Isolation of Enantiomers Via Diastereomer Crystallisation

Total Page:16

File Type:pdf, Size:1020Kb

Isolation of Enantiomers Via Diastereomer Crystallisation Isolation of Enantiomers via Diastereomer Crystallisation Parathy Anandamanoharan 12 March 2010 A thesis submitted for the degree of Doctor of Philosophy of the University of London Department of Chemical Engineering University College London Torrington Place London WC1E 7JE ABSTRACT Enantiomer separation remains an important technique for obtaining optically active materials. Even though the enantiomers have identical physical properties, the difference in their biological activities make it important to separate them, in order to use single enantiomer products in the pharmaceutical and fine chemical industries. In this project, the separations of three pairs of diastereomer salts ( Fig1 ) by crystallisation are studied, as examples of the ‘classical’ resolution of enantiomers via conversion to diastereomers. The lattice energies of these diastereomer compounds are calculated computationally (based on realistic potentials for the dominant electrostatic interactions and ab initio conformational energies). Then the experimental data are compared with the theoretical data to study the efficiency of the resolving agent. CH 3 R +- NH 3 OOC Phenylethylammonium R= CH 3 2-phenylpropanoate R= C2H5 2-phenylbutanoate R= OH mandelate Fig1 Three pairs of diastereomer salts studied All three fractional crystallisations occurred relatively slowly, and appeared to be thermodynamically controlled. Separabilities by crystallisation have been compared with measured phase equilibrium data for the three systems studied. All crystallisations appear to be consistent with ternary phase diagrams. In the case of R = CH 3, where the salt-solvent ternaries exhibited eutonic behaviour, the direction of isomeric enrichment changed abruptly on passing through the eutonic composition. In another example, R = OH, the ternaries indicated near-ideal solubility behaviour of the salt mixtures, and the separation by crystallisation again corresponded. i Further, new polymorphic structures and generally better structure predictions have been obtained through out this study. In the case of R = CH 3, an improved structure of the p-salt has been determined. In the case of R = C 2H5, new polymorphic forms of the n-salts, II and III, have been both discovered and predicted. This work also demonstrates that chemically related organic molecules can exhibit different patterns of the relative energies of the theoretical low energy crystal structures, along with differences in the experimental polymorphic behaviour. This joint experimental and computational investigation provides a stringent test of the reliability of lattice modelling to explain the origins of chiral resolution via diastereomer formation. All the experimental and computational works investigated in this thesis are published (see APPENDIX 1 ). ii ACKNOWLEDGEMENTS I would like to thank my supervisors, Professor Alan Jones and Professor Peter Cains for the continuous guidance, time, advice, support and encouragement throughout my project. It has been a privilege to work with them, as they have taught me to resolve complex problems throughout my project and all I have learned from them will be invaluable tools in my future career. I would like to say special thanks to Dr Panagiotis (Panos) Karamertzanis, Professor Sally (Sarah) Price and all the other helpful staffs from the Chemistry Department, at UCL, for guidance on using the molecular modelling tools and scientific advices throughout my studies and also for performing some of the characterisation studies. A special thanks to Ghulam Warsi and other technical staffs for providing help with the materials necessary to carry out this project and for their patience. Finally, I would also