Feasibility of Biological Control of Common Ragweed (Ambrosia Artemisiifolia) a Noxious and Highly Allergenic Weed in Europe

Total Page:16

File Type:pdf, Size:1020Kb

Feasibility of Biological Control of Common Ragweed (Ambrosia Artemisiifolia) a Noxious and Highly Allergenic Weed in Europe Feasibility of biological control of common ragweed (Ambrosia artemisiifolia) a noxious and highly allergenic weed in Europe Conveyors: D. Coutinot,1 U. Starfinger,2 R. McFadyen,3 M.G. Volkovitsh,4 L. Kiss,5 M. Cristofaro6 and P. Ehret7 Introduction • reported impacts of A. artemisiifolia in several Eu- ropean countries on human health, plant health and Established in Europe for more than a century, the com- nature conservation, mon ragweed, Ambrosia artemisiifolia L., is the most • expressed their concern about an ongoing spread of polluting invasive weed causing allergies to European the species in Europe, populations in various countries and is causing enor- • urged authorities in countries concerned to prevent mous health costs. At present, there is no effort from further import and spread or to control existing pop- European decision makers to implement biological con- ulations, trol at the European level against common ragweed. • gave a set of recommendations for all private or public bodies concerned. Presentation of results of the international The experts considered biological control as an im- meeting of experts, Vienna (AGES), portant tool in the strategy of managing A. artemisi- 27 September 2006 (Uwe Starfinger) ifolia: On the invitation of BBA, Braunschweig, and • A. artemisiifolia is a suitable target for biological AGES, Vienna, experts from the fields of agronomy, control in natural, ruderal and settlement areas, as botany, ecology, plant protection and road maintenance well as along traffic ways. from seven European countries gathered for a one-day • From a risk assessment point of view, the sub-tribe workshop to discuss the problems caused by Ambrosia Ambrosiineae does not include crop species in artemisiifolia and the availability and effectiveness of Europe. control measures. Results and individual contributions • The risk to A. maritima, the only native species of are published at the BBA website (www.bba.bund.de/ the sub-tribe in Europe, has to be assessed. ambrosia). In particular, the experts • Success of biological control of a closely related species (Parthenium hysterophorus) and A. artemi- siifolia in Australia is a good argument to establish biological control in Europe. 1 European Biological Control Laboratory, USDA–ARS, Campus Inter- • Additional suitable biological control agents have national de Baillarguet, CS 90013 Montferrier-sur-Lez, 34988 St. Gely been identified in the native area ofA. artemisiifolia du Fesc, France <[email protected]>. and have to be investigated further. 2 Biologische Bundesanstalt für Land und Forstwirtschaft, Abteilung für nationale und internationale Angelegenheiten der Pflanzengesundheit, A follow-up meeting is planned for 2008 at the next Messeweg 11/12, 38104 Braunschweig, Germany <u.starfinger@bba. NEOBIOTA conference in Prague. de>. 3 CRC for Australian Weed Management, Block B, 80 Meiers Road, In- dooroopilly, QLD 4068, Australia <[email protected]> Success of biological control against 4 Laboratory of Insect Systematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya Embankment 1, St.Petersburg common ragweed in Australia 199034, Russia <[email protected]>. (Rachel McFadyen) 5 Plant Protection Institute, Hungarian Academy of Sciences, H-1525 Budapest, PO Box 102, Hungary <[email protected]>. Artemisia artemisiifolia is classified as a declared 6 ENEA-BIOTEC/BBCA, Lgo. Santo Stefano, 3 Anguillara Sabazia, ‘class 2’ weed in two eastern states of Australia: ‘can po- Rome 00061, Italy <[email protected]>. tentially cause substantial economic and environmental 7 DGAL/SDQPV, Ministère de l’Agriculture et de la Pêche, DRAF/ SRPV ZAC d’Alco, BP 3056 34034 Montpellier, France <pierre. damage and land managers must take reasonable steps to [email protected]>. keep their land free of these weeds.’ Biological controls 717 XII International Symposium on Biological Control of Weeds have been implemented as a management option for in North America. Certain of these have already been ragweed in Australia. Several insect species have been introduced and established within the framework of a introduced for biological control of common ragweed, classical biological control against Ambrosia in vari- two of which are established and giving good control. ous countries but never in Europe. The list of all re- The leaf-feeding beetle Zygogramma bicolorata Pallis- leased biological control agents was presented during ter (Coleoptera: Chrysomelidae) was introduced from the workshop; the list below is those who have been Mexico in 1980 as a biocontrol agent for the weed reported as established: Parthenium hysterophorus L. (Asteraceae). Defoliation has immediate negative effects on plant performance Epiblema strenuana (Walker) (Lepidoptera: Tortric- and as a consequence affects the