Ageratina Riparia Click on Images to Enlarge

Total Page:16

File Type:pdf, Size:1020Kb

Ageratina Riparia Click on Images to Enlarge Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ageratina riparia Click on images to enlarge Family Asteraceae Scientific Name Ageratina riparia (Regel) R.M.King & H.Rob. King, R.M. & Robinson, H.E. (1970) Phytologia 19(4): 216 Common name Scale bar 10mm. Copyright CSIRO Creeping Crofton Weed; Mist Flower Weed * Stem Usually flowers and fruits as a herb but occasionally flowers as a shrub 1 m tall. Leaves Cotyledon stage, epigeal germination. Copyright CSIRO Leaf blades about 3-12 x 0.8-3 cm with about 6-10 teeth on each side. Underside of the leaf blade clothed in hooked hairs on the midrib and lateral veins only, upper surface glabrous. Petiole grooved on the upper surface. Twigs clothed in erect, light brown, hooked hairs. Flowers Inflorescence a cymose panicle of heads each containing about 15-25 flowers. Heads about 5-6 mm diam., subtended by green bracts. Sepals represented by about 15 hair-like appendages. Anthers fused but the filaments free. Fruit Fruits about 1-2 mm long, longitudinally ribbed, each rib with a line of hairs. Endosperm very thin and scanty. 10th leaf stage. Copyright CSIRO Seedlings Cotyledons orbicular, about 2-4 mm diam., petiole about 1-3 mm long. First pair of leaves opposite, margins toothed. At the tenth leaf stage: leaf blade narrowly elliptic, about 5 x 2 cm, apex acute, base attenuate, margins coarsely serrate, very sparsely hairy to almost glabrous. Petiole about 7 mm long. Seed germination time 10 to 49 days. Distribution and Ecology An introduced species originally from Central America, now naturalised in NEQ and in south eastern Queensland southwards as far as coastal central New South Wales. Altitudinal range in NEQ not known but collected at altitudes of 1000-1100 m. Grows in damp areas of disturbed rain forest or along roads in damp areas of upland and mountain rain forest. Natural History & Notes This species may be poisonous, it may also have uses as a tanning agent. Herb (herbaceous or woody, under 1 m tall) X Shrub (woody or herbaceous, 1-6 m tall) X Synonyms Eupatorium riparium Regel, Gartenflora 15: 324 (1866). Type: Aus dem Garten der Herren Haage und Schmidt in Erfurt erhielt der Petersburger Garten das in Rede Stehende Eupatorium, das sehr wahrscheinlich aus. RFK Code 3443 CC-BY Australian Tropical Herbarium unless otherwise indicated in the images..
Recommended publications
  • Biological Control of Two Ageratina Species (Asteraceae: Eupatorieae) in South Africa
    Biological control of two Ageratina species (Asteraceae: Eupatorieae) in South Africa F. Heystek1*, A.R. Wood2, S. Neser1 & Y. Kistensamy1 1Agricultural Research Council-Plant Protection Research Institute, Private Bag X134, Queenswood, 0121 South Africa 2Agricultural Research Council-Plant Protection Research Institute, Private Bag X5017, Stellenbosch, 7599 South Africa Ageratina adenophora (Spreng.) R.M.King & H.Rob. and Ageratina riparia (Regel) R.M.King & H.Rob. (Asteraceae: Eupatorieae), originally from Mexico, are invasive in many countries. These plants produce thousands of wind- and water-dispersed seeds which enable them to spread rapidly and invade stream banks and moist habitats in areas with high rainfall. Two biological control agents, a shoot-galling fly, Procecidochares utilis Stone (Diptera: Tephri- tidae), and a leaf-spot fungus, Passalora ageratinae Crous & A.R. Wood (Mycosphaerellales: Mycosphaerellaceae), were introduced against A. adenophora in South Africa in 1984 and 1987, respectively. Both established but their impact is considered insufficient. Exploratory trips to Mexico between 2007 and 2009 to search for additional agents on A. adenophora produced a gregarious leaf-feeding moth, Lophoceramica sp. (Lepidoptera: Noctuidae), a stem-boring moth, probably Eugnosta medioxima (Razowski) (Lepidoptera: Tortricidae), a leaf-mining beetle, Pentispa fairmairei (Chapuis) (Coleoptera: Chrysomelidae: Cassidinae), and a leaf-rust, Baeodromus eupatorii (Arthur) Arthur (Pucciniales: Pucciniosiraceae) all of which have been subjected to preliminary investigations. Following its success in Hawaii, the white smut fungus, Entyloma ageratinae R.W. Barreto & H.C. Evans (Entylomatales: Entylomataceae), was introduced in 1989 to South Africa against A. riparia. Its impact has not been evaluated since its establishment in 1990 in South Africa. By 2009, however, A.
