Familial Cardiomegaly by G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cardiac Involvement in COVID-19 Patients: a Contemporary Review
Review Cardiac Involvement in COVID-19 Patients: A Contemporary Review Domenico Maria Carretta 1, Aline Maria Silva 2, Donato D’Agostino 2, Skender Topi 3, Roberto Lovero 4, Ioannis Alexandros Charitos 5,*, Angelika Elzbieta Wegierska 6, Monica Montagnani 7,† and Luigi Santacroce 6,*,† 1 AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Coronary Unit and Electrophysiology/Pacing Unit, Cardio-Thoracic Department, Policlinico University Hospital of Bari, 70124 Bari, Italy; [email protected] 2 AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Cardiac Surgery, Policlinico University Hospital of Bari, 70124 Bari, Italy; [email protected] (A.M.S.); [email protected] (D.D.) 3 Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, 3001 Elbasan, Albania; [email protected] 4 AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, Clinical Pathology Unit, Policlinico University Hospital of Bari, 70124 Bari, Italy; [email protected] 5 Emergency/Urgent Department, National Poisoning Center, Riuniti University Hospital of Foggia, 71122 Foggia, Italy 6 Department of Interdisciplinary Medicine, Microbiology and Virology Unit, University of Bari “Aldo Moro”, Piazza G. Cesare, 11, 70124 Bari, Italy; [email protected] 7 Department of Biomedical Sciences and Human Oncology—Section of Pharmacology, School of Medicine, University of Bari “Aldo Moro”, Policlinico University Hospital of Bari, p.zza G. Cesare 11, 70124 Bari, Italy; [email protected] * Correspondence: [email protected] (I.A.C.); [email protected] (L.S.) † These authors equally contributed as co-last authors. Citation: Carretta, D.M.; Silva, A.M.; D’Agostino, D.; Topi, S.; Lovero, R.; Charitos, I.A.; Wegierska, A.E.; Abstract: Background: The widely variable clinical manifestations of SARS-CoV2 disease (COVID-19) Montagnani, M.; Santacroce, L. -
Cardiac Myofibroblasts Enhance Hypertrophy and Systolic Dysfunction, but Not Fibrosis in Experimental Autoimmune Myocarditis
Cardiac myofibroblasts enhance hypertrophy and systolic dysfunction, but not fibrosis in experimental autoimmune myocarditis P08.345 K. TkaczI, A. JaźwaKusiorII, F. RolskiI, E. DziałoI, K. WęglarczykI, M. CzepielI, M. SiedlarI, G. KaniaIII, P. BłyszczukI IJagiellonian University Medical College, Department of Clinical Immunology, Cracow, Poland, IIJagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Cracow, Poland, IIIUniversity Hospital Zurich, Division of Rheumatology, Zurich, Switzerland Myocarditis is a common cause of dilated cardiomyopathy which is characterized by ventricular stiffening, cardiac fibrosis and heart failure. In experimental autoimmune myocarditis (EAM) susceptible mice are immunized with alpha myosin heavy chain (αMyHC) and complete Freund's adjuvant (CFA). CD4+ T cellmediated acute cardiac inflammation is followed by fibrosis and systolic dysfunction. The aim was to investigate the role of fibroblasts and myofibroblasts in myocarditis and postinflammatory cardiomyopathy in EAM model. EAM was induced in BALB/c mice by immunization with αMyHC/CFA. We used reporter strains expressing EGFP under the type I collagen promoter and RFP under αsmooth muscle actin (αSMA) promoter and transgenic αSMATK mice with ganciclovirinducible myofibroblasts ablation. Comparing unaffected heart, the number of cardiac fibroblasts (EGFP+) and the subset of myofibroblasts (EGFP+αSMA+) was unchanged at inflammatory (day 21) and fibrotic stages (day 40). EGFP+ fibroblasts were sorted from control and myocarditispositive hearts (d21) and analyzed for the whole genome transcriptomics by RNA sequencing. Analysis of differentially expressed genes (min. 2x fold change, p value < 0.05) suggested activation of immune processes (mainly chemokine production), response to stress, cytoskeletal and extracellular matrix reorganization in cardiac fibroblasts in response to myocarditis. -
Mitral Valve Disease in Dogs- Truly Epic Kristin Jacob, DVM, DACVIM CVCA Cardiac Care for Pets Towson, MD
