, IRIF, CNRS, F-75013 Paris, France. E-mail: [email protected] b Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France cDepartment of Mathematical Sciences, Binghamton University, Binghamton, NY 13902-6000, U.S.A. Abstract A signed graph is a graph together with an assignment of signs to the edges. A closed walk in a signed graph is said to be positive (negative) if it has an even (odd) number of negative edges, counting repetition. Recognizing the signs of closed walks as one of the key structural properties of a signed graph, we define a homomorphism of a signed graph (G; σ) to a signed graph (H; π) to be a mapping of vertices and edges of G to (respectively) vertices and edges of H which preserves incidence, adjacency and the signs of closed walks.
    [Show full text]
  • Arxiv:1909.09381V3 [Math.CO] 19 Oct 2020 Rprclrnsol.Tu Ewl Kptetr Poe”In “Proper” Term the Skip Will We Thus Only
    Concepts of signed graph coloring Eckhard Steffen∗and Alexander Vogel † Abstract This paper surveys recent development of concepts related to coloring of signed graphs. Various approaches are presented and discussed. 1 Introduction and definitions The majority of concepts of signed graph coloring are natural extensions and gener- alizations of vertex coloring and the chromatic number of graphs. However, it turns out that there are coloring concepts which are equivalent for graphs but they are not equivalent for signed graphs in general. Consequently, there are several versions of col- oring and a corresponding chromatic number of a signed graph. In this paper, we give a brief overview of various concepts and relate some of them to each other. We will use standard terminology of graph theory and only give some necessary definitions, some of which are less standard. We consider finite graphs G with vertex set V(G) and edge set E(G). An edge e with end vertices v and w is also denoted by vw. If v = w, then e is called a loop. The degree of v in G, denoted by dG(v), is the number of edges incident with v, a loop is counting as two edges. The maximum degree of G, denoted by ∆(G), is max{dG(v) : v ∈ V(G)}, and min{dG(v) : v ∈ V(G)} is the minimum degree of G, which is denoted by δ(G). A graph G is k-regular, if dG(v)= k for all v ∈ V(G). Let X ⊆ V(G) be a set of vertices. The subgraph of G induced by X is denoted by G[X], and the set of edges with precisely arXiv:1909.09381v3 [math.CO] 19 Oct 2020 one end in X is denoted by ∂G(X).
    [Show full text]
  • On Co-Regular Signed Graphs
    AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 62(1) (2015), Pages 8–17 On co-regular signed graphs Shahul Hameed K. Department of Mathematics K.M.M. Government Women’s College, Kannur-670 004 India [email protected] Viji Paul Department of Mathematics WMO Arts & Science College, Muttil, Kerala India [email protected] K.A. Germina Department of Mathematics, Mary Matha Arts and Science College Wayanad, Kerala India [email protected] Abstract A graph whose edges are labeled either as positive or negative is called a signed graph. A signed graph is said to be net-regular if every vertex has constant net-degree k, namely, the difference between the number of positive and negative edges incident with a vertex. In this paper, we analyze some properties of co-regular signed graphs which are net-regular signed graphs with the underlying graphs being regular. An r-regular graph G is said to be co-regularizable with the co-regularity pair (r, k)if we can find a signed graph Σ of net-degree k with the underlying graph G.Net(G) is the set of all possible values of net-degree k, such that G is co-regularizable with the co-regularity pair (r, k); we find Net(G)for some special classes of graphs. Also we establish a connection between co-regularizability of G and its graph factors. An algorithm for producing a co-regular signed Harary graph, of which the co-regular signed graph on the complete graph Kn is a particular example, is included. We also establish the fact that every signed graph can be embedded as an induced subgraph of a net-regular or co-regular signed graph.
    [Show full text]
  • List Homomorphism Problems for Signed Graphs
    List Homomorphism Problems for Signed Graphs Jan Bok Computer Science Institute, Charles University, Prague, Czech Republic [email protected]ff.cuni.cz Richard Brewster Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, Canada [email protected] Tomás Feder Independent Researcher, Palo Alto, CA, USA [email protected] Pavol Hell School of Computing Science, Simon Fraser University, Burnaby, Canada [email protected] Nikola Jedličková Department of Applied Mathematics, Charles University, Prague, Czech Republic [email protected]ff.cuni.cz Abstract We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph (G, σ), equipped with lists L(v) ⊆ V (H), v ∈ V (G), of allowed images, to a fixed target signed graph (H, π). The complexity of the similar homomorphism problem without lists (corresponding to all lists being L(v) = V (H)) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. Both versions (with lists or without lists) can be formulated as constraint satisfaction problems, and hence enjoy the algebraic dichotomy classification recently verified by Bulatov and Zhuk. By contrast, we seek a combinatorial classification for the list version, akin to the combinatorial classification for the version without lists completed by Brewster and Siggers. We illustrate the possible complications by classifying the complexity of the list homomorphism problem when H is a (reflexive or irreflexive) signed tree. It turns out that the problems are polynomial-time solvable for certain caterpillar-like trees, and are NP-complete otherwise.