    [Show full text]
  • Biological Control of Lantana, Prickly Pear, and Hamakua Pamakani Inhawah: a Review and Update
    BIOLOGICAL CONTROL OF LANTANA, PRICKLY PEAR, AND HAMAKUA PAMAKANI INHAWAH: A REVIEW AND UPDATE Clifton J. Davis, Ernest Yoshioka, and Dina Kageler ABSTRACT The biological control of noxious weeds in Hawai`i has been carried on intermittently since 1902, when insects and diseases of lantana (Lantana camara) were sought in Mexico by the Territorial Board of Agriculture and Forestry (now Hawai`i Department of Agriculture). This approach was subsequently employed for the control of 20 other noxious weed pests between the 1940s and 1970s. Lantana was the first weed to be controlled by this method in the U.S. Results were very dramatic in some areas of the State, especially after later introductions by Hawai`ian and Australian entomologists resulted in heavy stress on lantana. In addition to lantana, excellent results have been obtained in the biological control of cacti (Opuntia spp.), and Hamakua pamakani (Ageratina riparia). Prior to the introduction of cactus insects in 1949, 66,000 a (26,400 ha) of Parker Ranch range lands on Hawai`i Island were infested with cacti. By 1965, 7,610 a (< 3,080 ha) remained infested, the result of three introduced insects and an accidentally introduced fungus disease; the red-fruited variety of cactus is particularly susceptible to the fungus. A spineless variety of the cactus occurs in the 'Ainahou-Poliokeawe Pali sector of Hawai`i Volcanoes National Park, and biocontrol efforts are in progress. With the introduction of insects from Mexico and a foliar fungus disease from Jamaica, Hamakua pamakani is under excellent control on many ranch as well as privately owned and government lands on Hawai`i Island.
    [Show full text]
  • Minnesota and Federal Prohibited and Noxious Plants List 6-22-2011
    Minnesota and Federal Prohibited and Noxious Plants List 6-22-2011 Minnesota and Federal Prohibited and Noxious Plants by Scientific Name (compiled by the Minnesota DNR’s Invasive Species Program 6-22-2011) Key: FN – Federal noxious weed (USDA–Animal Plant Health Inspection Service) SN – State noxious weed (Minnesota Department of Agriculture) RN – Restricted noxious weed (Minnesota Department of Agriculture) PI – Prohibited invasive species (Minnesota Department of Natural Resources) PS – State prohibited weed seed (Minnesota Department of Agriculture) RS – State restricted weed seed (Minnesota Department of Agriculture) (See explanations of these classifications below the lists of species) Regulatory Scientific Name Common Name Classification Aquatic Plants: Azolla pinnata R. Brown mosquito fern, water velvet FN Butomus umbellatus Linnaeus flowering rush PI Caulerpa taxifolia (Vahl) C. Agardh Mediterranean strain (killer algae) FN Crassula helmsii (Kirk) Cockayne Australian stonecrop PI Eichomia azurea (Swartz) Kunth anchored water hyacinth, rooted water FN hyacinth Hydrilla verticillata (L. f.) Royle hydrilla FN, PI Hydrocharis morsus-ranae L. European frog-bit PI Hygrophila polysperma (Roxburgh) T. Anders Indian swampweed, Miramar weed FN, PI Ipomoea aquatica Forsskal water-spinach, swamp morning-glory FN Lagarosiphon major (Ridley) Moss ex Wagner African oxygen weed FN, PI Limnophila sessiliflora (Vahl) Blume ambulia FN Lythrum salicaria L., Lythrum virgatum L., (or any purple loosestrife PI, SN variety, hybrid or cultivar thereof) Melaleuca quenquinervia (Cav.) Blake broadleaf paper bank tree FN Monochoria hastata (Linnaeus) Solms-Laubach arrowleaf false pickerelweed FN Monochoria vaginalis (Burman f.) C. Presl heart-shaped false pickerelweed FN Myriophyllum spicatum Linnaeus Eurasian water mifoil PI Najas minor All. brittle naiad PI Ottelia alismoides (L.) Pers.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Ageratina Riparia Global Invasive Species Database (GISD)