like to thank the EPSRC organisation for funding my research through a departmental research studentship. iii TABLE OF CONTENTS Abstract i Acknowledgements iii Table of contents iv List of Tables ix List of figures xi 1 INTRODUCTION 1 2 SURVEY OF LITERATURE AND METHODS 9 2-1 Stereochemistry and Crystallisation 9 2-1-1 Stereochemistry 9 2-1-2 Enantiomeric molecules or enantiomers 11 2-1-3 Diastereomeric molecules or diastereomers 13 2-1-4 Crystallisation 14 2-1-5 Racemic crystallisation 15 2-1-6 Diastereomeric crystallisation 15 2-1-7 Separation of racemates via classical resolution 18 2-1-8 Separation of racemates via resolution by direct and preferential crystallisations 18 2-1-9 Separation of racemates via kinetic resolution 20 2-1-10 Resolution of racemates by diastereomeric salt formation 21 2-2 Crystallography and polymorphs 22 2-2-1 Crystallography 22 2-2-1-1 Crystal structures 23 2-2-1-2 Packing and symmetry 27 2-2-1-3 Space group nomenclatures 29 2-2-1-4 Forces responsible for crystal packing – Hydrogen bonding 30 2-2-1-5 A given substance can crystallise in different ways 34 2-2-1-6 How crystals form? 34 2-2-1-7 Nucleation 35 2-2-1-8 Crystal growth 38 iv 2-2-1-9 Survey of crystallisation methods 38 2-2-2 Polymorphism 40 2-2-2-1 Definitions 40 2-2-2-2 Effect of additives 43 2-2-2-3 Examples 44 2-2-2-4 Polymorphic compounds in the Cambridge Structural Database 45 2-2-2-5 Powder Diffraction File 46 2-2-2-6 What polymorphism can do in resolution? 46 2-2-2-7 How to choose polymorphs in pharmaceutical applications? 47 2-3 Phase Equilibria 48 2-3-1 Phase Equilibria 48 2-3-1-1 The Gibbs phase rule 48 2-3-1-2 Triangular phase diagrams 50 2-3-1-3 The lever rule 51 2-3-1-4 Solubility diagrams of diastereomer salt mixtures 52 2-3-2 Solubility Measurements 57 2-4 Analysis and characterisation methods and techniques 60 2-4-1 Chromatographic methods-HPLC 60 2-4-2 Diffraction methods 64 2-4-2-1 X-ray powder diffraction methods 65 2-4-2-2 Single-crystal X-ray diffraction methods 65 2-4-3 Calorimetric methods 66 2-5 Previous work in this field 67 2-6 Molecular modelling 70 2-6-1 Introduction 70 2-6-2 The assumptions which may allow lattice energy calculations to be used to predict diastereomeric resolution 71 2-6-3 Lattice energy 74 2-6-3-1 Modelling the lattice energy of simple ionic solids 74 2-6-3-2 Lattice energy for molecular salts 76 2-6-3-3 Molecular flexibility 77 2-6-3-4 Programs used for calculations in this thesis 77 v 2-7 Summary 79 3 EXPERIMENTAL AND MODELLING METHODS 80 3-1 Experimental methods 80 3-1-1 Solubility measurements 81 3-1-2 Ternary equilibrium measurements 84 3-1-3 Separability measurements 87 3-1-4 HPLC measurements 88 3-1-5 Preparation of RRA2 single-crystal diastereomer salt samples for structure determination 90 3-1-6 Further experimental work to determine different RRA2 polymorphs 91 3-1-6-1 By changing acid:base ratio 91 3-1-6-2 By replacing ethanol with other solvents 92 3-1-6-3 By changing the pH of ethanol 92 3-1-7 Slurry experiments 93 3-1-7-1 Choice of solvent 93 3-1-7-2 Slurry experiment 94 3-1-8 Characterisation of crystallisation samples 94 3-1-9 Experimental relative stabilities 95 3-2 Modelling methods 96 3-2-1 Experimental lattice energy minimisation calculation – ExptMinExpt 96 3-2-2 Ion conformational energy or Intramolecular energy - ∆EIntra 98 3-2-3 Theoretical lattice energy minimisation calculation accounting for conformational contributions to lattice energy – ExptMinCOpt 100 3-3 Summary 101 4 EXPERIMENTAL RESULTS AND DISCUSSION 102 4-1 Experimental crystal structures and their structural characteristics 102 4-1-1 Experimental crystal structures 102 4-1-2 Experimental relative stability 109 4-2 Solubility measurements 111 vi 4-2-1 Solubility curve of (R)-1-phenylethylammonium- (R,S)-2-phenylpropanoate A1 112 4-2-2 Solubility curve of (R)-1-phenylethylammonium- (R,S)-2-phenylbutyrate