    [Show full text]
  • An Introduction to Matroids
    An introduction to Matroids An introduction to Matroids E.M.VRETTA Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki 3rd of May 2017 rd E.M.VRETTA | AUTH | 3 of May 2017 1 / 29 An introduction to Matroids Outline of the talk 1 Definition of a Matroid Independence axioms Circuit axioms Rank axioms 2 Structures that give rise to matroids Matrices Graphs Signed graphs Transversals Optimization problems rd E.M.VRETTA | AUTH | 3 of May 2017 2 / 29 An introduction to Matroids | Definition of a Matroid | Independence axioms Definition of Matroids (Independence axioms) Set system (E, I) is a tuple of a finite set E and a family of subsets of E, I =(Si : i ∈ I ) where the index mapping is φ : I → 2A. An independence system (E, I) is a finite set E together with a collection I of subsets of E closed under inclusion. Definition (Independence axioms) Given some finite set E, the set system (E, I) is a matroid if the following are satisfied: (I1) ∅∈I, (I2) If I ∈I and I ′ ⊆ I , then I ′ ∈I, (I3) If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1 such that I1 ∪ e ∈I. We write M =(E, I) or simply M if E and I are self-evident. The members of I are the independent sets of M. Basis is a maximal independent set. A subset of E that is not in I is called dependent. rd E.M.VRETTA | AUTH | 3 of May 2017 3 / 29 An introduction to Matroids | Definition of a Matroid | Circuit axioms Definition of Matroids (Circuit axioms) Matroids were introduced by Whitney in 1935 to try to capture abstractly the essence of dependence.
    [Show full text]
  • Trace Diagrams, Signed Graph Colorings, and Matrix Minors Steven Morse and Elisha Peterson
    inv lve a journal of mathematics Trace diagrams, signed graph colorings, and matrix minors Steven Morse and Elisha Peterson mathematical sciences publishers 2010 vol. 3, no. 1 INVOLVE 3:1(2010) Trace diagrams, signed graph colorings, and matrix minors Steven Morse and Elisha Peterson (Communicated by Kenneth S. Berenhaut) Trace diagrams are structured graphs with edges labeled by matrices. Each diagram has an interpretation as a particular multilinear function. We provide a rigorous combinatorial definition of these diagrams using a notion of signed graph coloring, and prove that they may be efficiently represented in terms of matrix minors. Using this viewpoint, we provide new proofs of several stan- dard determinant formulas and a new generalization of the Jacobi determinant theorem. 1. Introduction Trace diagrams provide a graphical means of performing computations in multi- linear algebra. The following example, which proves a vector identity, illustrates the power of the notation. Example. For u; v; w 2 C3, diagrams for the cross product and inner product are u × v D and u · v D : u v u v By “bending” the diagrammatic identity D − ; (1) and attaching vectors, one obtains D − ; u v w x u v w x u v w x which is the vector identity .u × v/ · .w × x/ D .u · w/.v · x/ − .u · x/.v · w/: MSC2000: primary 05C15, 15A69; secondary 57M07, 16W22. Keywords: trace diagrams, graph coloring, matrix minors, multilinear algebra, planar algebra, tensor diagrams, determinant, cofactor. 33 34 STEVEN MORSE AND ELISHA PETERSON We will later prove (1) and show that every step here can be mathematically rigor- ous.
    [Show full text]
  • On Signed Distance in Product of Signed Graphs
    On Signed Distance in Product of Signed Graphs Shijin T V 1 Soorya P 2 Shahul Hameed K 3 Germina K A 4 Abstract A signed graph is an ordered pair Σ = (G, σ), where G = (V, E) is the underlying graph of Σ with a signature function σ : E → {1, −1}. Notion of signed distance and distance compatible signed graphs are introduced in [5]. In this article, first we characterize the distance compatibilty in the case of a connected signed graph and discussed the distance compatibility criterion for the cartesian product, lexicographic product and tensor product of signed graphs. We also deal with the distance matrix of the cartesian product, lexico- graphic product and tensor product of signed graphs in terms of the distance matrix of the factor graphs. Key Words: Signed graph, Signed distance matrix, Distance compatibility, Product of signed graphs. Mathematics Subject Classification (2010): 05C12, 05C22, 05C50, 05C76. 1Department of Mathematics, Central University of Kerala, Kasaragod - 671316, Kerela, arXiv:2009.08707v1 [math.CO] 18 Sep 2020 India. Email: [email protected] 2Department of Mathematics, Central University of Kerala, Kasaragod - 671316, Kerela, India. Email: [email protected] 3Department of Mathematics, K M M Government Women’s College, Kannur - 670004, Kerala, India. E-mail: [email protected] 4Department of Mathematics, Central University of Kerala, Kasaragod - 671316, Kerela, India. Email: [email protected] 2 On Signed Distance in Product of Signed Graphs 1 Introduction Unless otherwise mentioned, in this paper we consider only simple, finite and con- nected graphs and signed graphs. A signed graph Σ = (G, σ) is an underlying graph G =(V, E) with a signature function σ : E →{1, −1}.
    [Show full text]