    FULL ACCOUNT FOR: Ageratina riparia Ageratina riparia System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Asterales Asteraceae Common name Synonym Eupatorium riparium , Regel Similar species Summary Ageratina riparia is a popular ornamental plant that has been widely spread from its home region in Central America. It is naturalised in many tropical regions of the world and is invasive in some such as Hawaii, Australia and the islands of the Indian Ocean. It can form dense quasi monospecific stands which crowd out native plants, limiting their regeneration. view this species on IUCN Red List Principal source: Compiler: Comité français de l'UICN (IUCN French Committee) & IUCN SSC Invasive Species Specialist Group (ISSG) Review: Pubblication date: 2008-03-14 ALIEN RANGE [1] AUSTRALIA [2] MAURITIUS [1] NEW ZEALAND [1] REUNION [1] UNITED STATES Red List assessed species 3: EX = 2; EN = 1; Mixophyes fleayi EN Rheobatrachus silus EX Taudactylus diurnus EX BIBLIOGRAPHY 7 references found for Ageratina riparia Managment information General information Global Invasive Species Database (GISD) 2021. Species profile Ageratina riparia. Pag. 1 Available from: http://www.iucngisd.org/gisd/species.php?sc=1253 [Accessed 06 October 2021] FULL ACCOUNT FOR: Ageratina riparia Baret, S., Rouget, M., Richardson, D. M., Lavergne, C., Egoh, B., Dupont, J., & Strasberg, D. 2006. Current distribution and potential extent of the most invasive alien plant species on La R?union (Indian Ocean, Mascarene islands). Austral Ecology, 31, 747-758. Summary: L objectif de ce papier est d identifier les zones prioritaires en mati?re de gestion des invasions biologiques ? La R?union en mod?lisant la distribution actuelle et potentiellle d une s?lection de plantes parmi les plus envahissantes.
    [Show full text]
  • Effects of Ageratina Adenophora Invasion on the Understory
    Article Effects of Ageratina adenophora Invasion on the Understory Community and Soil Phosphorus Characteristics of Different Forest Types in Southwest China Xiaoni Wu 1,2,3, Changqun Duan 1,3 , Denggao Fu 1,3,*, Peiyuan Peng 1,3, Luoqi Zhao 1,3 and Davey L. Jones 4,5 1 School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China; [email protected] (X.W.); [email protected] (C.D.); [email protected] (P.P.); [email protected] (L.Z.) 2 School of Agriculture and Life Sciences, Kunming University, Kunming 650214, China 3 International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Yunnan University, Kunming 650091, China 4 School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK; [email protected] 5 UWA School of Agriculture and Environment, University of Western Australia, Perth, WA 6009, Australia * Correspondence: [email protected]; Tel./Fax: +86-871-6503-3629 Received: 17 June 2020; Accepted: 23 July 2020; Published: 25 July 2020 Abstract: Understanding the influence of invasive species on community composition and ecosystem properties is necessary to maintain ecosystem functions. However, little is known about how understory plant communities and soil nutrients respond to invasion under different land cover types. Here, we investigated the effects of the invasive species Ageratina adenophora on the species and functional diversity of understory communities and on soil phosphorus (P) status in three forest types: CF, coniferous forest; MF, coniferous and broadleaf mixed forest; and EBF, evergreen broadleaf forest.