A2 113 4-2-3 Solubility curve of (R)-1-phenylethylammonium- (R,S)-mandelate A3 114 4-3 Phase equilibria 115 4-3-1 Phase equilibria of system (R)-1-phenylethylammonium-(R,S)-2- phenylpropanoate A1 115 4-3-2 Phase equilibria of system (R)-1-phenylethylammonium-(R,S)-2- phenylbutyrate A2 118 4-3-3 Phase equilibria of system (R)-1-phenylethylammonium-(R,S)- mandelate A3 120 4-4 Separability Measurements 121 4-4-1 Separability measurements of (R)-1-phenylethylammonium- (R,S)-2-phenylpropanoate A1 122 4-4-2 Separability measurements of (R)-1-phenylethylammonium- (R,S)-2-phenylbutyrate A2 124 4-4-3 Separability measurements of (R)-1-phenylethylammonium- (R,S)-mandelate A3 126 4-5 Further study on polymorph determination 127 4-5-1 Extra work results to determine different (R)-1-phenylethylammonium- (R)-2-phenylbutanoate (RRA2) polymorphs 127 4-5-2 Slurry experiment results 128 4-6 Discussion on the experimental results 129 4-7 Summary 133 5 MODELLING RESULTS AND DISCUSSION 134 5-1 Experimental lattice energy minimisation calculations (ExpMinExpt) 134 5-2 The crystal energy to predict the relative thermodynamic stability 136 5-3 Discussion on the modelling results 139 5-4 Summary 143 6 CONCLUSION 144 vii 7 FUTURE WORK 147 LIST OF PUBLICATIONS 150 REFERENCES 151 APPENDIX 1: PUBLISHED JOURNALS 161 APPENDIX 2: THE CRYSTALLOGRAPHIC INFORMATION FILES (CIF) FOR THE DETERMINED AND REDETERMINED STRUCTURES 186 APPENDIX 3: PACKING DIAGRAMS 190 APPENDIX 4: THERMAL MEASUREMENTS FOR A2 192 APPENDIX 5: THERMAL MEASUREMENTS FOR A3 194 APPENDIX 6: DATA CORRESPONDING TO ENTHALPY ∆H AND ENTROPY ∆S CALCULATIONS 196 APPENDIX 7: EQUILIBRIUM OF A1 AT 30 AND 50°C 198 APPENDIX 8: EQUILIBRIUM OF A2 AT 30 AND 50°C 204 APPENDIX 9: EQUILIBRIUM OF A3 AT 30 AND 50°C 208 APPENDIX 10: SEPARABILITY CALCULATION SHEET OF A1 AT DIFFERENT TEMPERATURES 211 APPENDIX 11: SEPARABILITY CALCULATION SHEET OF A2 AT DIFFERENT TEMPERATURES 215 APPENDIX 12: SEPARABILITY CALCULATION SHEET OF A3 30°C 218 viii
Recommended publications
  • Chiral Resolution Screening and Purification Kits Brochure
    Maybridge Chiral Resolution Screening and Purification Kits Offering rapid access to optically pure chiral compounds Maybridge Chiral Resolution Screening and Purification Kits Introduction Diastereomeric crystallization is a commonly used effective process to obtain optically pure chiral compounds from their racemic mixtures. However, choosing the optimal conditions for the process; e.g., combination of resolving agents and solvents, is time-consuming, tedious and labor-intensive. Maybridge Chiral Resolution Screening and Purification kits provide scientists with a quick and systematic approach to find the best separation conditions under which the target compound can be isolated with the highest yield and optical purity. Key features and benefits • Rapid Screening – the kits include 384 different combinations of resolving agents and solvents, increasing the chances of finding the optimal separation conditions • High Performance – development time reduced to one day • Efficient – as little as 0.4mmol of racemate required • Ready to Use – resolving agents and solvents are pre-dispensed in 96-well plates • Convenient – the screening kits provide positive results identifiable by a quick visual or optical inspection, and the purification and recovery kit allows easy recovery and purification of the enantiomers Types of Chiral Resolution Screening and Purification Kits Amount Plate Product name Description Selection guide racemate Product code type required Maybridge Chiral • 4 x 96 plates containing 32 different acidic Identifies optimal
    [Show full text]
  • From Synthetic Chemistry and Stereoselective Biotransformations