growth, reproduction idae) and fitness of the plants. In some locations and years, Introduced from Mexico in 1982 in Australia where Z. bicolorata caused 85–100% defoliation, resulting it is widely established. in significant reductions in plant density, growth and Introduced from Mexico in 1991 in China: under flower production. East coast areas receiving greater evaluation. and more frequent rainfall had higher weed density and consequently higher beetle density. The stem- Zygogramma bicolorata Pallister (Coleoptera: Chryso- galling moth Epiblema strenuana (Walker) (Lepidop- melidae) tera: Tortricidae) was introduced from Mexico in 1982 Introduced from Mexico in 1980 in Australia where for biological control of P. hysterophorus and became it is well established. widely established within 2 years of introduction. E. strenuana now occurs throughout the range of its Zygogramma disrupta Rogers (Coleoptera: Chrysome- host plants parthenium, Noogoora burr (Xanthium lidae) occidentale Bertol.) and annual ragweed (A. artemisi- Introduced from the US in 1990 in Russia; the spe- ifolia L.) in Australia. Galls can kill seedling plants and cies is under evaluation. severely reduce growth of larger plants, and as a result annual ragweed is no longer a serious weed in eastern Zygogramma suturalis (Fabricius) (Coleoptera: Chrys- Australia. omelidae) Introduced from Canada & US in 1978 in the Repub- Biological control of common ragweed, lic of Georgia and released in Abhazia (West Georgia) Ambrosia artemisiifolia L. in Russia and Lagodekhi region (East Georgia): the establish- ment needs to be confirmed and evaluated. (Mark Volkovitsh) Introduced from Canada & US in 1978 in Ukraine: The ragweed leaf beetle, Zygogramma suturalis F. establishment is not confirmed. Introduced from Canada was introduced to Russia from the USA and Canada in & US in 1978 in Russia, where the species is estab- 1978 to control the common ragweed, Ambrosia arte- lished. Introduced from US in 1985 in the ex Yugoslavia, misiifolia. The initial phase of this introduction was a where establishment needs to be evaluated. population explosion with more than a 30-fold yearly Introduced from Canada in 1988 in China, where it increase in number and population density (up to 5000 was recovered in some provinces. Introduced from US adults/m2 in aggregations). in 1980 in Australia, but not established. In 2005–2006, we conducted selective quantitative sampling over the whole area infested by A. artemi- The use of insect biological control agents within siifolia in southern Russia. The average population the framework of a classical biological control program density of the ragweed leaf beetle was very low: 0.001 against Ambrosia does not seem to be under consider- adults/m2 in crop rotations and 0.1 adults/m2 in more ation to date by decision-makers in Europe. stable habitats. In an overwhelming majority of in- spected populations, the impact on the targeted weed was negligible. However, having regard to the spectac- List of potential fungal biological ular success achieved in the permanent experimental control agents for Ambrosia artemisiifolia plot in 1983–1985, it is still possible that stable pro- & Species under consideration in Hungary tected field nurseries could be a promising method ofZ. (Levente Kiss) suturalis propagation for biological control of ragweed in surrounding areas. There are several fungal pathogens of common rag- weed (A. artemisiifolia) that have already been con- List of the known insect biological control sidered as potential biological control agents of this noxious weed. Protomyces gravidus, causing an en- agents (Dominique Coutinot) demic stem gall disease on giant ragweed (A. trifida) in Many potential insect biological control agents ex- the USA, was evaluated as a potential mycoherbicide ert a pressure on Ambrosia in its native environment against both giant and common ragweed. A Phoma sp. 718 Feasibility of biological control of common ragweed isolated from A. artemisiifolia in Canada performed • host specificity studies of the potential selected can- well in inundative experiments alone and especially in didate arthropods, combination with a leaf-eating beetle, Ophraella com- • selection of one or more (specific) plant-pathogens muna. Puccinia xanthii, a microcyclic autoecious rust (fungi), reported to infect common ragweed in some parts of • insect–pathogen interaction studies, the USA, was proposed as a classical biological control • evaluation of the impact of potential agents on the agent outside North America. To our knowledge, none weed in a confined field environment, of these, or any other fungal pathogens, are currently • evaluation of potential
Recommended publications
  • Invasive Species Management Summary Parthenium Hysterophorus
