Meteor Shower Output Caused by Comet 15P/Finlay J Vaubaillon, a Egal, J Desmars, Kevin Baillie
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Solar System
5 The Solar System R. Lynne Jones, Steven R. Chesley, Paul A. Abell, Michael E. Brown, Josef Durech,ˇ Yanga R. Fern´andez,Alan W. Harris, Matt J. Holman, Zeljkoˇ Ivezi´c,R. Jedicke, Mikko Kaasalainen, Nathan A. Kaib, Zoran Kneˇzevi´c,Andrea Milani, Alex Parker, Stephen T. Ridgway, David E. Trilling, Bojan Vrˇsnak LSST will provide huge advances in our knowledge of millions of astronomical objects “close to home’”– the small bodies in our Solar System. Previous studies of these small bodies have led to dramatic changes in our understanding of the process of planet formation and evolution, and the relationship between our Solar System and other systems. Beyond providing asteroid targets for space missions or igniting popular interest in observing a new comet or learning about a new distant icy dwarf planet, these small bodies also serve as large populations of “test particles,” recording the dynamical history of the giant planets, revealing the nature of the Solar System impactor population over time, and illustrating the size distributions of planetesimals, which were the building blocks of planets. In this chapter, a brief introduction to the different populations of small bodies in the Solar System (§ 5.1) is followed by a summary of the number of objects of each population that LSST is expected to find (§ 5.2). Some of the Solar System science that LSST will address is presented through the rest of the chapter, starting with the insights into planetary formation and evolution gained through the small body population orbital distributions (§ 5.3). The effects of collisional evolution in the Main Belt and Kuiper Belt are discussed in the next two sections, along with the implications for the determination of the size distribution in the Main Belt (§ 5.4) and possibilities for identifying wide binaries and understanding the environment in the early outer Solar System in § 5.5. -
Meteoroid Stream Formation Due to the Extraction of Space Resources from Asteroids
Meteoroid Stream Formation Due to the Extraction of Space Resources from Asteroids Logan Fladeland(1), Aaron C. Boley(2), and Michael Byers(3) (1) UBC, Department of Physics and Astronomy, 6224 Agricultural Rd, Vancouver, BC V6T 1Z1 (Canada), [email protected] (2) UBC, Department of Physics and Astronomy, 6224 Agricultural Rd, Vancouver, BC V6T 1Z1 (Canada), [email protected] (3) UBC, Department of Political Science, 1866 Main Mall C425, Vancouver, BC V6T 1Z1 (Canada), [email protected] ABSTRACT Asteroid mining is not necessarily a distant prospect. Building on the earlier mission Hayabusa, two spacecraft (Hayabusa2 and OSIRIS-REx) have recently rendezvoused with near-Earth asteroids and will return samples to Earth. While there is significant science motivation for these missions, there are also resource interests. Space agencies and commercial entities are particularly interested in ices and water-bearing minerals that could be used to produce rocket fuel in deep space. The internationally coordinated roadmaps of major space agencies depend on utilizing the natural resources of such celestial bodies. Several companies have already created plans for intercepting and extracting water and minerals from near-Earth objects, as even a small asteroid could have high economic worth. The low surface gravity of asteroids could make the release of mining waste and the subsequent formation of debris streams a consequence of asteroid mining. Proposed strategies that would contain material during extraction could be inefficient or could still require the purposeful jettison of mining waste to avoid the need to manage unwanted mass. Since all early mining targets are expected to be near-Earth asteroids due to their orbital accessibility, these streams could be Earth-crossing and create risks for Earth and lunar satellite populations, as well as humans and equipment on the lunar surface. -
Meteor Showers' Activity and Forecasting