    [Show full text]
  • Mistflower (Ageratina Riparia)
    Sustainable Options Pest Plant Control 14 Mistflower (Ageratina riparia) Introduction Mistflower forms large dense colonies of semi-woody stems. It completely smothers existing plant communities, replacing native species and preventing regeneration. In pasture, Mistflower has no feed value, reduces carrying capacity and restricts movement of stock and machinery. It may be toxic to stock. Origin Mistflower is a native of Mexico Mistflower and the West Indies. It was introduced to New Zealand as an ornamental garden plant and was they contact the soil. first recorded as naturalised in 1931. Clusters of small white flowers Pest Plant Status are formed from August to In the Bay of Plenty region It is now common throughout the December. Seeds are dark Mistflower is classified as a Auckland region, as well as brown to black, 2mm long and Regional Surveillance Pest Northland, Coromandel and parts topped by fine white hairs. Plant. (Refer Regional of the Bay of Plenty. Mature plants may produce Environment Bay of Plenty’s between 10,000 and 100,000 Pest Management Strategy). Description seeds annually. Mistflower is a low growing, Land occupiers are not scrambling perennial herb that The toothed leaves are opposite required to control mistflower grows up to 1m high, each other and are up to 70mm but are encouraged to do so reproducing by seed and long and 25mm wide, tapering to and may receive assistance layering. each end. from Environment Bay of Plenty by way of approved It has a short thick root system Invasion programmes. from which fibrous roots extend The seeds of Mistflower are downwards and outwards.
    [Show full text]
  • HAWAII and SOUTH PACIFIC ISLANDS REGION - 2016 NWPL FINAL RATINGS U.S
    HAWAII and SOUTH PACIFIC ISLANDS REGION - 2016 NWPL FINAL RATINGS U.S. ARMY CORPS OF ENGINEERS, COLD REGIONS RESEARCH AND ENGINEERING LABORATORY (CRREL) - 2013 Ratings Lichvar, R.W. 2016. The National Wetland Plant List: 2016 wetland ratings. User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps region. Scientific Name Common Name Hawaii Status South Pacific Agrostis canina FACU Velvet Bent Islands Status Agrostis capillaris UPL Colonial Bent Abelmoschus moschatus FAC Musk Okra Agrostis exarata FACW Spiked Bent Abildgaardia ovata FACW Flat-Spike Sedge Agrostis hyemalis FAC Winter Bent Abrus precatorius FAC UPL Rosary-Pea Agrostis sandwicensis FACU Hawaii Bent Abutilon auritum FACU Asian Agrostis stolonifera FACU Spreading Bent Indian-Mallow Ailanthus altissima FACU Tree-of-Heaven Abutilon indicum FAC FACU Monkeybush Aira caryophyllea FACU Common Acacia confusa FACU Small Philippine Silver-Hair Grass Wattle Albizia lebbeck FACU Woman's-Tongue Acaena exigua OBL Liliwai Aleurites moluccanus FACU Indian-Walnut Acalypha amentacea FACU Alocasia cucullata FACU Chinese Taro Match-Me-If-You-Can Alocasia macrorrhizos FAC Giant Taro Acalypha poiretii UPL Poiret's Alpinia purpurata FACU Red-Ginger Copperleaf Alpinia zerumbet FACU Shellplant Acanthocereus tetragonus UPL Triangle Cactus Alternanthera ficoidea FACU Sanguinaria Achillea millefolium UPL Common Yarrow Alternanthera sessilis FAC FACW Sessile Joyweed Achyranthes
    [Show full text]
  • Proceedings of the First International Workshop on Biological Control of Chromolaena Odorata
    PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON BIOLOGICAL CONTROL OF CHROMOLAENA ODORATA February 29 - March 4, 1988 Bangkok, Thailand Proceedings of the First International Workshop on Biological Control of Chromolaena odorata February 29 through March 4, 1988 Bangkok, Thailand Sponsored by Australian Centre for International Agricultural Research Canberra, Australia National Research Council and the National Biological Control Research Center (NBCRC) Bangkok, Thailand Tropical and Subtropical Agricultural Research Program Cooperative State Research Service (83-CRSR-2-2291) United States Department of Agriculture Washington, D.C. and the Agricultural Experiment Station Guam Edited by R. Muniappan Published by Agricultural Experiment Station Mangilao, Guam 96923 U.S.A. July 1988 Above: Manual control of Chromolaena odorata in Mangalore, India, December 1984. Center: C. odorata defoliated by Pareuchaetes pseudoinslata in Guam 1987. Bottom: P. pseudoinsulata defoliated and dried C. odorata in a pasture at Rota, May 1987. 11 TABLE OF CONTENTS Workshop, Program 1 List of Participants 3 Introduction 5 - History and distribution of Chromolaena odorata 7 - Ecology of Chromolaena odorata in the Neotropics 13 - Ecology of Chromolaena odorata in Asia and the Pacific 21 - Prospects for the biological control of Chromolaena odorata (L.) R.M. King and H. Robinson 25 - A review of mechanical and chemical control of Chromolaena odorata in South Africa 34 - Rearing, release and monitoring Pareuchaetes pseudoinsulata 41 - Assessment of Chromolaena
    [Show full text]
  • The Chaparral Vegetation in Mexico Under Nonmediterranean Climate: the Convergence and Madrean-Tethyan Hypotheses Reconsidered1
    American Journal of Botany 85(10): 1398±1408. 1998. THE CHAPARRAL VEGETATION IN MEXICO UNDER NONMEDITERRANEAN CLIMATE: THE CONVERGENCE AND MADREAN-TETHYAN HYPOTHESES RECONSIDERED1 ALFONSO VALIENTE-BANUET,2,4 NOEÂ FLORES-HERNAÂ NDEZ,2 MIGUEL VERDUÂ ,3 AND PATRICIA DAÂ VILA3 2Instituto de EcologõÂa, Universidad Nacional AutoÂnoma de MeÂxico, Apartado Postal 70±275, UNAM, 04510 MeÂxico, D.F.; and 3UBIPRO, ENEP-Iztacala, Universidad Nacional AutoÂnoma de MeÂxico, Apartado Postal 314, MeÂxico, 54090, Tlalnepantla, MeÂxico A comparative study between an unburned evergreen sclerophyllous vegetation located in south-central Mexico under a wet-summer climate, with mediterranean regions was conducted in order to re-analyze vegetation and plant characters claimed to converge under mediterranean climates. The comparison considered ¯oristic composition, plant-community struc- ture, and plant characters as adaptations to mediterranean climates and analyzed them by means of a correspondence analysis, considering a tropical spiny shrubland as the external group. We made a species register of the number of species that resprouted after a ®re occurred in 1995 and a distribution map of the evergreen sclerophyllous vegetation in Mexico (mexical) under nonmediterranean climates. The TehuacaÂn mexical does not differ from the evergreen sclerophyllous areas of Chile, California, Australia, and the Mediterranean Basin, according to a correspondence analysis, which ordinated the TehuacaÂn mexical closer to the mediter- ranean areas than to the external group. All the vegetation and ¯oristic characteristics of the mexical, as well as its distribution along the rain-shadowed mountain parts of Mexico, support its origin in the Madrean-Tethyan hypothesis of Axelrod. Therefore, these results allow to expand the convergence paradigm of the chaparral under an integrative view, in which a general trend to aridity might explain ¯oristic and adaptive patterns detected in these environments.
