Cubesat System Design for Mars Exploratory Balloon

Total Page:16

File Type:pdf, Size:1020Kb

Cubesat System Design for Mars Exploratory Balloon i-SAIRAS2020-Papers (2020) 5065.pdf CUBESAT SYSTEM DESIGN FOR MARS EXPLORATORY BALLOON (MEB) Virtual Conference 19–23 October 2020 Tristan Schuler1, Kairav Kukkala1, Virupakshan Vilvanathan1, Jekan Thangavelautham1 1SpaceTReX Laboratory, University of Arizona, USA, E-mail: [email protected] ABSTRACT Exploratory Rovers (MERs) that came before them. Fig. 1 shows the design concept of a MEB, fully de- Aerial vehicles, which have yet to fly on Mars, can ployed and exploring Mars. provide a new method for exploring rugged terrain ar- eas of Mars such as cliff and canyon walls that current From previous research, solar balloons for exploration surface vehicles are not capable of. Solar balloons use on Mars prove to be feasible by using a lightweight solar irradiation from the sun to heat up a lightweight envelope material with high absorptivity and low envelope, which results in heating of the internal am- emissivity to capture radiation from the sun. By in- bient air and generates lift. The Mars Exploratory Bal- cluding a vent, the balloon is also able to control alti- loon (MEB) platform is stowed in a 12U CubeSat and tude. For longitudinal control, the balloon adjusts al- piggybacks on a larger Martian Entry Descent and titude to ride the wind, which is predicted to flow in Landing (EDL) vehicle before initiating its own de- different directions depending on altitude, like Earth. ployment sequence after acquiring a safe separation An ideal area for a solar balloon mission is the north distance. Once deployed, the MEB uses a vent to con- pole during the summer; the balloon can maintain trol altitude and ride different wind patterns to collect buoyancy for weeks at a time due to the extended pe- high quality imagery and meteorological data from the riod of sunlight. Martian atmosphere. The present work gives an over- 2 RELATED WORKS view of the MEB platform, a concept of operations, and an analysis of several major subsystems. To date, exploration of Mars has been limited to sur- face landers, rovers, and reconnaissance orbiters. The 1 INTRODUCTION first interplanetary rotorcraft, the Mars helicopter, will An important unsolved mystery on Mars is the obser- be launching with the Mars 2020 rover to test feasibil- vation of recurring slope lineae (RSL) that have ity as well as perform as a multi-agent system to assist formed at the edge of crater walls, canyons, cliffs, and the rover with path planning [1]. Other aerial vehicles slopes. Another is the seasonal observation of me- that have been proposed for Mars include solar bal- thane near the bottom of canyons and cliff walls. A loons and lighter-than-air aerobots [2][3]. combination of high-res imagery, stratigraphy, and Balloons are not new to interplanetary missions. The core sample return of the Martian rock walls could first interplanetary balloon mission was the Soviet help solve these mysteries. Autonomous aerial vehi- VEGA mission, which had the objective of collecting cles can enable access to high-priority extreme terrain Venusian atmospheric data [4]. The mission was short, science targets on Mars that previous robotic surface but successful, and has inspired proposals for future landers and rovers have been unable to reach. aerobot missions on several planets and moons. One With an extremely thin foldable envelope and need of the most ambitious aerobot proposals is the Titan for a low-mass payload to maintain buoyancy the en- tire solar balloon and its gondolas will easily fit into a 12U CubeSat-deployment package. The 12U CubeSat can then piggyback on a larger Mars mission and de- ploy off a Mars EDL vehicle, eliminating the need for a dedicated heat shield. During descent, the solar bal- loon initiates its own deployment sequence before fully inflating and beginning to explore Mars. The en- velope inflates to around the size of a passenger hot air balloon and carries a primary and venting gondola that occupy a 4U volume that can support up to a 10kg payload. This platform, from a stowed 12U configu- ration, to full inflation has been named, Mars Explor- Figure 1 3D Model of a deployed MEB exploring atory Balloons (MEBs), to pay homage to the Mars Mars i-SAIRAS2020-Papers (2020) 5065.pdf airship explorer which would use a large helium bal- improve these weather and climate models. Wind loon with an integrated propulsion system to explore speed data will also be critical for limited control of Saturn's icy moon [5]. the MEBs. Through venting, the balloons can adjust their altitude to ride different wind currents and NASA proposed and has conducted experiments to use achieve limited horizontal control. Additionally, the solar Montgolfiers for