    PP Periodica Polytechnica From Synthetic Chemistry and Chemical Engineering Stereoselective Biotransformations to Enzyme Biochemistry – The Bioorganic Chemistry Group at the Budapest 59(1), pp. 59-71, 2015 University of Technology and Economics DOI: 10.3311/PPch.7390 Creative Commons Attribution b Zoltán BOROS1, Gábor HORNYÁNSZKY1, József NAGY1, László POPPE1 * research article Received 04 March 2014; accepted after revision 05 May 2014 Abstract 1 Introduction The activity of Bioorganic Chemistry Group (BCG) within 1.1 Scientific background of the Bioorganic Chemistry Department of Organic Chemistry and Technology at Budapest Research Group University of Technology and Economics is related to various The activity of Bioorganic Chemistry Group (BCG) of areas of synthetic chemistry, biotechnology and enzymology. Department of Organic Chemistry and Technology at Budapest This review gives an overview on the research activity of the University of Technology and Economics is related to various group covering development of synthetic organic chemistry areas of synthetic chemistry, selective biocatalysis [1] and methods; stereoselective biotransformations with lipases, enzymology with major emphasis on development of novel ammonia-lyases and further biocatalysts in batch and tools for stereoselective synthesis [2]. continuous-flow reactions; novel enzyme immobilization One of the main challenges facing organic chemistry is methods; and enzyme structural and mechanistic studies by the rational synthesis of an ever growing number of complex, experimental and computational techniques. optically active natural products and their analogues [3]. According to the regulation of FDA production of chiral Keywords drugs, agrochemicals, fine chemicals has been allowed in synthetic organic chemistry, stereoselective biotransformation, enantiomerically pure form, because it often happens that only continuous-flow reaction, lipase, ammonia-lyase, enzyme one of the two enantiomers shows the required therapeutical immobilization, enzyme structure, enzyme mechanism, QM/ effect [4].
    [Show full text]
  • Separation of the Mixtures of Chiral Compounds by Crystallization
    1 Separation of the Mixtures of Chiral Compounds by Crystallization Emese Pálovics2, Ferenc Faigl1,2 and Elemér Fogassy1* 1Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 2Research Group for Organic Chemical Technology, Hungarian Academy of Sciences, Budapest, Hungary 1. Introduction Reaction of a racemic acid or base with an optically active base or acid gives a pair of diastereomeric salts. Members of this pair exhibit different physicochemical properties (e.g., solubility, melting point, boiling point, adsorbtion, phase distribution) and can be separated owing to these differences. The most important method for the separation of enantiomers is the crystallization. This is the subject of this chapter. Preparation of enantiopure (ee~100%) compounds is one of the most important aims both for industrial practice and research. Actually, the resolution of racemic compounds (1:1 mixture of molecules having mirror-imagine relationship) still remains the most common method for producing pure enantiomers on a large scale. In these cases the enantiomeric mixtures or a sort of their derivatives are separated directly. This separation is based on the fact that the enantiomeric ratio in the crystallized phase differs from the initial composition. In this way, obtaining pure enantiomers requires one or more recrystallizations. (Figure 1). The results of these crystallizations (recrystallizations) of mixtures of chiral compounds differ from those observed at the achiral compounds. Expectedly, not only the stereoisomer in excess can be crystallized, because the mixture of enantiomers (with mirror image relationship) follows the regularities established from binary melting point phase diagrams, and ternary composition solubility diagrams, respectively, as a function of the starting enantiomer proportion.