    Fall 08 Invasive species management summary Parthenium hysterophorus David Mountain, Bryony Taylor, Julien Godwin September 2016 KNOWLEDGE FOR LIFE Parthenium hysterophorus management summary This report is the Copyright of CAB International, on behalf of the sponsors of this work where appropriate. It presents unpublished research findings, which should not be used or quoted without written agreement from CAB International. Unless specifically agreed otherwise in writing, all information herein should be treated as confidential. Parthenium weed (Parthenium hysterophorus) A search in CABDirect returned very few relevant references for Parthenium hysterophorus IPM, therefore the search term “Parthenium hysterophorus Biocontrol” was used instead and this returned 195 records. Of these the first 50 records were used in the analysis of common approaches. In addition to analysis of the first 50 records, a ‘sample’ analysis was also carried out on the titles of all records returned to assess most common predators and pathogens used for biocontrol in the titles. The summary spreadsheet can be found here Geography Parthenium hysterophorus is native to the southern USA, central and South America. It was reported as a common weeds in Southern Africa in the mid 1980s (CPC) and Vietnam around 1922 (Nguyen Thi Lan et al., 2011). Most commonly studied approaches The most common approach identified from the first 50 records returned using the CAB direct search were using predators to control P. hysterophorus, followed by pathogens (Figure 1). What is not apparent from this search is the extent to which rural communities use hand weeding; hand weeding hazardous as the weed is strongly allogenic and affects humans and livestock.
    [Show full text]
  • Prospects for Biological Control of Ambrosia Artemisiifolia in Europe: Learning from the Past
    DOI: 10.1111/j.1365-3180.2011.00879.x Prospects for biological control of Ambrosia artemisiifolia in Europe: learning from the past EGERBER*,USCHAFFNER*,AGASSMANN*,HLHINZ*,MSEIER & HMU¨ LLER-SCHA¨ RERà *CABI Europe-Switzerland, Dele´mont, Switzerland, CABI Europe-UK, Egham, Surrey, UK, and àDepartment of Biology, Unit of Ecology & Evolution, University of Fribourg, Fribourg, Switzerland Received 18 November 2010 Revised version accepted 16 June 2011 Subject Editor: Paul Hatcher, Reading, UK management approach. Two fungal pathogens have Summary been reported to adversely impact A. artemisiifolia in the The recent invasion by Ambrosia artemisiifolia (common introduced range, but their biology makes them unsuit- ragweed) has, like no other plant, raised the awareness able for mass production and application as a myco- of invasive plants in Europe. The main concerns herbicide. In the native range of A. artemisiifolia, on the regarding this plant are that it produces a large amount other hand, a number of herbivores and pathogens of highly allergenic pollen that causes high rates of associated with this plant have a very narrow host range sensitisation among humans, but also A. artemisiifolia is and reduce pollen and seed production, the stage most increasingly becoming a major weed in agriculture. sensitive for long-term population management of this Recently, chemical and mechanical control methods winter annual. We discuss and propose a prioritisation have been developed and partially implemented in of these biological control candidates for a classical or Europe, but sustainable control strategies to mitigate inundative biological control approach against its spread into areas not yet invaded and to reduce its A.
    [Show full text]
  • Identification and Characterization Of
    IDENTIFICATION AND CHARACTERIZATION OF GLYPHOSATE-RESISTANT COMMON RAGWEED ( Ambrosia artemisiifolia L.) A Thesis presented to The Faculty of the Graduate School University of Missouri-Columbia In Partial Fulfillment of The Requirements for the Degree Master of Science by JUSTIN MICHAEL POLLARD Dr. Reid J. Smeda, Thesis Supervisor May 2007 The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled IDENTIFICATION AND CHARACTERIZATION OF GLYPHOSATE-RESISTANT COMMON RAGWEED ( Ambrosia artemisiifolia L.) presented by Justin M. Pollard a candidate for the degree of Masters of Science and hereby certify that, in their opinion, it is worthy of acceptance. Major Professor: Dr. Reid J. Smeda Associate Professor Thesis Committee: Dr. Wayne C. Bailey Associate Professor Dr. Kelly A. Nelson Research Assistant Professor ACKNOWLEDGEMENTS To start, I would to thank my advisor Dr. Reid J. Smeda for allowing me the opportunity to further my education and broaden my horizons. His willingness to provide guidance and support along with friendship has made the preparation of this manuscript possible. Thank you to my committee members, Dr. Wayne C. Bailey and Kelly A. Nelson for all their wonderful guidance and impeccable knowledge. Thank you again. Special thanks to Dr. Brent Sellers for his guidance, knowledge, and friendship. I would also like to thank the Weed Science Department including Dr. Kevin Bradley and Jim Wait for their support. Special thanks are in order for Dr. Mark Ellersieck for all of his statistical guidance. I must also extend thanks to the staff of the Bradford Research and Extension Center for their willingness to lend a hand anytime it was needed and allowing me to conduct my field research.