Mitral Valve Disease in Dogs- Truly Epic Kristin Jacob, DVM, DACVIM CVCA Cardiac Care for Pets Towson, MD Chronic degenerative mitral valvular disease (DMVD) is the most common heart disease in dogs. In dogs with congestive heart failure, 75% have mitral regurgitation/degenerative valvular disease. Almost all have tricuspid regurgitations as well, but clinically the mitral regurgitation is the most significant. Degenerative valvular disease is most common in small breed dogs and more common in males than females. DMVD has been proven to be inherited in the Cavalier King Charles Spaniel and the Dachshund but several other breeds are predisposed, such as Bichons, poodles, Chihuahuas, Miniature Schnauzers, Boston Terriers. The cause of degenerative valvular disease remains unknown. However, the valve changes occur due to a destruction of collagen, deposition of mucopolysaccharide in the spongiosa and fibrosa layer of mitral valve, which also affects chordae tendinea. These changes prevent effective coaptation of the valve leaflets leading to progressive mitral regurgitation. Mitral regurgitation (MR) leads to decreasing forward output and increasing left atrial and left ventricular dilation and remodeling as well as activation of the neurohormonal systems. Typically, patients will have 2-3 years in asymptomatic phase (time between when heart murmur detected) until symptoms develop - congestive heart failure (CHF). We can detect progressive heart enlargement 6-12 months prior to the development of CHF. This means that we have a fairly long time period to intervene with therapy and alter the progression of the disease - we know what’s coming! Eventually left atrial pressure increases sufficiently and pulmonary congestion develops leading to symptoms of CHF and can also lead to pulmonary hypertension. -
Prognostic Significance of Myocardial Fibrosis Quantification By
Journal of the American College of Cardiology Vol. 56, No. 4, 2010 © 2010 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2009.12.074 Cardiac Imaging Prognostic Significance of Myocardial Fibrosis Quantification by Histopathology and Magnetic Resonance Imaging in Patients With Severe Aortic Valve Disease Clerio F. Azevedo, MD, Marcelo Nigri, MD, Maria L. Higuchi, MD, Pablo M. Pomerantzeff, MD, Guilherme S. Spina, MD, Roney O. Sampaio, MD, Fla´vio Tarasoutchi, MD, Max Grinberg, MD, Carlos Eduardo Rochitte, MD São Paulo, Brazil Objectives We sought to determine whether the quantitative assessment of myocardial fibrosis (MF), either by histopathol- ogy or by contrast-enhanced magnetic resonance imaging (ce-MRI), could help predict long-term survival after aortic valve replacement. Background Severe aortic valve disease is characterized by progressive accumulation of interstitial MF. Methods Fifty-four patients scheduled to undergo aortic valve replacement were examined by ce-MRI. Delayed-enhanced images were used for the quantitative assessment of MF. In addition, interstitial MF was quantified by histologi- cal analysis of myocardial samples obtained during open-heart surgery and stained with picrosirius red. The ce- MRI study was repeated 27 Ϯ 22 months after surgery to assess left ventricular functional improvement, and all patients were followed for 52 Ϯ 17 months to evaluate long-term survival. Results There was a good correlation between the amount of MF measured by histopathology and by ce-MRI (r ϭ 0.69, p Ͻ 0.001). In addition, the amount of MF demonstrated a significant inverse correlation with the degree of left ventricular functional improvement after surgery (r ϭϪ0.42, p ϭ 0.04 for histopathology; r ϭϪ0.47, p ϭ 0.02 for ce-MRI). -
Reversal of Maladaptive Fibrosis and Compromised Ventricular Function In
Laboratory Investigation (2017) 97, 370–382 © 2017 USCAP, Inc All rights reserved 0023-6837/17 Reversal of maladaptive fibrosis and compromised ventricular function in the pressure overloaded heart by a caveolin-1 surrogate peptide Dorea Pleasant-Jenkins1,3, Charles Reese2,3, Panneerselvem Chinnakkannu1, Harinath Kasiganesan1, Elena Tourkina2, Stanley Hoffman2 and Dhandapani Kuppuswamy1 Chronic ventricular pressure overload (PO) results in congestive heart failure (CHF) in which myocardial fibrosis develops in concert with ventricular dysfunction. Caveolin-1 is important in fibrosis in various tissues due to its decreased expression in fibroblasts and monocytes. The profibrotic effects of low caveolin-1 can be blocked with the caveolin-1 scaffolding domain peptide (CSD, a caveolin-1 surrogate) using both mouse models and human cells. We have studied the beneficial effects of CSD on mice in which PO was induced by trans-aortic constriction (TAC). Beneficial effects observed in TAC mice receiving CSD injections daily included: improved ventricular function (increased ejection fraction, stroke volume, and cardiac output; reduced wall thickness); decreased collagen I, collagen chaperone HSP47, fibronectin, and CTGF levels; decreased activation of non-receptor tyrosine kinases Pyk2 and Src; and decreased activation of eNOS. To determine the source of cells that contribute to fibrosis in CHF, flow cytometric studies were performed that suggested that myofibroblasts in the heart are in large part bone marrow-derived. Two CD45+ cell populations were observed. One (Zone 1) contained CD45+/HSP47 − /macrophage marker+ cells (macrophages). The second (Zone 2) contained CD45moderate/HSP47+/macrophage marker − cells often defined as fibrocytes. TAC increased the number of cells in Zones 1 and 2 and the level of HSP47 in Zone 2. -
Clinical Manifestation and Survival of Patients with I Diopathic Bilateral
ORIGINAL ARTICLE Clinical Manifestation and Survival of Patients with Mizuhiro Arima, TatsujiI diopathicKanoh, Shinya BilateralOkazaki, YoshitakaAtrialIwama,DilatationAkira Yamasaki and Sigeru Matsuda Westudied the histories of eight patients who lacked clear evidence of cardiac abnormalities other than marked bilateral atrial dilatation and atrial fibrillation, which have rarely been dis- cussed in the literature. From the time of their first visit to our hospital, the patients' chest radio- graphs and electrocardiograms showed markedly enlarged cardiac silhouettes and atrial fibrilla- tion, respectively. Each patient's echocardiogram showed a marked bilateral atrial dilatation with almost normal wall motion of both ventricles. In one patient, inflammatory change was demonstrated by cardiac catheterization and endomyocardial biopsy from the right ventricle. Seven of our eight cases were elderly women.Over a long period after the diagnosis of cardiome- galy or arrhythmia, diuretics or digitalis offered good results in the treatment of edema and congestion in these patients. In view of the clinical courses included in the present study, we conclude that this disorder has a good prognosis. (Internal Medicine 38: 112-118, 1999) Key words: cardiomegaly, atrial fibrillation, elder women,good prognosis Introduction echocardiography. The severity of mitral and tricuspid regur- gitation was globally assessed by dividing into three equal parts Idiopathic enlargement of the right atrium was discussed by the distance from the valve orifice. The regurgitant jet was de- Bailey in 1955(1). This disorder may be an unusual congenital tected on color Doppler recording in the four-chamber view malformation. A review of the international literature disclosed and classified into one of the three regions (-: none, +: mild, that although several cases have been discussed since Bailey's ++:moderate, +++: severe). -
Cardiac Fibrosis in Patients with Atrial Fibrillation: Mechanisms and Clinical Implications У
Author's Accepted Manuscript У Cardiac fibrosis in patients with atrial М fibrillation: Mechanisms and clinical Г implications р Г Mikhail S. Dzeshka, MD, Gregory Y.H. Lip, MD, Viktor Snezhitskiy, PhD, Eduard Shantsila, PhD Journal of the American College of Cardiology й Volume 66, Issue 8, August 2015, P. 943-959 DOI: 10.1016/j.jacc.2015.06.1313 и р о т и з о п е Р STATE OF THE ART REVIEW Cardiac fibrosis in patients with atrial fibrillation: Mechanisms and clinical implications У Mikhail S. Dzeshka MD1,2 М Gregory Y.H. Lip MD1,3 Viktor Snezhitskiy PhD2 Г Eduard Shantsila PhD1 р Г 1University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, United Kingdom; 2Grodno State Medical University,й Grodno, Belarus; and 3Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark. и р Total word count (including references,о figures legends, excluding tables and title page): 9,293 т Brief title: Cardiac fibrosis in иpatients with atrial fibrillation з Corresponding author:о Dr Eduard Shantsilaп , Tel: +44 121 507 5080, Fax: +44 121 554 4083, Email: [email protected] е Р 1 Competing interests G.Y.H.L. has served as a consultant for Bayer, Astellas, Merck, Sanofi, BMS/Pfizer, Biotronik, Medtronic, Portola, Boehringer Ingelheim, Microlife and Daiichi-Sankyo and has been on the speakers bureau for Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim, У Microlife and Daiichi-Sankyo. M.S.D., V.S. and E.S. – none declared.М Г р Г й и р о т и з о п е Р 2 Abstract Atrial fibrillation (AF) is associated with structural, electrical and contractile remodeling of the atria. -