Meteoroids 2007 – Barcelona, June 11-15 About the cover: The recent fall of the Villalbeto de la Peña meteorite on January 4, 2004 (Spain) is one of the best documented in history for which atmospheric and orbital trajectory, strewn field area, and recovery circumstances have been described in detail. Photometric and seismic measurements together with radioisotopic analysis of several recovered specimens suggest an original mass of about 760 kg. About fifty specimens were recovered from a strewn field of nearly 100 km2. Villalbeto de la Peña is a moderately shocked (S4) equilibrated ordinary chondrite (L6) with a cosmic-ray-exposure age of 48±5 Ma. The chemistry and mineralogy of this genuine meteorite has been characterized in detail by bulk chemical analysis, electron microprobe, electron microscopy, magnetism, porosimetry, X-ray diffraction, infrared, Raman, and 57Mössbauer spectroscopies. The picture of the fireball was taken by M.M. Ruiz and was awarded by the contest organized by the Spanish Fireball Network (SPMN) for the best photograph of the event. The Moon is also visible for comparison. The picture of the meteorite was taken as it was found by the SPMN recovery team few days after the fall. 2 Meteoroids 2007 – Barcelona, June 11-15 FINAL PROGRAM Monday, June 11 Auditorium conference room 9h00-9h50 Reception 9h50-10h00 Opening event Session 1: Observational Techniques and Meteor Detection Programs Morning session Session chairs: J. Borovicka and W. Edwards 10h00-10h30 Pavel Spurny (Ondrejov Observatory, Czech Republic) et al. “Fireball observations in Central Europe and Western Australia – instruments, methods and results” (invited) 10h30-10h45 Josep M. -
Meteor Showers # 11.Pptx
20-05-31 Meteor Showers Adolf Vollmy Sources of Meteors • Comets • Asteroids • Reentering debris C/2019 Y4 Atlas Brett Hardy 1 20-05-31 Terminology • Meteoroid • Meteor • Meteorite • Fireball • Bolide • Sporadic • Meteor Shower • Meteor Storm Meteors in Our Atmosphere • Mesosphere • Atmospheric heating • Radiant • Zenithal Hourly Rate (ZHR) 2 20-05-31 Equipment Lounge chair Blanket or sleeping bag Hot beverage Bug repellant - ThermaCELL Camera & tripod Tracking Viewing Considerations • Preparation ! Locate constellation ! Take a nap and set alarm ! Practice photography • Location: dark & unobstructed • Time: midnight to dawn https://earthsky.org/astronomy- essentials/earthskys-meteor-shower- guide https://www.amsmeteors.org/meteor- showers/meteor-shower-calendar/ • Where to look: 50° up & 45-60° from radiant • Challenges: fatigue, cold, insects, Moon • Recording observations ! Sky map, pen, red light & clipboard ! Time, position & location ! Recording device & time piece • Binoculars Getty 3 20-05-31 Meteor Showers • 112 confirmed meteor showers • 695 awaiting confirmation • Naming Convention ! C/2019 Y4 (Atlas) ! (3200) Phaethon June Tau Herculids (m) Parent body: 73P/Schwassmann-Wachmann Peak: June 2 – ZHR = 3 Slow moving – 15 km/s Moon: Waning Gibbous June Bootids (m) Parent body: 7p/Pons-Winnecke Peak: June 27– ZHR = variable Slow moving – 14 km/s Moon: Waxing Crescent Perseid by Brian Colville 4 20-05-31 July Delta Aquarids Parent body: 96P/Machholz Peak: July 28 – ZHR = 20 Intermediate moving – 41 km/s Moon: Waxing Gibbous Alpha -
19. Near-Earth Objects Chelyabinsk Meteor: 2013 ~0.5 Megaton Airburst ~1500 People Injured
Astronomy 241: Foundations of Astrophysics I 19. Near-Earth Objects Chelyabinsk Meteor: 2013 ~0.5 megaton airburst ~1500 people injured (C) Don Davis Asteroids 101 — B612 Foundation Great Daylight Fireball: 1972 Earthgrazer: The Great Daylight Fireball of 1972 Tunguska Meteor: 1908 Asteroid or comet: D ~ 40 m ~10 megaton airburst ~40 km destruction radius The Tunguska Impact Tunguska: The Largest Recent Impact Event Barringer Crater: ~50 ky BP M-type asteroid: D ~ 50 m ~10 megaton impact 1.2 km crater diameter Meteor Crater — Wikipedia Chicxulub Crater: ~65 My BP Asteroid: D ~ 10 km 180 km crater diameter Chicxulub Crater— Wikipedia Comets and Meteor Showers Comets shed dust and debris which slowly spread out as they move along the comet’s orbit. If the Earth encounters one of these trails, we get a Breakup of a Comet meteor shower. Meteor Stream Perseid Meteor Shower Raining Perseids Major Meteor Showers Forty Thousand Meteor Origins