    [Show full text]
  • Chrysomelidae), a Promising Agent
    THERMAL PHYSIOLOGY AND PREDICTED DISTRIBUTION OF ZYGOGRAMMA BICOLORATA (CHRYSOMELIDAE), A PROMISING AGENT FOR THE BIOLOGICAL CONTROL OF THE INVASIVE WEED PARTHENIUM HYSTEROPHORUS IN SOUTH AFRICA HELEN KING Submitted in fulfilment of the academic requirements for the degree of MASTER OF SCIENCE in the Discipline of Entomology School of Biological and Conservation Sciences Faculty of Science and Agriculture University of KwaZulu-Natal Pietermaritzburg 2008 i PREFACE The experimental work described in this dissertation was carried out in the School of Biological and Conservation Sciences, University of KwaZulu-Natal, Pietermaritzburg and at the Cedara Weeds Unit (ARC – Plant Protection Research Institute) from January 2006 to January 2008, under the supervision of Doctor Terence Olckers and co- supervision of Doctor Andrew McConnachie and Professor Colleen Downs. This dissertation, submitted for the degree of Master of Science in the Faculty of Science and Agriculture, University of KwaZulu-Natal, Pietermaritzburg, represents original work by the author and has not otherwise been submitted in any form for any degree or diploma to any University. Where use has been made of the work of others, it is duly acknowledged in the text. …………………………. Helen King January 2008 I certify that the above statement is correct ………………………….. Doctor Terence Olckers Supervisor ………………………….. Doctor Andrew McConnachie Co-supervisor ………………………….. Professor Colleen T. Downs Co-supervisor January 2008 i ii ABSTRACT Parthenium hysterophorus (Asteraceae), classified as an emerging weed in South Africa, has become abundant throughout large parts of southern and eastern Africa. In South Africa it has invaded areas in KwaZulu-Natal, Mpumalanga, the North West Province and Limpopo. A biological control programme against parthenium weed was launched in South Africa in 2003, based on the success achieved in Australia.
    [Show full text]
  • Species List for Garey Park-Inverts
    Species List for Garey Park-Inverts Category Order Family Scientific Name Common Name Abundance Category Order Family Scientific Name Common Name Abundance Arachnid Araneae Agelenidae Funnel Weaver Common Arachnid Araneae Thomisidae Misumena vatia Goldenrod Crab Spider Common Arachnid Araneae Araneidae Araneus miniatus Black-Spotted Orbweaver Rare Arachnid Araneae Thomisidae Misumessus oblongus American Green Crab Spider Common Arachnid Araneae Araneidae Argiope aurantia Yellow Garden Spider Common Arachnid Araneae Uloboridae Uloborus glomosus Featherlegged Orbweaver Uncommon Arachnid Araneae Araneidae Argiope trifasciata Banded Garden Spider Uncommon Arachnid Endeostigmata Eriophyidae Aceria theospyri Persimmon Leaf Blister Gall Rare Arachnid Araneae Araneidae Gasteracantha cancriformis Spinybacked Orbweaver Common Arachnid Endeostigmata Eriophyidae Aculops rhois Poison Ivy Leaf Mite Common Arachnid Araneae Araneidae Gea heptagon Heptagonal Orbweaver Rare Arachnid Ixodida Ixodidae Amblyomma americanum Lone Star Tick Rare Arachnid Araneae Araneidae Larinioides cornutus Furrow Orbweaver Common Arachnid Ixodida Ixodidae Dermacentor variabilis American Dog Tick Common Arachnid Araneae Araneidae Mangora gibberosa Lined Orbweaver Uncommon Arachnid Opiliones Sclerosomatidae Leiobunum vittatum Eastern Harvestman Uncommon Arachnid Araneae Araneidae Mangora placida Tuft-legged Orbweaver Uncommon Arachnid Trombidiformes Anystidae Whirligig Mite Rare Arachnid Araneae Araneidae Mecynogea lemniscata Basilica Orbweaver Rare Arachnid Eumesosoma roeweri