Coronary Microvascular Dysfunction
Journal of Clinical Medicine Review Coronary Microvascular Dysfunction Federico Vancheri 1,*, Giovanni Longo 2, Sergio Vancheri 3 and Michael Henein 4,5,6 1 Department of Internal Medicine, S.Elia Hospital, 93100 Caltanissetta, Italy 2 Cardiovascular and Interventional Department, S.Elia Hospital, 93100 Caltanissetta, Italy; [email protected] 3 Radiology Department, I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy; [email protected] 4 Institute of Public Health and Clinical Medicine, Umea University, SE-90187 Umea, Sweden; [email protected] 5 Department of Fluid Mechanics, Brunel University, Middlesex, London UB8 3PH, UK 6 Molecular and Nuclear Research Institute, St George’s University, London SW17 0RE, UK * Correspondence: [email protected] Received: 10 August 2020; Accepted: 2 September 2020; Published: 6 September 2020 Abstract: Many patients with chest pain undergoing coronary angiography do not show significant obstructive coronary lesions. A substantial proportion of these patients have abnormalities in the function and structure of coronary microcirculation due to endothelial and smooth muscle cell dysfunction. The coronary microcirculation has a fundamental role in the regulation of coronary blood flow in response to cardiac oxygen requirements. Impairment of this mechanism, defined as coronary microvascular dysfunction (CMD), carries an increased risk of adverse cardiovascular clinical outcomes. Coronary endothelial dysfunction accounts for approximately two-thirds of clinical conditions presenting with symptoms and signs of myocardial ischemia without obstructive coronary disease, termed “ischemia with non-obstructive coronary artery disease” (INOCA) and for a small proportion of “myocardial infarction with non-obstructive coronary artery disease” (MINOCA). More frequently, the clinical presentation of INOCA is microvascular angina due to CMD, while some patients present vasospastic angina due to epicardial spasm, and mixed epicardial and microvascular forms. -
1 the Role of Myocardial Fibrosis in Determining the Success Rate Of
The role of myocardial fibrosis in determining the success rate of ablation for the treatment of atrial fibrillation Subothini Selvendran BSc (Hons) 1*, Nikhil Aggarwal BSc (Hons)1*, Justin Li 2, Gary Tse MBBS, MPH, PhD, FESC, FACC 3, Vassilios S Vassiliou MA, MBBS, MRCP, PhD, FHEA, FESC 1,4 Author Affiliations: 1 Royal Brompton Hospital and Imperial College London, UK 2 Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China 3 Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China; School of Health Sciences, University of Manchester, United Kingdom ([email protected]) 4 Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building, James Watson Road, Norwich, UK; Royal Brompton Hospital and Imperial College London, UK *SS and NA contributed equally Corresponding Author Dr Vassilios S Vassiliou Norwich Medical School, University of East Anglia, Second Floor, Bob Champion Research & Education Building, James Watson Road, Norwich, UK Email: [email protected] 1 Introduction Atrial fibrillation (AF) is the commonest cardiac arrhythmia observed in clinical practice currently affecting 1-2% of the general population 1. With an increasing lifespan its prevalence will also increase. Whilst technological advances have resulted in earlier and easier diagnosis of AF even outside of the hospital setting, the appropriate selection of patients for specific pharmacotherapy or electrophysiological ablation procedures has not seen similar improvement. -
Diagnosis and Treatment of Myocardial Fibrosis in Hypertensive Heart Disease
Advance Publication by J-STAGE Diagnosis and Treatment of Myocardial Fibrosis in Hypertensive Heart Disease Javier D´ıez, MD, PhD*,** Although hypertensive heart disease (HHD) is clinically characterized by development of left ventricular hyper- trophy in the absence of a cause other than arterial hypertension, changes in the composition of myocardial tissue also develop in arterial hypertension, leading to structural remodeling of the myocardium (eg, fibrosis). Myo- cardial fibrosis is the major determinant of diastolic dysfunction/failure in patients with HHD. Recent available data on the determination of serum concentrations of collagen-derived serum peptides, as well as quantitative analysis of echoreflectivity to address the presence of fibrosis in the myocardium of hypertensive