    [Show full text]
  • Cross-Linked Protein Crystal Technology in Bioseparation and Biocatalytic Applications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aaltodoc Helsinki University of Technology, Department of Chemical Technology Technical Biochemistry Report 1/2004 Espoo 2004 TKK-BE-8 CROSS-LINKED PROTEIN CRYSTAL TECHNOLOGY IN BIOSEPARATION AND BIOCATALYTIC APPLICATIONS Antti Vuolanto Dissertation for the degree of Doctor in Science in Technology to be presented with due permission of the Department of Chemical Technology for public examination and debate in Auditorium KE 2 (Komppa Auditorium) at Helsinki University of Technology (Espoo, Finland) on the 20th of August, 2004, at 12 noon. Helsinki University of Technology Department of Chemical Technology Laboratory of Bioprocess Engineering Teknillinen korkeakoulu Kemian osasto Bioprosessitekniikan laboratorio Distribution: Helsinki University of Technology Laboratory of Bioprocess Engineering P.O. Box 6100 FIN-02015 HUT Tel. +358-9-4512541 Fax. +358-9-462373 E-mail: [email protected] ©Antti Vuolanto ISBN 951-22-7176-1 (printed) ISBN 951-22-7177-X (pdf) ISSN 0359-6621 Espoo 2004 Vuolanto, Antti. Cross-linked protein crystal technology in bioseparation and biocatalytic applications. Espoo 2004, Helsinki University of Technology. Abstract Chemical cross-linking of protein crystals form an insoluble and active protein matrix. Cross-linked protein crystals (CLPCs) have many excellent properties including high volumetric activity and stability. In this thesis CLPC technology was studied in bioseparation and biocatalytic applications. A novel immunoaffinity separation material, cross-linked antibody crystals (CLAC), was developed in this thesis for enantiospecific separation of a chiral drug, finrozole. Previously, the preparation of an antibody Fab fragment ENA5His capable of enantiospecific affinity separation of the chiral drug has been described.
    [Show full text]
  • Diastereomers Diastereomers
    Diastereomers Diastereomers: Stereoisomers that are not mirror images. enantiomer (R) (S) (S) (R) diastereomers diastereomer diastereomer enantiomer (R) (S) (R) (S) Diastereomers Diastereomers: Stereoisomers that are not mirror images. (R) enantiomer (S) (S) (R) diastereomer To draw the enantiomer of a molecule with chiral centers, invert stereochemistry at all chiral centers. (R) To draw a diastereomer of a molecule (R) with chiral centers, invert stereochemistry at only some chiral centers. Meso Compounds Meso: A molecule that contains chiral centers, but is achiral. 3 Are these molecules chiral? (R) (S) (These are diff eren t f rom th e 3 molecules I just showed; they have 2 -Cl’s, rather than 1 -Cl & 1 -OH. enantiomer (R) (S) (R) (S) These molecules are chiral mirror images of one another. (R,R) and (S,S) are not the same. Meso Compounds Meso: A molecule that contains chiral centers, but is achiral. 3 enantiomer ? (R) (S) (S) (R) no! 3 same molecule! enantiomer (R) (S) (R) (S) Meso Compounds Meso: A molecule that contains chiral centers, but is achiral. 3 enantiomer ? (R) (S) (S) (R) no! 3 same molecule! If a molecule • contains the same number of (R) and (S) stereocenters, and • those stereocenters have identical groups attached, then the molecule is achiral and meso. Meso Compounds Meso: A molecule that contains chiral centers, but is achiral. 3 same molecule (R) (S) (S) (R) 3 meso diastereomers meso diastereomer diastereomer enantiomer (R) (S) (R) (S) chiral chiral Properties of Enantiomers Most physical properties of enantiomers are identical. diethyl-(R,R)-tartrate diethyl-(S,S)-tartrate boiling point 280 °C 280 °C melting point 19 °C 19 °C density 1.204 g/mL 1.204 g/mL refractive index 1.447 1.447 i.e., chirality does not affect most physical properties.
