Integral Properties for Vocoidal Theory and Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variational Formulation of Fluid and Geophysical Fluid Dynamics
Advances in Geophysical and Environmental Mechanics and Mathematics Gualtiero Badin Fulvio Crisciani Variational Formulation of Fluid and Geophysical Fluid Dynamics Mechanics, Symmetries and Conservation Laws Advances in Geophysical and Environmental Mechanics and Mathematics Series editor Holger Steeb, Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany More information about this series at http://www.springer.com/series/7540 Gualtiero Badin • Fulvio Crisciani Variational Formulation of Fluid and Geophysical Fluid Dynamics Mechanics, Symmetries and Conservation Laws 123 Gualtiero Badin Fulvio Crisciani Universität Hamburg University of Trieste Hamburg Trieste Germany Italy ISSN 1866-8348 ISSN 1866-8356 (electronic) Advances in Geophysical and Environmental Mechanics and Mathematics ISBN 978-3-319-59694-5 ISBN 978-3-319-59695-2 (eBook) DOI 10.1007/978-3-319-59695-2 Library of Congress Control Number: 2017949166 © Springer International Publishing AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. -
Calculus of Variations in the Convex Case : an Introduction to Fathi's
Calculus of variations in the convex case : an introduction to Fathi’s weak KAM theorem and Mather’s theory of minimal invariant measures Alain Chenciner, Barcelona july 2004 1st lecture. Calculus of variations in the convex case (local struc- tures). From Euler-Lagrange equations to the Poincar´e-Cartan integral invariant, the Legendre transform and Hamilton’s equations. Exercices. Flows, differential forms, symplectic structures 2nd lecture. The Hamilton-Jacobi equation. The solutions of Hamilton’s equations as characteristics. Lagrangian sub- manifolds and geometric solutions of the Hamilton-Jacobi equation. Caus- tics as an obstruction to the existence of global solutions to the Cauchy problem. Exercices. The geodesic flow on a torus of revolution as an example of a completely integrable system 3rd lecture. Minimizers. Weierstrass theory of minimizers. Minimizing KAM tori, Existence of min- imizers (Tonelli’s theorem) and the Lax-Oleinik semi-group. Exercices. Examples around the pendulum 4th lecture. Global solutions of the Hamilton-Jacobi equation Weak KAM solutions as fixed points of the Lax-Oleinik semi-group; con- vergence of the semi-group in the autonomous case. Conjugate weak KAM solutions. Exercices. Burger’s equation and viscosity solutions. 5th lecture. Mather’s theory. Class A geodesics and minimizing mea- sures. The α and β functions as a kind of integrable skeleton Exercices. The time-periodic case as a generalization of Aubry-Mather the- ory, Birkhoff billiards, Hedlund’s example in higher dimension. 1 1st lecture. Calculus of variations in the convex case (local struc- tures). General convexity hypotheses. M = TI n = IRn/ZZ n is the n-dimen- sional torus (the theory works with an arbitrary compact manifold but the torus will allow us to work with global coordinates). -
NONLINEAR DISPERSIVE WAVE PROBLEMS Thesis by Jon
NONLINEAR DISPERSIVE WAVE PROBLEMS Thesis by Jon Christian Luke In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1966 (Submitted April 4, 1966) -ii ACKNOWLEDGMENTS The author expresses his thanks to Professor G. B. Whitham, who suggested the problems treated in this dissertation, and has made available various preliminary calculations, preprints of papers, and lectur~ notes. In addition, Professor Whitham has given freely of his time for useful and enlightening discussions and has offered timely advice, encourageme.nt, and patient super vision. Others who have assisted the author by suggestions or con structive criticism are Mr. G. W. Bluman and Mr. R. Seliger of the California Institute of Technology and Professor J. Moser of New York University. The author gratefully acknowledges the National Science Foundation Graduate Fellowship that made possible his graduate education. J. C. L. -iii ABSTRACT The nonlinear partial differential equations for dispersive waves have special solutions representing uniform wavetrains. An expansion procedure is developed for slowly varying wavetrains, in which full nonl~nearity is retained but in which the scale of the nonuniformity introduces a small parameter. The first order results agree with the results that Whitham obtained by averaging methods. The perturbation method provides a detailed description and deeper understanding, as well as a consistent development to higher approximations. This method for treating partial differ ential equations is analogous to the "multiple time scale" meth ods for ordinary differential equations in nonlinear vibration theory. It may also be regarded as a generalization of geomet r i cal optics to nonlinear problems. -