    [Show full text]
  • A New Host Record for Oidaematophorus Beneficus Yano & Heppner (Lepidoptera: Pterophoridae)
    Proceedings of the Hawaiian Entomological Society (1998) 33: 151-152. SCIENTIFIC NOTE A New Host Record for Oidaematophorus beneficus Yano & Heppner (Lepidoptera: Pterophoridae) PATRICK CONANT Hawaii State Department of Agriculture, 1428 S King St. Honolulu. Hawai'i 96814, USA ABSTRACT. The Hamalcua pamakani plume moth, Oidaematophorus benefi cus, a purposely introduced biological control agent, was found feeding on Maui pamakani, Ageratitta adenophora, an unreported host plant. The find is significant because the new host is officially listed as a noxious weed, as is the original host, Ageratina riparia, known as Hamakua pamakani or spreading mist flower. INTRODUCTION Oidaematophorus beneficus Yano & Heppner was introduced into Hawai'i in 1973 from Mexico for control of Hamakua pamakani (Agerutina riparia (Regal) R. King & H. Robinson) by the Hawai'i Department of Agriculture (HDOA) (Nakao et al. 1975). The larvae are leaf feeders, normally causing smooth edged holes in the leaves. Two other nat ural enemies were also introduced to control this weed, the Hamakua pamakani gall fly Procecidochates alani Steyskal, and a fungus, Entyloma ageratinae (Davis et at. 1992). The authors reported that these 3 agents have substantially to completely controlled the weed in most infested pastures on Hawai'i Island. On 9 October 1991,1 collected sever al larvae of O. beneficus from the leaves of Maui pamakani (Ageratina adenophora (Spreng) R. King & H. Robinson) at the summit of Mount Ka'ala, O'ahu. Only 1 larva survived to emerge as an adult. Subsequently at the same site on 12 May 1994,1 collect ed several more larvae from Maui pamakani. Four specimens survived to become adults.
    [Show full text]
  • Asteraceae: Eupatorieae) from 0Axaco, Mexico and a Key to the A
    NUMBER 9 TURNER: THREE NEW SPECIES OF AGERATINA THREE NEW SPECIES OF AGERATINA (ASTERACEAE: EUPATORIEAE) FROM 0AXACO, MEXICO AND A KEY TO THE A. MAIRETIANA COMPLEX Billie L. Turner Plant Resources Center, The University of Texas, Austin, Texas 78712, USA Abstract: Three new species of Ageratina subg. Neogreenella are described from Mex­ ico, as follows: Ageratina mayajana, from Mpio. San Miguel Chimalapa, Oaxaca; Ageratina mazatecana, from Mpio. Santa Maria Chilchotla, Oaxaca; and Ageratina pochutlana from Districto Pochutla, Oaxaca. Although all of the taxa belong to the A. subg. Neogreenella, only the latter two relate to the A. mairetiana complex as defined by Turner (1987, 1997). A revised key to that complex is provided. Keywords: Asteraceae, Eupatorieae, Ageratina, Mexico, Oaxaca. As treated by Turner (1997), the Mex­ from or near the base, 9-15 cm long, 2.5- ican species of Ageratina number 131. The 3.5 cm wide, sparsely pubescent above and following three novelties bring the total to below to nearly glabrous, the margins re­ 134. motely serrate. HEADS numerous, arranged in terminal rounded cymes 5-15 cm across, Ageratina mayajana B. L. Turner, sp. nov. the ultimate peduncles sparsely hispidulous, (Fig. 1) mostly 2-10 mm long. INVOLUCRES broad­ ly campanulate; bracts subimbricate, 2-3 TYPE: MEXICO. OAXACA. Mpio. San seriate, the inner series ca. 3 mm long. RE­ Miguel, Chimalapa, Cerro Verde, al S del CEPTACLE convex, ca. 1 mm across, gla­ camino Benito Juarez-La Cienega, ca. 8 km brous. FLORETS 40-50 per head; corollas ca. en linea recta al SE de Benito Juarez, ca.
    [Show full text]