    [Show full text]
  • Chapter 4: Stereochemistry Introduction to Stereochemistry
    Chapter 4: Stereochemistry Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane Me Me Me C Me H Bu Bu Me Me 2-methylhexane H H mirror Me rotate Bu Me H 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane H C Et Et Me Pr Pr 3-methylhexane Me Me H H mirror Et rotate H Me Pr 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane .Compounds that are not superimposable with their mirror image are called chiral (in Greek, chiral means "handed") 3-methylhexane is a chiral molecule. .Compounds that are superimposable with their mirror image are called achiral. 2-methylhexane is an achiral molecule. .An atom (usually carbon) with 4 different substituents is called a stereogenic center or stereocenter. Enantiomers Et Et Pr Pr Me CH3 Me H H 3-methylhexane mirror enantiomers Et Et Pr Pr Me Me Me H H Me H H Two compounds that are non-superimposable mirror images (the two "hands") are called enantiomers. Introduction To Stereochemistry Structural (constitutional) Isomers - Compounds of the same molecular formula with different connectivity (structure, constitution) 2-methylpentane 3-methylpentane Conformational Isomers - Compounds of the same structure that differ in rotation around one or more single bonds Me Me H H H Me H H H H Me H Configurational Isomers or Stereoisomers - Compounds of the same structure that differ in one or more aspects of stereochemistry (how groups are oriented in space - enantiomers or diastereomers) We need a a way to describe the stereochemistry! Me H H Me 3-methylhexane 3-methylhexane The CIP System Revisited 1.
    [Show full text]
  • Enzyme Supported Crystallization of Chiral Amino Acids
    ISBN 978-3-89336-715-3 40 Band /Volume Gesundheit /Health 40 Gesundheit Enzyme supported crystallization Health Kerstin Würges of chiral amino acids Mitglied der Helmholtz-Gemeinschaft Kerstin Würges Kerstin aminoacids Enzyme supported ofchiral crystallization Schriften des Forschungszentrums Jülich Reihe Gesundheit / Health Band / Volume 40 Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences (IBG) Biotechnology (IBG-1) Enzyme supported crystallization of chiral amino acids Kerstin Würges Schriften des Forschungszentrums Jülich Reihe Gesundheit / Health Band / Volume 40 ISSN 1866-1785 ISBN 978-3-89336-715-3 Bibliographic information published by the Deutsche Nationalbibliothek. The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Publisher and Forschungszentrum Jülich GmbH Distributor: Zentralbibliothek 52425 Jülich Phone +49 (0) 24 61 61-53 68 · Fax +49 (0) 24 61 61-61 03 e-mail: [email protected] Internet: http://www.fz-juelich.de/zb Cover Design: Grafische Medien, Forschungszentrum Jülich GmbH Printer: Grafische Medien, Forschungszentrum Jülich GmbH Copyright: Forschungszentrum Jülich 2011 Schriften des Forschungszentrums Jülich Reihe Gesundheit / Health Band / Volume 40 D 61 (Diss. Düsseldorf, Univ., 2011) ISSN 1866-1785 ISBN 978-3-89336-715-3 The complete volume ist freely available on the Internet on the Jülicher Open Access Server (JUWEL) at http://www.fz-juelich.de/zb/juwel Neither this book nor any part of it may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.
    [Show full text]
  • Formation and Crystallization Based Separation of Diastereomeric Salts
    Formation and Crystallization based Separation of Diastereomeric Salts Der Fakultät für Verfahrens- und Systemtechnik der Otto-von-Guericke-Universität Magdeburg zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) am: 03.05.2012. vorgelegte Dissertation (Einreichungsdatum) von: M.Sc. Venkata Subbarayudu Sistla i Schriftliche Erklärung Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Insbesondere habe ich nicht die Hilfe einer Kommerziellen Promotionsberatung in Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als Ganzes auch noch nicht veröffentlicht. (Magdeburg, 03.05.2012) (M.Sc. Venkata Subbarayudu, Sistla) ii It’s an immense pleasure for me to dedicate this work to my Uncle M.K. Ramatarakam garu and to my parents Sistla. Lakshmi Savitri Annapurna Devi and Sistla.Venkateswarlu. iii Acknowledgement First of all, I bow in front of the lord Sita-Rama, Who is there along with me all along in my life and made me to follow the path of truth in all the situations when my mind was not stable. I would like to convey my profound gratitude to Professor Andreas Seidel-Morgenstern and apl. Professor Heike Lorenz as they gave me this great opportunity to explore myself and in the area of Crystallization. I am proud to be in the group PCG under the guidance of Prof.