Across the Sky Known Potentially-Hazardous Objects Near-Earth object — Wikipedia Near-Earth object — Wikipedia Origin of Near-Earth Objects (NEOs) ! WHAM Mars Some fragments wind up on orbits which are resonant with Jupiter. Their orbits grow more elliptical, finally entering the inner solar system. Wikipedia: Asteroid belt Asteroid Families Many asteroids are members of families; they have similar orbits and compositions (indicated by colors). Asteroid Belt Populations Inner belt asteroids (left) and families (right). Origin of Key Stages in the Evolution of the Asteroid Vesta Processed Family Members Crust Surface Magnesium-Sliicate Lavas Meteorites Mantle (Olivine) Iron-Nickle Core Stony Irons? As smaller bodies in the early Solar System Heavier elements sink to the Occasional impacts with other bodies fall together, the asteroid agglomerates. -
Sun Passes by Zubenelgenubi
The Wilderness Above Aileen O’Donoghue St. Lawrence University & Adirondack Public Observatory FOR 3/5/13 Comet Pan-STARRS The closing of the Isthmus of Panama, cutting off the equatorial flow between the Atlantic and Pacific oceans, was just about complete five million years ago when, in the far reaches of the solar system, 50,000 times farther from the sun than Earth, two hill-sized hulks of rock, dust and volatile ices had a close encounter. The gravitational tug sent one of them plunging toward the distant sun appearing slightly dimmer than Venus does to us. It has taken all these years for that hulk, now Comet Pan-STARRS, to plunge to the inner solar system. It was just inside the orbit of Saturn and very faint on June 6, 2011 when it was discovered by the Panoramic Survey Telescope and Rapid Response (Pan-STARRS) facility in Hawaii. In March of 2012, J.J. Gonzalez of Leon, Spain was the first amateur astronomer to spot it. It became visible with binoculars in January of this year and had formed a tail by February that southern hemisphere observers have imaged. Today, Comet Pan-STARRS will pass closest to the Earth at a distance a little greater than that to the sun. However, it is not yet visible from our latitude. On Thursday we may be able to spot it very low on the western horizon about ½ an hour after sunset. As the diagram shows, it will rise away from the horizon through the next couple weeks and gradually fade. On Sunday, the first day of Daylight Saving Time, it will make its closest approach to the sun at about 28 million miles. -
Five Wild Years Reminiscences of the Leonids Experience 1998 – 2002
Proceedings IMC Bollmannsruh 2003 29 Five wild years Reminiscences of the Leonids experience 1998 – 2002 Daniel Fischer K¨onigswinter, Germany Abstract This is not a scientific review of the surprises, discoveries and sensations the Leonids brought from 1998 to 2002, but a look back by one observer (and science writer) who often witnessed first-hand what went on in the sky — and also how science finally got its grip on the elusive and striking phenomenon of meteor storms. It was a truly an experience with a deep impact (no pun intended) that is not likely to be repeated... I admit it: before about ten years ago I had considered meteor observing, especially with your own eye, as one of the most useless branches of (amateur) astronomy, with no serious data reduction possible and dubious results. This was not true, at least at that time, of course (see Roggemans, 2004), but the progress made by the IMO had not been widely known to the outside world. Not in- terested at all in systematic meteor watching, I was struck by the idea of meteor storms nonetheless: I had read a lot about the fabulous Leonids storm of 1966 and eagerly devoured two big reviews of meteor storms in British journals. Beech et al (1995) had described these rare phenomena as both spectacular and little understood, while Mason (1995) predicted — using a crude model — storms of the Leonids with ZHRs around 5000 in 1998 and 1999. Would it be worth chasing after those possible storms? I was already travelling a lot for astronomy’s sake, both in the quest for eclipses (1983, 1988, 1990, 1991, 1992, 1994, 1995 and so on) and comets (Halley in 1986), but for meteors? Then again, Brad Schaefer, the American astronomer famous for his professional work on astronomy with the naked eye, had told me in 1988 that for him one meteor storm would be “worth ten eclipses”. -