    [Show full text]
  • Parthenium Hysterophorus
    Parthenium hysterophorus Ragweed parthenium, false ragweed, Santa Maria Parthenium hysterophorus L. Family: Asteraceae Description: Annual herb to 3 ft tall, branched, hairy, faint longitudinal stripes on stems. Leaves 8 inches long by 4 inches wide, deeply lobed. Flower heads small, many, white. Greek: parthenos, virgin, in reference to only the female flowers being fertile; hysterophorus, old generic name of similar meaning(5, 70). Distribution: Tropical American origin. Common in mesic pastures, roadsides, and waste areas on Kauaÿi, Oÿahu, Molokaÿi, Maui, and Hawai‘i(70). Occurs in south- ern USA to southern Brazil and northern Argentina. In- troduced accidentally into India in 1956 and now in- fests most of India, where it is called “congressweed” after the white cap that is the symbol of the Congress political party. Found in southern China, Taiwan, Viet- lelopathic (suppressive) and causes dermatitis and other nam, some Pacific islands, and some African countries. allergic reactions in humans and livestock, especially Introduced into Queensland, Australia, in the 1940s with horses. Reduces beef production by A$16.5 million an- aircraft parts and in 1958 in grass seed from Texas. Did nually in Queensland(1). Spreading into pastures and not spread quickly until 1970s. Now covers 420,000 roadsides in Hawai‘i. acres, or 10% of Queensland. Also infests New South Wales and Northern Territory, Australia(1). It is on the Management: Effective herbicides include 2,4-D, list of Australia’s 20 most unwanted weeds(10). High water atrazine, hexazinone, and metsulfuron(1). Triclopyr is ef- requirement. Does best in neutral to high pH soils, less fective on most Asteraceae.
    [Show full text]
  • Alien Leaf Beetles of European Russia: Native Ranges, Invasion History, Biology and Vectors of Dispersal
    bioRxiv preprint doi: https://doi.org/10.1101/252510; this version posted January 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Alien leaf beetles of European Russia: native ranges, invasion history, biology and vectors of dispersal Andrzej O. Bieńkowski A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskiy Prospect, 119071 Moscow, Russia e-mail: [email protected] Marina J. Orlova-Bienkowskaja (corresponding author) A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskiy Prospect, 119071 Moscow, Russia e-mail: [email protected] Acknowledgements We would like to thank N.V. Okhrimenko, R.N. Ishin, G.O. Japoshvili, A.G. Koval, T.A. Mogilevich, P.V. Romantsov, Y.N. Kovalenko, P.N. Petrov, A.I. Prikhodko, A.B. Ruchin, G.A. Korostov, V.I. Filippov, E.V. Iljina, N.E. Nikolaeva and M.M. Dolgin for the possibility to study specimens from their collections, to S.Ya. Reznik, V.V. Martynov, M.E. Sergeev, S.A. Mosyakin, A.G. Moseyko, H. Özdikmen for valuable information on leaf beetle distribution and to A.S. Konstantinov for valuable remarks on the manuscript. The study was supported by Russian Science Foundation, Project No 16-14-10031. Disclosure statement No potential conflict of interest was reported by the authors. Funding This work was supported by Russian Science Foundation under Grant 16-14-10031.