soft landings on Mars. Rather balloons can temporarily land and wait for wind direc- than carrying a lighter-than-air gas, the balloons use tion to change. heated atmospheric air generated from solar irradia- tion to achieve buoyancy [6]. There have also been 4 CONCEPT OF OPERATIONS (CONOPS) several studies and models for vertical controllability Fig. 2 shows a proposed concept of operations for the of solar balloons and high altitude lighter-than-air bal- MEB deployment sequence. The MEB will piggyback loons on both Earth and Mars [7-9]. Lighter-than-Air on a larger Mars EDL vehicle before carrying out its vehicles can also utilize different wind patterns at var- own deployment sequence. The stowed MEB jettisons ious altitudes to adjust their horizontal movement [10- sections of the 12U CubeSat throughout the descent to 12]. reduce weight, eventually resulting in two lightweight 3 MISSION OBJETIVE gondolas connected to the inflated MEB. The MEB's low mass envelope acts as both a parachute and bal- The MEBs have two major mission objectives. The loon throughout the descent and because of its material first objective is to collect high-quality imagery of properties, can achieve buoyancy before making con- hard to reach areas of Mars such as canyon and cliff tact with the Martian surface. walls, as well as rugged terrain areas that rovers cannot explore. A major goal of the MEB platform is to cap- 4.1 Piggyback Mission ture high resolution imagery of Recurring Slope The stowed MEB CubeSat will enter the Martian at- Lineae (RSL), one of the Red Planet’s greatest mys- mosphere on a larger EDL vehicle to avoid the cost of teries. As a low altitude aerial platform, the MEBs can an entire mission as well as eliminate the need for a collect finer detailed imagery than any of the current dedicated EDL vehicle. CubeSat landings for asteroids orbiters. The MEBs can also provide a unique perspec- and the Moon have been proposed, but none have tive that the current surface vehicles on Mars cannot launched at this time [13][14]. Mars introduces the ad- obtain. The MEB will use the onboard cameras for vis- ditional need for a heat shield during reentry to with- ual terrain mapping, visual odometry, and selecting stand the heat from high speed entry into the upper optimal landing sites. Martian atmosphere. Even with the thin atmosphere, a The second major mission objective is to collect at- spacecraft entering Mars will heat up to over 1000 K. mospheric data on Mars to develop better Martian me- The MEB can fit inside of a 12U CubeSat in a stowed teorological models. Currently, atmospheric data col- configuration, so rather than creating an EDL vehicle lection on Mars has been limited to the surface vehi- specifically for the MEB, to minimize size, we suggest cles and the MAVEN spacecraft which collects data piggybacking on the EDL vehicle of a larger Mars on winds in the Martian upper atmosphere. The MEB lander mission. A similar design has been proposed for can collect atmospheric data in a larger 3D area to help an inflatable sailplane that deploys at a high altitude Figure 2 Concept of operations for deployment of a MEB on Mars i-SAIRAS2020-Papers (2020) 5065.pdf on Mars after piggybacking on another mission’s EDL Next, a timed chute deploy will fully release the enve- vehicle. [15]. lope to begin natural ram-injection inflation while fall- ing through the upper atmosphere. Ram-intake bal- After the heat shield of the EDL vehicle is jettisoned, loons dropped from high altitudes have been success- the 12U CubeSat will launch off of the EDL vehicle fully deployed by NASA in a terrestrial setting, includ- using solid rock propellant as shown in Fig. 2. Heat ing with solar balloons [3][17]. shields for previous Mars surface missions have been jettisoned at heights of up to 12 km which would be In the drop tests, the solar balloons failed to inflate the ideal separation height for the stowed CubeSat without a rigid hoop at the mouth opening. Therefore, [16]. From simulations using models of the Martian solar balloons on Mars need a hoop that can be com- atmosphere, Fig. 3 shows that the MEB could achieve pressed to a small volume. The hoop will use either a buoyancy before contacting the ground with a large lightweight shape memory alloy such as NiTiNOL, or enough balloon volume-to-mass ratio as well as pre- a pressurized inflatable hoop. heating of the envelope before being exposed to the 4.3 Multi-Day Flight atmosphere. Heating of the internal air could easily be achieved by using a rapid chemical combustion reac- A solar balloon flying on Mars would be an achieve- tion. If, however the envelope is not preheated, or the ment, but the ideal goal is to have these balloons fly volume-to-mass ratio is too small the MEB would in- for weeks or months at a time.