patients, are promising. In addition, preliminary data suggest that the goal of reducing myocardial fibrosis is achievable using specific pharmacological agents in patients with HHD. Key Words: Collagen; Fibrosis; Hypertension; Hypertrophy ypertensive heart disease (HHD) can be defined as cules, as a consequence of a number of pathologic processes the response of the heart to the stress imposed on mediated by mechanical, neurohormonal and cytokine H the left ventricle by progressively increasing arte- routes.11,12 Although an association has been found between rial pressure. HHD is characterized by complex changes in severe myocardial fibrosis and left ventricular (LV) systolic myocardial composition that are responsible for the struc- dysfunction in patients with -
Case Report Chagas Cardiomyopathy Presenting As Symptomatic Bradycardia: an Underappreciated Emerging Public Health Problem in the United States
Hindawi Case Reports in Cardiology Volume 2017, Article ID 5728742, 5 pages https://doi.org/10.1155/2017/5728742 Case Report Chagas Cardiomyopathy Presenting as Symptomatic Bradycardia: An Underappreciated Emerging Public Health Problem in the United States Richard Jesse Durrance,1 Tofura Ullah,1 Zulekha Atif,1 William Frumkin,2 and Kaushik Doshi1 1 Department of Internal Medicine, Jamaica Hospital Medical Center, 8900 Van Wyck Expressway, Jamaica, NY 11418, USA 2Department of Cardiology, Jamaica Hospital Medical Center, 8900 Van Wyck Expressway, Jamaica, NY 11418, USA Correspondence should be addressed to Richard Jesse Durrance; [email protected] Received 13 February 2017; Accepted 18 July 2017; Published 16 August 2017 Academic Editor: Aiden Abidov Copyright © 2017 Richard Jesse Durrance et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Chagas cardiomyopathy (CCM) is traditionally considered a disease restricted to areas of endemicity. However, an estimated 300,000 people living in the United States today have CCM, of which its majority is undiagnosed. Wepresent a case of CCM acquired in an endemic area and detected in its early stage. A 42-year-old El Salvadoran woman presented with recurrent chest pain and syncopal episodes. Significant family history includes a sister inEl Salvador who also began suffering similar episodes. Physical exam and ancillary studies were only remarkable for sinus bradycardia. The patient was diagnosed with symptomatic sinus bradycardia and a pacemaker was placed. During her hospital course, Chagas serology was ordered given the epidemiological context from which she came. -
Imaging and Impact of Myocardial Fibrosis in Aortic Stenosis
JACC: CARDIOVASCULAR IMAGING VOL. 12, NO. 2, 2019 ª 2019 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE (http://creativecommons.org/licenses/by/4.0/). FOCUS ISSUE: IMAGING IN AORTIC STENOSIS: PART II STATE-OF-THE-ART PAPER Imaging and Impact of Myocardial Fibrosis in Aortic Stenosis a b a c Rong Bing, MBBS, BMEDSCI, João L. Cavalcante, MD, Russell J. Everett, MD, BSC, Marie-Annick Clavel, DVM, PHD, a a David E. Newby, DM, PHD, DSC, Marc R. Dweck, MD, PHD ABSTRACT Aortic stenosis is characterized both by progressive valve narrowing and the left ventricular remodeling response that ensues. The only effective treatment is aortic valve replacement, which is usually recommended in patients with severe stenosis and evidence of left ventricular decompensation. At present, left ventricular decompensation is most frequently identified by the development of typical symptoms or a marked reduction in left ventricular ejection fraction <50%. However, there is growing interest in using the assessment of myocardial fibrosis as an earlier and more objective marker of left ventricular decompensation, particularly in asymptomatic patients, where guidelines currently rely on non- randomized data and expert consensus. Myocardial fibrosis has major functional consequences, is the key pathological process driving left ventricular decompensation, and can be divided into 2 categories. Replacement fibrosis is irreversible and identified using late gadolinium enhancement on cardiac magnetic resonance, while diffuse fibrosis occurs earlier, is potentially reversible, and can be quantified with cardiac magnetic resonance T1 mapping techniques. There is a substantial body of observational data in this field, but there is now a need for randomized clinical trials of myocardial imaging in aortic stenosis to optimize patient management.