    [Show full text]
  • APPLICATIONS in ASYMMETRIC SYNTHESIS Carlos
    324 SYNTHESIS OF OCTAHYDROBENZO - 1, 2,3 - DIAZAPHOSPHOLIDINE - 2 - OXIDES AND THEIR DERIVATIVES: APPLICATIONS IN ASYMMETRIC SYNTHESIS DOI: http://dx.medra.org/ 10.17374/targets.2020.23.324 Carlos Cruz - Hernández a , José M. Landeros a , Eusebio Juaristi * a,b a Departamento de Química, Centro de Investigación y de E studios Avanzados, Avenida IPN 2508, 07360 Ciudad de México, Mexico b El Colegio Nacional, Luis González Obregón 23, Centro Histórico, 06020 Ciudad de México, Mexico (e - mail: [email protected]; [email protected]) Abstract. This chapter outlines recent efforts devoted to the synthesis of heterocycles that include the octahydrobenzo - 1,3,2 - diazaphospholidine - 2 - oxide fragment, as well as their application in asymmetri c synthesis. The first part of this review provides a brief discussion of the general structural characteristics of this phosphorus - containing heterocyclic scaffold. The second part describes the synthetic paths that were undertaken to synthesize the desir ed heterocycles , as well as some relevant considerations pertaining the spectroscopic characterization of the phosphorus - containing heterocycles of interest . The third part provides several illustrative examples where the novel chiral heterocycles were employed in ena ntioselective synthesis. The new phosphorus - containing heterocycles proved useful : i) as chiral auxiliaries in nucleophilic addition reactions, as well as as imine activators in electrophilic addition reactions; ii ) as c hiral ligands i n nucleophilic allylation and crotonylation of prochiral aldehydes , and iii) as c hiral organocatalysts in enantioselective aldol, Michael, and cascade reactions. Contents 1. Introduction 2. Synthesis of the octahydrobenzo - 1,3,2 - diazaphospho lidine - 2 - oxide s 2.1 . Conformational and configurational assignments 3 .
    [Show full text]
  • Enantiomeric Resolution and Absolute Configuration of a Chiral Δ-Lactam
    molecules Article Enantiomeric Resolution and Absolute Configuration of a Chiral δ-Lactam, Useful Intermediate for the Synthesis of Bioactive Compounds 1, 1, 1 1 Roberta Listro y, Giacomo Rossino y, Serena Della Volpe , Rita Stabile , Massimo Boiocchi 2 , Lorenzo Malavasi 3, Daniela Rossi 1,* and Simona Collina 1 1 Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy; [email protected] (R.L.); [email protected] (G.R.); [email protected] (S.D.V.); [email protected] (R.S.); [email protected] (S.C.) 2 Centro Grandi Strumenti, University of Pavia, via Bassi 21, 27100 Pavia, Italy; [email protected] 3 Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Academic Editor: Józef Drabowicz Received: 2 December 2020; Accepted: 18 December 2020; Published: 19 December 2020 Abstract: During the past several years, the frequency of discovery of new molecular entities based on γ- or δ-lactam scaffolds has increased continuously. Most of them are characterized by the presence of at least one chiral center. Herein, we present the preparation, isolation and the absolute configuration assignment of enantiomeric 2-(4-bromophenyl)-1-isobutyl-6-oxopiperidin-3-carboxylic acid (trans-1). For the preparation of racemic trans-1, the Castagnoli-Cushman reaction was employed. (Semi)-preparative enantioselective HPLC allowed to obtain enantiomerically pure trans-1 whose absolute configuration was assigned by X-ray diffractometry. Compound (+)-(2R,3R)-1 represents a reference compound for the configurational study of structurally related lactams.