Recommended publications
  • Selection of the Insight Landing Site M. Golombek1, D. Kipp1, N
    Manuscript Click here to download Manuscript InSight Landing Site Paper v9 Rev.docx Click here to view linked References Selection of the InSight Landing Site M. Golombek1, D. Kipp1, N. Warner1,2, I. J. Daubar1, R. Fergason3, R. Kirk3, R. Beyer4, A. Huertas1, S. Piqueux1, N. E. Putzig5, B. A. Campbell6, G. A. Morgan6, C. Charalambous7, W. T. Pike7, K. Gwinner8, F. Calef1, D. Kass1, M. Mischna1, J. Ashley1, C. Bloom1,9, N. Wigton1,10, T. Hare3, C. Schwartz1, H. Gengl1, L. Redmond1,11, M. Trautman1,12, J. Sweeney2, C. Grima11, I. B. Smith5, E. Sklyanskiy1, M. Lisano1, J. Benardino1, S. Smrekar1, P. Lognonné13, W. B. Banerdt1 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 2State University of New York at Geneseo, Department of Geological Sciences, 1 College Circle, Geneseo, NY 14454 3Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, AZ 86001 4Sagan Center at the SETI Institute and NASA Ames Research Center, Moffett Field, CA 94035 5Southwest Research Institute, Boulder, CO 80302; Now at Planetary Science Institute, Lakewood, CO 80401 6Smithsonian Institution, NASM CEPS, 6th at Independence SW, Washington, DC, 20560 7Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London 8German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany 9Occidental College, Los Angeles, CA; Now at Central Washington University, Ellensburg, WA 98926 10Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 11Institute for Geophysics, University of Texas, Austin, TX 78712 12MS GIS Program, University of Redlands, 1200 E. Colton Ave., Redlands, CA 92373-0999 13Institut Physique du Globe de Paris, Paris Cité, Université Paris Sorbonne, France Diderot Submitted to Space Science Reviews, Special InSight Issue v.
    [Show full text]
  • Mars Exploration: an Overview of Indian and International Mars Missions Nayamavalsa Scariah1, Dr
    Taurian Innovative Journal/Volume 1/ Issue 1 Mars exploration: An overview of Indian and International Mars Missions NayamaValsa Scariah1, Dr. Mili Ghosh2, Dr.A.P.Krishna3 Birla Institute of Technology, Mesra, Ranchi Abstract- Mars is the fourth planet from the sun. It is 1. Introduction also known as red planet because of its iron oxide content. There are lots of missions have been launched to Mars is also known as red planet, because of the mars for better understanding of our neighboring planet. reddish iron oxide prevalent on its surface gives it a There are lots of unmanned spacecraft including reddish appearance. It is the fourth planet from sun. orbiters, landers and rovers have been launched into mars since early 1960. Sputnik was the first satellite The term sol is used to define duration of solar day on launched in 1957 by Soviet Union. After seven failure Mars. A mean Martian solar day or sol is 24 hours 39 missions to Mars, Mariner 4 was the first satellite which minutes and 34.244 seconds. Many space missions to reached the Martian orbiter successfully. The Viking 1 Mars have been planned and launched for Mars was the first lander reached on Mars on 1975. India exploration (Table:1) but most of them failed without successfully launched a spacecraft, Mangalyan (Mars completing the task specially in early attempts th Orbiter Mission) on 5 November, 2013, with five whereas some NASA missions were very payloads to Mars. India was the first nation to successful(such as the twin Mars Exploration Rovers, successfully reach Mars on its first attempt.