    [Show full text]
  • The Additive Effect of a Stem Galling Moth and a Competitive Plant On
    Biological Control 150 (2020) 104346 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon The additive effect of a stem galling moth and a competitive plant on T parthenium weed under CO2 enrichment ⁎ Asad Shabbira,b, , K. Dhileepanc, M.P. Zaluckid, Steve W. Adkinsb a The University of Sydney, School of Life and Environmental Sciences, Camden 2570, Australia b School of Agriculture & Food Sciences, The University of Queensland, Gatton 4343, Australia c Biosecurity Queensland, Department of Agriculture and Fisheries, Ecosciences Precinct, Boggo Road, Dutton Park 4102, Australia d School of Biological Sciences, The University of Queensland, St Lucia 4072, Australia GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Keywords: Parthenium weed (Parthenium hysterophorus) is a highly invasive plant that has invaded many parts of world Plant competition including Australia. The present study reports on the effects of rising [CO2] on the performance of one of its Biological weed control biological control agents, stem-galling moth (Epiblema strenuana) when combined with a competitive plant, Epiblema strenuana buffel grass (Cenchrus cilliaris). The study was carried out under controlled environment facilities during Parthenium hysterophorus −1 2010–11. P. hysterophorus when grown under elevated [CO2] of 550 µmol mol , produced a greater biomass Climate change − (27%), attained greater stature (31%), produced more branches (45%) and seeds plant 1 (20%), than those −1 grown at ambient [CO2] of 380 µmol mol .Buffel grass reduced the biomass and seed production of P. hys- terophorus plants by 33% and 22% under ambient [CO2] and by 19% and 17% under elevated [CO2], respec- tively. The combined effect of buffel grass and E.
    [Show full text]
  • Literature Cited in Chrysomela from 1979 to 2003 Newsletters 1 Through 42
    Literature on the Chrysomelidae From CHRYSOMELA Newsletter, numbers 1-42 October 1979 through June 2003 (2,852 citations) Terry N. Seeno, Past Editor The following citations appeared in the CHRYSOMELA process and rechecked for accuracy, the list undoubtedly newsletter beginning with the first issue published in 1979. contains errors. Revisions will be numbered sequentially. Because the literature on leaf beetles is so expansive, Adobe InDesign 2.0 was used to prepare and distill these citations focus mainly on biosystematic references. the list into a PDF file, which is searchable using standard They were taken directly from the publication, reprint, or search procedures. If you want to add to the literature in author’s notes and not copied from other bibliographies. this bibliography, please contact the newsletter editor. All Even though great care was taken during the data entering contributors will be acknowledged. Abdullah, M. and A. Abdullah. 1968. Phyllobrotica decorata DuPortei, Cassidinae) em condições de laboratório. Rev. Bras. Entomol. 30(1): a new sub-species of the Galerucinae (Coleoptera: Chrysomelidae) with 105-113, 7 figs., 2 tabs. a review of the species of Phyllobrotica in the Lyman Museum Collec- tion. Entomol. Mon. Mag. 104(1244-1246):4-9, 32 figs. Alegre, C. and E. Petitpierre. 1982. Chromosomal findings on eight species of European Cryptocephalus. Experientia 38:774-775, 11 figs. Abdullah, M. and A. Abdullah. 1969. Abnormal elytra, wings and other structures in a female Trirhabda virgata (Chrysomelidae) with a Alegre, C. and E. Petitpierre. 1984. Karyotypic Analyses in Four summary of similar teratological observations in the Coleoptera. Dtsch. Species of Hispinae (Col.: Chrysomelidae).
    [Show full text]
  • Honorary Members IOBC Global
    Honorary Members IOBC Global IOBC Global awards honorary memberships to persons who have played an important role in the history of IOBC and biological control. A short biography of each of the honoured biological control scientists is given below and can be found on the website of IOBC Global. Prof.dr. Alfred S. Balachowsky, France (2008) Dr. Franz Bigler, Switzerland (2012) Dr. Emile Biliotti, France (2008) Karel Bolckmans (2016) Dr. Ernst F. Boller, Switzerland (2008) Prof.dr. Vanda Bueno, Brazil (2012) Dr. Matthew Cock, United Kingdom (2012) Prof.dr. Paul H. DeBach, United States of America (2008) Prof.dr. Vittorio L. Delucchi, Switzerland (1996) Prof.dr. Jost M. Franz, Germany (2008) Dr. Dave Gillespie Canada (2012) Dr. Pierre Grison, France (2008) Prof.dr. Ken S. Hagen, United States of America (2008) Dr. Peter Harris, Canada (2008) Prof.dr. Yoshimi Hirose (2008) Prof.dr. Heikki Hokkanen, Finland (2012) Prof.dr. Carl B. Huffaker, United States of America (2008) Prof. Dr. Marshall Johnson, United States of America (2016) Prof.dr. Li-Ying Li, China (2008) Prof.dr. Jerzy J. Lipa, Poland (2008) Prof. Dr. Joop C. van Lenteren, The Netherlands (2016) Prof.dr. Robert F. Luck, United States of America (2005) Dr. Peter Mason, Canada (2016) Dr. Rachel McFadyen, Australia (2012) Dr. Rangaswamy Muniappan, United States of America (2012) Dr. Peter Neuenschwander, Switzerland (2008) Prof.dr Stefan K. Pruszyński, Poland (2008) Dr. Les Shipp, Canada (2012) Prof.dr. Filippo Silvestri, Italy (2008) Prof.dr. Catherine and M. Tauber, United States of America (2012) Prof.dr. Jeff Waage, United States of America (2012) Dr.