    [Show full text]
  • Organic & Biomolecular Chemistry
    Organic & Biomolecular Chemistry View Article Online REVIEW View Journal | View Issue Enantioselective synthesis of cyanohydrins catalysed by hydroxynitrile lyases – a review Cite this: Org. Biomol. Chem., 2016, 14, 6375 Paula Bracco,†a Hanna Busch,†a Jan von Langermannb and Ulf Hanefeld*a The first enantioselective synthesis was the selective addition of cyanide to benzaldehyde catalysed by a hydroxynitrile lyase (HNL). Since then these enzymes have been developed into a reliable tool in organic synthesis. HNLs to prepare either the (R)- or the (S)-enantiomer of the desired cyanohydrin are available and a wide variety of reaction conditions can be applied. As a result of this, numerous applications Received 29th April 2016, of these enzymes in organic synthesis have been described. Here the examples of the last decade are Accepted 31st May 2016 summarised, the enzyme catalysed step is discussed and the follow-up chemistry is shown. This proves DOI: 10.1039/c6ob00934d HNLs to be part of main stream organic synthesis. Additionally the newest approaches via immobilisation www.rsc.org/obc and reaction engineering are introduced. Creative Commons Attribution 3.0 Unported Licence. 1. Introduction they are readily converted to yield α-hydroxy aldehydes or ketones, β-amino alcohols or α-fluorocyanides and many other Enantiopure cyanohydrins are valuable and versatile building compounds. They are therefore of central importance both for blocks in organic chemistry. With their two functional groups the synthesis of fine and bulk chemicals.1 Consequently they are a mainstay in academic and industrial research. The synthesis of enantiopure cyanohydrins is performed by aGebouw voor Scheikunde, Biokatalyse, Afdeling Biotechnologie, the addition of nucleophilic cyanide to a prochiral carbonyl This article is licensed under a Technische Universiteit Delft, Julianalaan 136, 2628BL Delft, The Netherlands.
    [Show full text]
  • A Tool for Chirality Control in Asymmetric Catalysis
    Flexibility – A Tool for Chirality Control in Asymmetric Catalysis Raivis Žalubovskis Doctoral Thesis Stockholm 2006 Akademisk avhandling som med tillstånd av Kungl Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av filosofie doktorsexamen i kemi med inrikting mot organisk kemi, måndagen den 27 november, kl 10.00 i sal F3, KTH, Lindstedtsvägen 26, Stockholm. Avhandlingen försvaras på engelska. Opponent är Professor Alexandre Alexakis, Université de Genève, Schweiz. ISBN 91-7178-491-8 ISRN KTH/IOK/FR--06/104--SE ISSN 1100-7974 TRITA-IOK Forskningsrapport 2006:104 © Raivis Zalubovskis Universitetsservice US AB, Stockholm Zalubovskis, R. 2006 ”Flexibility – A Tool for Chirality Control in Asymmetric Catalysis”, Organic Chemistry, KTH Chemical Science and Engineering, SE-100 44 Stockholm, Sweden. Abstract This thesis deals with the design and synthesis of ligands for asymmetric catalysis: palladium catalyzed allylic alkylations, and rho- dium and iridium catalyzed hydrogenations of olefins. Chirally flexible phosphepine ligands based on biphenyl were synthesized and their properties were studied. The rotation barrier for configurationally flexible phosphepines was determined by NMR spectroscopy. The ratio of the atropisomers was shown to depend on the group bound to phosphorus. Only complexes with two homochiral ligands bound to the metal center were observed upon complexation with Rh(I). It was shown that one diastereomer of the flexible ligand exhibits higher activity but lower selectivity than its diastereomer in the rhodium catalyzed hydrogenation of methyl α-acetamido- cinnamate. These ligands were also tested in nickel catalyzed silabora- tions. Chiral P,N-ligands with pseudo-C2 and pseudo-CS symmetry based on pyrrolidines-phospholanes or azepines-phosphepines were synthesized and studied in palladium catalyzed allylic alkylations.
    [Show full text]