Interactions and Resonances
A Macroscopic Plasma Lagrangian and its Application to Wave Interactions and Resonances by Yueng-Kay Martin Peng June 1974 SUIPR Report No. 575 National Aeronautics and Space Administration Grant NGL 05-020-176 National Science Foundation Grant GK-32788X (NASA-CR-138649) A MACROSCOPIC PLASMA N74-27231 LAGRANGIAN AND ITS APPLICATION TO WAVE INTERACTIOUS AND RESONANCES (Stanford Univ.) 262 p HC $16.25 CSCL 201 Unclas G3/25 41289 INSTITUTE FOR PLASMA RESEARCH STANFORD UNIVERSITY, STANFORD, CALIFORNIA NIZ~a A MACROSCOPIC PLASMA LAGRANGIAN AND ITS APPLICATION TO WAVE INTERACTIONS AND RESONANCES by Yueng-Kay Martin Peng National Aeronautics and Space Administration Grant NGL 05-020-176 National Science Foundation Grant GK-32788X SUIPR Report No. 575 June 1974 Institute for Plasma Research Stanford University Stanford, California I A MACROSCOPIC PLASMA LAGRANGIAN AND ITS APPLICATION TO WAVE INTERACTIONS AND RESONANCES by Yueng-Kay Martin Peng Institute for Plasma Research Stanford University Stanford, California 94305 ABSTRACT This thesis is concerned with derivation of a macroscopic plasma Lagrangian, and its application to the description of nonlinear three- wave interaction in a homogeneous plasma and linear resonance oscilla- tions in a inhomogeneous plasma. One approach to obtain -the--Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. -
On the Modeling and Design of Zero-Net Mass Flux Actuators
ON THE MODELING AND DESIGN OF ZERO-NET MASS FLUX ACTUATORS By QUENTIN GALLAS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Quentin Gallas Pour ma famille et mes amis, d’ici et de là-bas… (To my family and friends, from here and over there…) ACKNOWLEDGMENTS Financial support for the research project was provided by a NASA-Langley Research Center Grant and an AFOSR grant. First, I would like to thank my advisor, Dr. Louis N. Cattafesta. His continual guidance and support gave me the motivation and encouragement that made this work possible. I would also like to express my gratitude especially to Dr. Mark Sheplak, and to the other members of my committee (Dr. Bruce Carroll, Dr. Bhavani Sankar, and Dr. Toshikazu Nishida) for advising and guiding me with various aspects of this project. I thank the members of the Interdisciplinary Microsystems group and of the Mechanical and Aerospace Engineering department (particularly fellow student Ryan Holman) for their help with my research and their friendship. I thank everyone who contributed in a small but significant way to this work. I also thank Dr. Rajat Mittal (George Washington University) and his student Reni Raju, who greatly helped me with the computational part of this work. Finally, special thanks go to my family and friends, from the States and from France, for always encouraging me to pursue my interests and for making that pursuit possible. iv TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................ -
Lecture 3 Fluid Dynamics and Balance Equations for Reacting Flows
Lecture 3 Fluid Dynamics and Balance Equations for Reacting Flows 3.-1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical species Associated with the release of thermal energy and the increase in temperature is a local decrease in density which in turn affects the momentum balance. Therefore, all these equations are closely coupled to each other. Nevertheless, in deriving these equations we will try to point out how they can be simplified and partially uncoupled under certain assumptions. 3.-2 Balance Equations A time-independent control volume V for a balance quality F(t) The scalar product between the surface flux φf and the normal vector n determines the outflow through the surface A, a source sf the rate of production of F(t) Let us consider a general quality per unit volume f(x, t). Its integral over the finite volume V, with the time-independent boundary A is given by 3.-3 The temporal change of F is then due to the following three effects: 1. by the flux φf across the boundary A. This flux may be due to convection or molecular transport. By integration over the boundary A we obtain the net contribution which is negative, if the normal vector is assumed to direct outwards. 3.-4 2. by a local source σf within the volume. This is an essential production of partial mass by chemical reactions. Integrating the source term over the volume leads to 3. by an external induced source s. Examples are the gravitational force or thermal radiation. -
Particle Motion Near the Resonant Surface of a High-Frequency Wave in a Magnetized Plasma