    [Show full text]
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • Getting to Mars How Close Is Mars?
    Getting to Mars How close is Mars? Exploring Mars 1960-2004 Of 42 probes launched: 9 crashed on launch or failed to leave Earth orbit 4 failed en route to Mars 4 failed to stop at Mars 1 failed on entering Mars orbit 1 orbiter crashed on Mars 6 landers crashed on Mars 3 flyby missions succeeded 9 orbiters succeeded 4 landers succeeded 1 lander en route Score so far: Earthlings 16, Martians 25, 1 in play Mars Express Mars Exploration Rover Mars Exploration Rover Mars Exploration Rover 1: Meridiani (Opportunity) 2: Gusev (Spirit) 3: Isidis (Beagle-2) 4: Mars Polar Lander Launch Window 21: Jun-Jul 2003 Mars Express 2003 Jun 2 In Mars orbit Dec 25 Beagle 2 Lander 2003 Jun 2 Crashed at Isidis Dec 25 Spirit/ Rover A 2003 Jun 10 Landed at Gusev Jan 4 Opportunity/ Rover B 2003 Jul 8 Heading to Meridiani on Sunday Launch Window 1: Oct 1960 1M No. 1 1960 Oct 10 Rocket crashed in Siberia 1M No. 2 1960 Oct 14 Rocket crashed in Kazakhstan Launch Window 2: October-November 1962 2MV-4 No. 1 1962 Oct 24 Rocket blew up in parking orbit during Cuban Missile Crisis 2MV-4 No. 2 "Mars-1" 1962 Nov 1 Lost attitude control - Missed Mars by 200000 km 2MV-3 No. 1 1962 Nov 4 Rocket failed to restart in parking orbit The Mars-1 probe Launch Window 3: November 1964 Mariner 3 1964 Nov 5 Failed after launch, nose cone failed to separate Mariner 4 1964 Nov 28 SUCCESS, flyby in Jul 1965 3MV-4 No.
    [Show full text]
  • Mars Insight Launch Press Kit
    Introduction National Aeronautics and Space Administration Mars InSight Launch Press Kit MAY 2018 www.nasa.gov 1 2 Table of Contents Table of Contents Introduction 4 Media Services 8 Quick Facts: Launch Facts 12 Quick Facts: Mars at a Glance 16 Mission: Overview 18 Mission: Spacecraft 30 Mission: Science 40 Mission: Landing Site 53 Program & Project Management 55 Appendix: Mars Cube One Tech Demo 56 Appendix: Gallery 60 Appendix: Science Objectives, Quantified 62 Appendix: Historical Mars Missions 63 Appendix: NASA’s Discovery Program 65 3 Introduction Mars InSight Launch Press Kit Introduction NASA’s next mission to Mars -- InSight -- will launch from Vandenberg Air Force Base in California as early as May 5, 2018. It is expected to land on the Red Planet on Nov. 26, 2018. InSight is a mission to Mars, but it is more than a Mars mission. It will help scientists understand the formation and early evolution of all rocky planets, including Earth. A technology demonstration called Mars Cube One (MarCO) will share the launch with InSight and fly separately to Mars. Six Ways InSight Is Different NASA has a long and successful track record at Mars. Since 1965, it has flown by, orbited, landed and roved across the surface of the Red Planet. None of that has been easy. Only about 40 percent of the missions ever sent to Mars by any space agency have been successful. The planet’s thin atmosphere makes landing a challenge; its extreme temperature swings make it difficult to operate on the surface. But if a spacecraft survives the trip, there’s a bounty of science to be collected.