Reading Canadian Literature in a Light-Polluted Age
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 12-16-2013 12:00 AM After Dark: Reading Canadian Literature in a Light-Polluted Age David S. Hickey The University of Western Ontario Supervisor Dr. D.M.R. Bentley The University of Western Ontario Graduate Program in English A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © David S. Hickey 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Literature in English, North America Commons Recommended Citation Hickey, David S., "After Dark: Reading Canadian Literature in a Light-Polluted Age" (2013). Electronic Thesis and Dissertation Repository. 1805. https://ir.lib.uwo.ca/etd/1805 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. After Dark: Reading Canadian Literature in a Light-Polluted Age Monograph by David Hickey Graduate Program in English A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in English The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Hickey 2013 i Abstract A threat to nocturnal ecosystems and human health alike, light pollution is an unnecessary problem that comes at an enormous cost. The International Dark-Sky Association has recently estimated that the energy expended on light scatter alone is responsible for no less than twelve million tons of carbon dioxide and costs municipal governments at least $1 billion annually (“Economic Issues” 2). -
The Leonid Meteor Shower3
135 Chapter 5: Observational Record of the Leonid Meteor Shower3 5.1 Introduction Meteor Science in its modern form was born on the morning of November 13, 1833. It was the great Leonid return of that year which provoked widespread interest in the subject after being observed extensively in North America (Olmsted, 1834). With its unique nature of producing strong showers every 33 years, the Leonid shower is probably the most extensively written-about meteoroid stream. This observational database permits useful constraints to be placed on modern theories of the stream’s evolution. Numerous past works have examined Leonid records both ancient (e.g. Hasegawa 1993) and more modern (e.g. Mason 1995). However, in virtually all of these secondary works, no examination of the original records was attempted and the actual activity profiles, locations of peak activity and other characteristics are ill-defined. Our motivation is to re- examine as many original accounts of the shower contains usable numerical information as possible and determine the characteristics of past showers, independent of the many secondary accounts which appear in the literature, in an effort to better understand the stream’s past activity and interpret its basic physical properties. These data will also provide the basis for comparison with the numerical modelling of the stream, which is developed in Chapter 6. We examine the available original records of the Leonids for modern returns of the shower (here defined to be post-1832). In doing so, we attempt to establish characteristics of the stream near its peak activity, as borne out by the original records, for the years near the passage of 55P/Tempel-Tuttle. -
Planetary Defense Final Report I
Team Project - Planetary Defense Final Report i Team Project - Planetary Defense Final Report ii Team Project - Planetary Defense Cover designed by: Tihomir Dimitrov Images courtesy of: Earth Image - NASA US Geological Survey Detection Image - ESA's Optical Ground Station Laser Tags ISS Deflection Image - IEEE Space Based Lasers Collaboration Image - United Nations General Assembly Building Outreach Image - Dreamstime teacher with students in classroom Evacuation Image - Libyan City of Syrte destroyed in 2011 Shield Image - Silver metal shield PNG image The cover page was designed to include a visual representation of the roadmap for a robust Planetary Defense Program that includes five elements: detection, deflection, global collaboration, outreach, and evacuation. The shield represents the idea of defending our planet, giving confidence to the general