INVESTIGACION´ REVISTA MEXICANA DE FISICA´ 48 (3) 239–249 JUNIO 2002 Particle motion near the resonant surface of a high-frequency wave in a magnetized plasma J. J. Martinell Instituto de Ciencias Nucleares, Universidad Nacional Autonoma´ de Mexico´ A. Postal 70-543, 04510 Mexico´ D.F. e-mail: [email protected] Recibido el 11 de enero de 2002; aceptado el 4 de febrero de 2002 The motion of single charged particles in a magnetized plasma is studied using a Lagrangian formalism, applied to the average over a gyro- period, in the presence of an electromagnetic wave that is being resonantly absorbed by the medium. Near the resonance surface the wave amplitude has a gradient and the resulting particle drifts are shown to be consistent with the existence of a ponderomotive force, produced by the wave-field-gradient. The orbits are also obtained numerically to show how the drifting motion arises, and to study the case of high field-gradients, which is not described with the formal analysis. Keywords: Charged particle orbits; electromagnetic waves in plasmas; lagrangian mechanics. Se estudia el movimiento de part´ıculas cargadas individuales en un plasma magnetizado con un formalismo Lagrangiano, aplicado al prome- dio sobre un per´ıodo de giro, en presencia de una onda electromagnetica´ que es absorbida de manera resonante por el medio. Cerca de la superficie de resonancia la amplitud de la onda tiene un gradiente y se muestra que los movimientos de deriva resultantes son consistentes con la existencia de una fuerza ponderomotriz, producida por el gradiente del campo de la onda. -
Glossary of Glacier Mass Balance and Related Terms
The University of Manchester Research Glossary of glacier mass balance and related terms Link to publication record in Manchester Research Explorer Citation for published version (APA): Cogley, J. G., Arendt, A. A., Bauder, A., Braithwaite, R. J., Hock, R., Jansson, P., Kaser, G., Moller, M., Nicholson, L., Rasmussen, L. A., & Zemp, M. (2010). Glossary of glacier mass balance and related terms. (IHP-VII Technical Documents in Hydrology). International Hydrological Programme. Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:09. Oct. 2021 GLOSSARY OF GLACIER MASS BALANCE AND RELATED TERMS Prepared by the Working Group on Mass-balance Terminology and Methods of the International Association of Cryospheric Sciences (IACS) IHP-VII Technical Documents in Hydrology No. 86 IACS Contribution No. 2 UNESCO, Paris, 2011 Published in 2011 by the International Hydrological Programme (IHP) of the United Nations Educational, Scientific and Cultural Organization (UNESCO) 1 rue Miollis, 75732 Paris Cedex 15, France IHP-VII Technical Documents in Hydrology No. -
Geometric Lagrangian Averaged Euler-Boussinesq and Primitive Equations 2
Geometric Lagrangian averaged Euler-Boussinesq and primitive equations Gualtiero Badin Center for Earth System Research and Sustainability (CEN), University of Hamburg, D-20146 Hamburg, Germany E-mail: [email protected] Marcel Oliver School of Engineering and Science, Jacobs University, D-28759 Bremen, Germany E-mail: [email protected] Sergiy Vasylkevych Center for Earth System Research and Sustainability (CEN), University of Hamburg, D-20146 Hamburg, Germany E-mail: [email protected] 11 September 2018 Abstract. In this article we derive the equations for a rotating stratified fluid governed by inviscid Euler-Boussinesq and primitive equations that account for the effects of the perturbations upon the mean. Our method is based on the concept of geometric generalized Lagrangian mean recently introduced by Gilbert and Vanneste, combined with generalized Taylor and horizontal isotropy of fluctuations as turbulent closure hypotheses. The models we obtain arise as Euler-Poincar´e equations and inherit from their parent systems conservation laws for energy and potential vorticity. They are structurally and geometrically similar to Euler-Boussinesq-α and primitive equations-α models, however feature a different regularizing second order operator. arXiv:1806.05053v2 [physics.flu-dyn] 10 Sep 2018 Keywords: Lagrangian averaging, stratified geophysical flows, turbulence, Euler- Poincar´eequations 1. Introduction The goal of this article is to derive a self-consistent system of equations for the flow of an inviscid stratified fluid that accounts for the effects of the perturbations upon the mean. To this end, each realization of the flow is decomposed into the mean part and a small fluctuation. The effects of the fluctuations on the mean flow is then described by an appropriate mean flow theory. -
Chapter 4 Continuity, Energy, and Momentum Equations