    [Show full text]
  • Gall-Inducing Insects and Biological Control of Parthenium
    Plant Protection Quarterly Vol.16(2) 2001 63 problems due to parthenium also occur in several parts of Asia, Africa and the Car- Gall-inducing insects and biological control of ibbean (Navie et al. 1996, Mahadevappa Parthenium hysterophorus L. (Asteraceae) 1997). Parthenium hysterophorus is a vigorous A,B A B and fast-growing annual plant that pro- S.K. Florentine , A. Raman and K. Dhileepan duces nearly 60 000 florets, each bearing A The University of Sydney – Orange, PO Box 883, Orange, New South Wales one seed (K. Dhileepan, unpublished ob- 2800, Australia. servations). The seeds persist in the soil B Tropical Weeds Research Centre, Department of Natural Resources, PO Box for a long time, with nearly 50% of the 187, Charters Towers, Queensland 4820, Australia. seed bank remaining viable up to six years (Navie et al. 1998). Different chemical, biological and cul- tural methods have been adopted to man- Summary Introduction age this weed in Australia and in other Weeds invade agricultural ecosystems Parthenium hysterophorus L. (parthenium parts of the world. Use of herbicides has and degrade productive land. Parthen- weed, white top, false ragweed) was acci- proved uneconomic (Holman and Dale ium hysterophorus, introduced acciden- dentally introduced into Australia from 1981). Biological control offers great po- tally into Australia from the United the United States of America. It was first tential to minimize and manage P. hystero- States of America, not only affects pro- recorded in Queensland in the 1950s phorus, especially in the heavily-infested ductive land, but also causes severe (Everist 1976). At present it is reported areas of Central Queensland (McFadyen health problems to humans.
    [Show full text]
  • Spatial Demo-Genetic Model for Studying Phenomena Observed During Introduction of the Ragweed Leaf Beetle Zygogramma Suturalis F
    Spatial demo-genetic model for studying phenomena observed during introduction of the ragweed leaf beetle Zygogramma suturalis F. in the South of Russia Yuri TYUTYUNOV Oleg KOVALEV Lyudmila TITOVA Sergey BERDNIKOV CITES-2013, Section 5. Mathematical methods in ecology, Petrozavodsk, 31.08 – 06.09.2013 2 History of biological system Ambrosia artemisiifolia L. Zygogramma suturalis F. Dr.Sc. Oleg V. KOVALEV XVIII-XIX – Europe 1978 – Stavropol Krai (ZIN RAS, St. Petersburg) 1910th – South of Russia 1984 – North Caucasus Author of the biological 1940th – outbreak in SU 1986 – Palearctics method for suppression 1980th – modern period of common ragweed 3 Observed phenomena ! " Solitary population wave (SPW) of the ragweed leaf beetle population Helicopter view of SPW front (Kovalev, Vechernin 1986, 1989; Kovalev 2004) 4 Observed phenomena ! " Rapid (within 5-6 years) development of flight of the ragweed leaf beetle Changes in axillary apparatus including development of wing muscles and axillary sclerites Flying subspecies Zygogramma suturalis (Kovalev 1989; Brodsky 1989; volatus Kovalev (Kovalev 1989; Kovalev 2004) Kovalev 2004; Arzanov 2012) 5 Specific demands to the model ! Explicit description of spatial dynamics ! Considering both random (diffusion) and active directed movements of phytophage population density, stimulated by heterogeneity of food resource (trophotaxis) ! Accounting for spatial heterogeneity by marking plots unfit for vegetation ! Ability to keep track of changes in genetic structure of phytophage population ! Accounting for the Allee effect (Allee 1931; Stephens, Sutherland, 1999) in phytophage population ! Universality, applicability to broad class of similar systems We combine explicit modelling of animal spatial behaviour (Govorukhin et al 2000; Arditi et al 2001; Tyutyunov et al 2002; 2009; Sapoukhina 2003) with demogenetic equations of V.A.
    [Show full text]