public that the Planetary Defense elements are reliable. The orbit represents the comet threat and how it is handled by the shield, which represents the READI Project. The curved lines used in the background give a sense of flow representing the continuation and further development for Planetary Defense programs after this team project, as we would like for everyone to be involved and take action in this noble task of protecting Earth. The 2015 Space Studies Program of the International Space University was hosted by the Ohio University, Athens, Ohio, USA. While all care has been taken in the preparation of this report, ISU does not take any responsibility for the accuracy of its content. -
Meteors Ebook, Epub
METEORS PDF, EPUB, EBOOK Melissa Stewart | 32 pages | 01 Jun 2015 | National Geographic Kids | 9781426319433 | English | London, United Kingdom Meteors PDF Book These particles might affect climate, both by scattering electromagnetic radiation and by catalyzing chemical reactions in the upper atmosphere. This year, with a 60 percent illuminated moon rising near pm local summer time, one could easily dismiss the probably of seeing anything extraordinary from this source. Oxford Dictionary of Astronomy. Early Earth experienced many large meteor impacts that caused extensive destruction. At this time, the moon is located near the sun and is invisible at night. Stony meteoroids without these features are called " achondrites ", which are typically formed from extraterrestrial igneous activity; they contain little or no extraterrestrial iron. Meteorites are bits of the solar system that have fallen to the Earth. What's Up - January More than 1, people were injured in the blast, mostly due to broken glass. They have three main classifications: iron, stone, and stony-iron. If a meteor survives its transit of the atmosphere to come to rest on the Earth's surface, the resulting object is called a meteorite. Photographing a meteor shower can be an exercise in patience, but with these tips — and some good fortune — you might be rewarded with a great photo. Meteor radars can measure atmospheric density and winds by measuring the decay rate and Doppler shift of a meteor trail. When a meteor comes hurtling toward Earth, the high-pressure air in front of it seeps into its pores Meteorite Impacts in History. Another rare phenomenon is a meteor procession , where the meteor breaks up into several fireballs traveling nearly parallel to the surface of Earth. -
The Chant Meteor Procession of 1913 – Towards a Descriptive Model
American Journal of Astronomy and Astrophysics 2018; 6(2): 31-38 http://www.sciencepublishinggroup.com/j/ajaa doi: 10.11648/j.ajaa.20180602.11 ISSN: 2376-4678 (Print); ISSN: 2376-4686 (Online) The Chant Meteor Procession of 1913 – Towards a Descriptive Model Martin Beech 1, 2, Mark Comte 2 1Campion College at the University of Regina, Saskatchewan, Canada 2Department of Physics, The University of Regina, Saskatchewan, Canada Email address: To cite this article: Martin Beech, Mark Comte. The Chant Meteor Procession of 1913 – Towards a Descriptive Model . American Journal of Astronomy and Astrophysics . Vol. 6, No. 2, 2018, pp. 31-38. doi: 10.11648/j.ajaa.20180602.11 Received : April 5, 2018; Accepted : April 19, 2018; Published : June 28, 2018 Abstract: From an observational standpoint the Chant Meteor Procession of 9 February, 1913 is particularly remarkable, being especially noted for its long ground track of at least 15,000 km, and for the slow motion and near parallel to the horizon paths adopted by the meteors. The circumstances surrounding the Procession are re-considered here in terms of the successive entry of multiple meteoroid clusters. These clusters are in turn considered to be derived from a temporarily captured Earth orbiting object that has undergone disaggregation. It is suggested that the general observational accounts of the Procession can be explained through the sequential entry of multiple meteoroid clusters that moved through the Earth’s atmosphere on grazing-incident trajectories. It is further suggested that the parent object to the Procession, prior to its breakup, may have been no more than 3 to 4-m across.