Ch 4. Continuity, Energy, and Momentum Equation Chapter 4 Continuity, Energy, and Momentum Equations 4.1 Conservation of Matter in Homogeneous Fluids • Conservation of matter in homogeneous (single species) fluid → continuity equation positive dA1 - perpendicular to the control surface negative 4.1.1 Finite control volume method-arbitrary control volume - Although control volume remains fixed, mass of fluid originally enclosed (regions A+B) occupies the volume within the dashed line (regions B+C). Since mass m is conserved: mmm m (4.1) ABBtttdt Ctdt m m mmBBtdt t A t C tdt (4.2) dt dt •LHS of Eq. (4.2) = time rate of change of mass in the original control volume in the limit mmBB m tdt t B dV (4.3) dt t t CV 4−1 Ch 4. Continuity, Energy, and Momentum Equation where dV = volume element •RHS of Eq. (4.2) = net flux of matter through the control surface = flux in – flux out = qdA qdA nn12 where q = component of velocity vector normal to the surface of CV q cos n dV qdAnn12 qdA (4.4) CV CS CS t ※ Flux (= mass/time) is due to velocity of the flow. • Vector form dV qdA (4.5) t CV CS where dA = vector differential area pointing in the outward direction over an enclosed control surface qdAq dA cos positive for an outflow from cv, 90 negative for inflow into cv, 90 180 If fluid continues to occupy the entire control volume at subsequent times → time independent 4−2 Ch 4. Continuity, Energy, and Momentum Equation LHS: dV dV (4.5a) ttCV CV Eq. -
Modulation Theory and Resonant Regimes for Dispersive Shock Waves
Modulation theory and resonant regimes for dispersive shock waves in nematic liquid crystals Saleh Baqer, School of Mathematics, University of Edinburgh, Edinburgh, Scotland, EH9 3FD, U.K. Noel F. Smyth, School of Mathematics, University of Edinburgh, Edinburgh, Scotland, EH9 3FD, U.K. and School of Mathematics and Applied Statistics, University of Wollongong, Northfields Avenue, Wollongong, N.S.W., Australia, 2522. Abstract A full analysis of all regimes for optical dispersive shock wave (DSW) propagation in nematic liquid crystals is undertaken. These dispersive shock waves are generated from step initial conditions for the optical field and are resonant in that linear diffractive waves are in resonance with the DSW, resulting in a resonant linear wavetrain propagating ahead of it. It is found that there are six regimes, which are distinct and require different solution methods. In previous studies, the same solution method was used for all regimes, which does not yield solutions in full agreement with numerical solutions. Indeed, the standard DSW structure disappears for sufficiently large initial jumps. Asymptotic theory, approximate methods or Whitham modulation theory are used to find solutions for these resonant dispersive shock waves in a given regime. The solutions are found to be in excellent agreement with numerical solutions of the nematic equations in all regimes. It is found that for small initial jumps, the resonant wavetrain is unstable, but that it stabilises above a critical jump height. It is additionally found that the DSW is unstable, except for small jump heights for which there is no resonance and large jump heights for which there is no standard DSW structure. -
2. Fluid-Flow Equations Governing Equations
2. Fluid-Flow Equations Governing Equations • Conservation equations for: ‒ mass ‒ momentum ‒ energy ‒ (other constituents) • Alternative forms: ‒ integral (control-volume) equations ‒ differential equations Integral (Control-Volume) Approach Consider the budget of any physical quantity in any control volume V V TIME DERIVATIVE ADVECTIVE + DIFFUSIVE FLUX SOURCE + = of amount in 푉 through boundary of 푉 in 푉 → Finite-volume method for CFD Mass Conservation (Continuity) Mass conservation: mass is neither created nor destroyed d u (mass) = net inward mass flux d푡 V un A d (mass) + net outward mass flux = 0 d푡 d mass + mass flux = 0 d푡 faces Mass in a cell: ρ푉 Mass flux through a face: 퐶 = ρu • A Mass Conservation - Differential Equation t Conservation statement: d z mass + net outward mass flux = 0 w n d푡 y b e d s ρ푉 + (ρ푢퐴) − (ρ푢퐴) + (ρ푣퐴) − (ρ푣퐴) + (ρ푤퐴) − (ρ푤퐴) = 0 x d푡 푒 푤 푛 푠 푡 푏 d ρΔ푥Δ푦Δ푧 + [(ρ푢) − ρ푢) Δ푦Δ푧 + [(ρ푣) − ρ푣) Δ푧Δ푥 + [(ρ푤) − ρ푤) Δ푥Δ푦 = 0 d푡 푒 푤 푛 푠 푡 푏 Divide by volume: dρ (ρ푢) − (ρ푢) (ρ푣) − (ρ푣) (ρ푤) − (ρ푤) + 푒 푤 + 푛 푠 + 푡 푏 = 0 d푡 Δ푥 Δ푦 Δ푧 dρ Δ(ρ푢) Δ(ρ푣) Δ(ρ푤) + + + = 0 d푡 Δ푥 Δ푦 Δ푧 Shrink to a point: 휕ρ 휕(ρ푢) 휕(ρ푣) 휕(ρ푤) 휕ρ + + + = 0 + ∇ • (ρu) = 0 휕푡 휕푥 휕푦 휕푧 휕푡 Continuity in Incompressible Flow t z w n b y s e d x (volume) + net outward volume flux = 0 d푡 휕푢 휕푣 휕푤 + + = 0 ∇ • u = 0 휕푥 휕푦 휕푧 Momentum Equation Momentum Principle: force = rate of change of momentum F If steady: force = (momentum flux)out – (momentum flux)in If unsteady: force = d/d푡(momentum inside control volume) + (momentum flux)out – (momentum flux)in