    [Show full text]
  • MISSION POSSIBLE KORABL 4 LAUNCH About Half of All Mars Missions Have
    Russia/U.S.S.R. U.S. Japan U.K./ESA member states Russia/China India MISSION POSSIBLE KORABL 4 LAUNCH About half of all Mars missions have KORABL 5 ) The frst U.S. succeeded. Here’s a complete history, up s KORAB e L 11 to Mars t spacecraft EARTH a to the ExoMars Trace Gas Orbiter d mysteriously lost ORBIT MARS 1 h power eight hours c n KORA after launch u BL 13 FAILURE SUCCESS a L ( MARINER 3 s Flyby Orbiter Lander 0 MA 6 RINER 4 9 1 ZOND 2 MARINER 6 IN TRANSIT MARS 1969A MARINER 7 MARS 1969B MARINER 8 S H KOSMOS 419 MA R T RS 2 ORBITER/LANDER The frst man-made object MARS 3 ORBITER/LAN DER A R to land on Mars. s MARINER 9 MARS But contact was lost 0 The frst 7 ORBIT 20 seconds after A MARS 9 4 successful touchdown M 1 Mars surface MARS 5 E exploration found all elements MARS 6 FLYBY/LAND ER essential to MARS 7 FLYBY/LANDER life VIKING 1 ORBITER/LANDER VIKING 2 ORBITER/LANDER s 0 PHOBOS 1 ORBITER/LANDER 8 9 PHOBOS 2 ORBITER/LANDER 1 Pathfinder’s Sojourner was the MARS OBSERVER frst wheeled MARS GLOBAL SURVEYOR vehicle deployed on another planet s MARS 96 ORBITER/LANDER 0 9 MARS PATHFINDER 9 1 NOZOMI MARS CLIMATE ORBITER ONGOING ONGOING 2 PROBES/MARS POLAR LANDER The Phoenix ONGOING DEEP SPACE ONGOING lander frst MARS ODYSSEY confrmed the ONGOING presence of water /BEAGLE 2 LANDER MARS EXPRESS ORBITER in soil samples s RIT MARS EXPLORATION ROVER–SPI ONGOING 0 0 OVER–OPPORTUNITY 0 MARS EXPLORATION R ONGOING 2 ITER MARS RECONNAISSANCE ORB ENIX MARS LANDER PHO Curiosity descended on the -GRUNT/YINGHUO-1 PHOBOS frst “sky crane,” a s B/CURIOSITY highly precise landing DID YOU KNOW? The early missions had 0 MARS SCIENCE LA 1 system for large up to seven diferent names.
    [Show full text]
  • India to Pull Ahead of China with Mangalyaan's Success
    India is set to join the elite list of members after the US, Russia and Europe to have successfully launched termed successful only after the spacecraft manages to insert itself into the Mars orbit on September 21, INDIA TO PULL a spacecraft to Mars. The attempts made by Japan and China (using a Russian rocket) have failed so far. 2014. China had successfully sent two spacecraft, Chang’e 1 and Chang’e 2, into the lunar orbit and is India is banking on its most-successful PSLV rocket, which had put its first spacecraft, Chandrayaan-1, preparing to send a landing and rover mission, Chang’e 3, to the moon in December 2013. Here is a look AHEAD OF into the lunar orbit in 2008. The same rocket flew Mangalyaan on Tuesday. However, the mission will be at all the missions to Mars: LAUNCH DATE Mar 2 LAUNCH DATE Aug. 4 LAUNCH DATE June 10 COUNTRYEurope COUNTRY US CHINA WITH COUNTRYUS LAUNCH DATE May 30 MISSION GOAL Mars SPACECRAFT SPACECRAFT Rosetta SPACECRAFT Phoenix COUNTRY US orbit LAUNCH DATE Mars Exploration Rover A (Spirit) MISSION GOAL Comet MISSION GOAL Mars MANGALYAAN'S SPACECRAFT COMMENTS Aug 5 MISSION GOAL Rover landing COMMENTS Success landing COMMENTS Mariner-9 (Mariner I) Success COUNTRY Success COMMENTS Success LAUNCH DATE LAUNCH DATE Jul 18 LAUNCH DATE USSR LAUNCH DATE LAUNCH DATE LAUNCH DATE SUCCESS LAUNCH DATE Aug. 12 LAUNCH DATE Feb 25 SPACECRAFT Aug 20 Sep 9 Nov 7 LAUNCH DATE LAUNCH DATE July 7 COUNTRY USSR Dec 4 LAUNCH DATE June 2 COUNTRY US Nov.
    [Show full text]
  • Mars Science Laboratory Landing
    PRESS KIT/JULY 2012 Mars Science Laboratory Landing Media Contacts Dwayne Brown NASA’s Mars 202-358-1726 Steve Cole Program 202-358-0918 Headquarters [email protected] Washington [email protected] Guy Webster Mars Science Laboratory 818-354-5011 D.C. Agle Mission 818-393-9011 Jet Propulsion Laboratory [email protected] Pasadena, Calif. [email protected] Science Payload Investigations Alpha Particle X-ray Spectrometer: Ruth Ann Chicoine, Canadian Space Agency, Saint-Hubert, Québec, Canada; 450-926-4451; [email protected] Chemistry and Camera: James Rickman, Los Alamos National Laboratory, Los Alamos, N.M.; 505-665-9203; [email protected] Chemistry and Mineralogy: Rachel Hoover, NASA Ames Research Center, Moffett Field, Calif.; 650-604-0643; [email protected] Dynamic Albedo of Neutrons: Igor Mitrofanov, Space Research Institute, Moscow, Russia; 011-7-495-333-3489; [email protected] Mars Descent Imager, Mars Hand Lens Imager, Mast Camera: Michael Ravine, Malin Space Science Systems, San Diego; 858-552-2650 extension 591; [email protected] Radiation Assessment Detector: Donald Hassler, Southwest Research Institute; Boulder, Colo.; 303-546-0683; [email protected] Rover Environmental Monitoring Station: Luis Cuesta, Centro de Astrobiología, Madrid, Spain; 011-34-620-265557; [email protected] Sample Analysis at Mars: Nancy Neal Jones, NASA Goddard Space Flight Center, Greenbelt, Md.; 301-286-0039; [email protected] Engineering Investigation MSL Entry, Descent and Landing Instrument Suite: Kathy Barnstorff, NASA Langley Research Center, Hampton, Va.; 757-864-9886; [email protected] Contents Media Services Information.
    [Show full text]
  • The Medusae Fossae Formation As the Single Largest Source of Dust on Mars
    ARTICLE DOI: 10.1038/s41467-018-05291-5 OPEN The Medusae Fossae Formation as the single largest source of dust on Mars Lujendra Ojha1, Kevin Lewis1, Suniti Karunatillake 2 & Mariek Schmidt3 Transport of fine-grained dust is one of the most widespread sedimentary processes occurring on Mars today. In the present climate, eolian abrasion and deflation of rocks are likely the most pervasive and active dust-forming mechanism. Martian dust is globally 1234567890():,; enriched in S and Cl and has a distinct mean S:Cl ratio. Here we identify a potential source region for Martian dust based on analysis of elemental abundance data. We show that a large sedimentary unit called the Medusae Fossae Formation (MFF) has the highest abundance of S and Cl, and provides the best chemical match to surface measurements of Martian dust. Based on volume estimates of the eroded materials from the MFF, along with the enrichment of elemental S and Cl, and overall geochemical similarity, we propose that long-term deflation of the MFF has significantly contributed to the global Martian dust reservoir. 1 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA. 2 Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA. 3 Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada. Correspondence and requests for materials should be addressed to L.O. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:2867 | DOI: 10.1038/s41467-018-05291-5 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05291-5 ust is ubiquitous on Mars and plays a key role in con- formation on Mars today is likely abrasion of mechanically weak temporary atmospheric and surface processes.
    [Show full text]
  • China's Mission to Mars S
    6 CHINA DAILY | HONG KONG EDITION Friday, July 24, 2020 | 7 CHINA FACTS ABOUT MARS Mars is the fourth planet from the Sun and the Wenchang second-smallest planet in our solar system. HAINAN Lander Mars is one of the four terrestrial planets and is more like Earth than any other planet in the system. TIANWEN 1 The earliest record of the observation of Mars can be traced to ancient Egypt around 2000 BC. The red planet made its first appearances in China’s history around 1300 BC on oracle bone inscriptions. In CHINA’S MISSION TO MARS ancient China, it was named Yinghuo , derived from ancient astronomers’ observations that it moved - like a capricious flame in the night sky. The name Aims to fulfill three scientific objectives orbiting the red includes meanings of war and unrest. It is usually planet for comprehensive observation, landing on the Martian not difficult to see Mars with the naked eye as its Mars surface apparent magnitude is surpassed only by Venus, the surface and sending a rover to roam the landing site. It will compound detector to Earth’s moon and our sun. Mars appears red-orange study high-resolution when seen from Earth because its surface contains spectral signatures of conduct scientific investigations on Mars’ soil, geological lots of iron oxides. Here are some other basic facts surface substances structure, environment, atmosphere and water. about our planetary neighbor: Total surface area: LONG 144,798,500 sq km, about 28 percent of Earth’s MARCH 5 and nearly the same as Earth’s land area LONG JOURNEY Earth-Mars Position of Mars scientific instruments are Equatorial radius: With more than transfer when the carrier The 5-ton spacecraft trajectory is launched mounted on the 3,396 km, about half that of Earth 750 metric tons Length of a solar day on Mars: of propellants, will travel more than orbiter and each Long March 400 million km in the rover 24 hours, 39 minutes, and 35 seconds 5 has a liftoff nearly seven months.
    [Show full text]
  • Planetary Protection Issues and Future Mars Missions
    NASA Conference Publication 10086 Planetary Protection Issues and Future Mars Missions Edited by D. L. DeVincenzi Ames Research Center Moffett Field, California H. P. Klein Santa Clara University Santa Clara, Cafifomia J. R. Bagby Missouri State Dept. of Health Jefferson City, Missouri Proceedings of a workshop held at NASA Ames Research Center, Moffett Field, Cafifornia March 7-9, 1990 NASA NationalAeronauticsand SpaceAdministration Ames Research Center MoffettField,California94035-1000 1991 \ PREFACE This is the final report of a Workshop on "Planetary Protection Issues and the Human Exploration of Mars" conducted by NASA's Ames Research Center on March 7-9, 1990. It was jointly sponsored by the Office of Exploration and the Life Science Division both at NASA HQ. A preliminary report was presented at the 1990 meeting of the Commission on Space Research (COSPAR) in The Hague, and a paper on the subject is in press in Advances in Space Research. Following the announcement of the Space Exploration Initiative (SEI) by the President, NASA embarked on a series of mission design studies to develop various options for the achievement of the goals of future robotic and human exploration of the Moon and Mars. During the course of these studies, it became clear that useful guidelines did not exist for mission planners and designers to evaluate the impact of existing Planetary Protection policy on mission architectures for either robotic precursor or manned missions to Mars. Therefore, this Workshop was conceived to develop an interim set of strawman guidelines for use by mission planners until official policy for the various missions under consideration could be established.
    [Show full text]
  • Explore Mars.Pdf
    STORIES OF TOMORROW Students Visions on the Future of Space Exploration Mars in a nutshell Trip to Mars Explore Mars Living on Mars Assessment Tools Design by Editor Dr. Angelos Lazoudis Authors-Contributors Jose Saraiva Rosa Doran Thalia Tsaknia Dr. Angelos Lazoudis Design Anna Mavroeidi Copyright Information This work is licensed under http://creativecommons.org/licences/by-nc/3.0/ Explore Mars © NASA Colorful Equatorial Gullies in Krupac Crater Explore Mars Contents Explore and monitor Mars ....................................................................................................................... 7 Activities .................................................................................................................................................... 15 1. Mars rover ........................................................................................................................................ 15 2. Explore mars using programming language ............................................................................ 16 3. Touchdown to mars surface ......................................................................................................... 17 4. Parachute design ............................................................................................................................ 18 5. Looking for life ................................................................................................................................ 19 6. What can craters tell us about mars? .......................................................................................
    [Show full text]