Mining in the Hipparcos Raw Data?

Total Page:16

File Type:pdf, Size:1020Kb

Mining in the Hipparcos Raw Data? ASTRONOMY & ASTROPHYSICS MARCH I 1999, PAGE 231 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 135, 231–241 (1999) Mining in the Hipparcos raw data? J.L. Falin and F. Mignard Observatoire de la Cˆote d’Azur, CERGA, UMR CNRS 6527, Av. N. Copernic, F-06130 Grasse, France Received September 1; accepted October 21, 1998 Abstract. The Hipparcos solutions flagged as unreliable Hipparcos solutions are given below in Sect. 3, but by it- after the completion of the standard data processing have self this flagging was not a sufficient condition to start a been systematically revisited in the light of additional in- new processing. formation, primarily related to their multiplicity. In many First, new information not used in the mass process- cases improved solutions have been obtained, yielding at ing had to be available, otherwise there were no chances to the same time an Hipparcos based separation and position get something really different. Secondly, as a result of the angle and a better astrometric solution for the system. organisation of the file storage in the FAST consortium, The principles applied in this reprocessing are explained there were only about 20 000 stars detected as non-single and more than a hundred new solutions with absolute and for which a new double star treatment was feasible. Thus relative astrometry are presented and discussed. all the stars re-examined for duplicity problems were in this set. The vast majority of the improved solutions be- Key words: stars: fundamental parameters — binaries: long to this category. general — astrometry — stars: distances Unlike the results available in the Hipparcos Catalogue, the solutions presented in this paper do not follow from a cross-check between the two consortia and are entirely based on the software developed by teams 1. Introduction of the FAST consortium and published under the sole scientific responsability of the authors. The processing of the Hipparcos observations culminated in June 1997 with the official publication of the astro- metric solutions of nearly 118 000 stars included in the 2. The Hipparcos processing Hipparcos Catalogue (ESA 1997). The average astromet- ric precision for the bulk of the Catalogue is about 1 mas in Before proceeding with the new solutions it is worth each of the five astrometric parameters: position, parallax recalling the various categories of astrometric solutions and the two components of the proper motion. However, published in the Hipparcos Catalogue. The Hipparcos due to time constraints, it was known at the time of pub- Catalogue is the primary result of the observations and lication that the solutions for about one thousand stars reductions of the satellite data acquired over 37 months were not fully satisfactory and for 263 entries no solutions between November 1989 and March 1993. The Catalogue at all were found acceptable from the data. comprises 118 218 entries with median astrometric posi- The raw data have been archived by each of the two tions of the order of 1 milliarcsec and specific results (sep- consortia and intermediate data have been published with aration, magnitude difference) for double and multiple the other Hipparcos products. Relieved from the pressure systems. For single stars the standard astrometric model of the publication schedule we have revisited the solutions yields the five astrometric parameters (position, parallax not considered as final in the Hipparcos Catalogue, taking and the two components of the proper motion) together advantage of updated information regarding their multi- with their full covariance matrix. plicity status. The criteria used to identify the doubtful Many catalogue entries were known to be, or found to Send offprint requests to: F. Mignard, [email protected] be, components of a double or multiple system. The final ? Tables 1 to 7 are also available in electronic form at the astrometric solution for these complex entries, given either CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) for the photocenter of the system or for the brighter com- or via http://cdsweb.u-strasbg.fr/Abstract.html ponent, is fully independent of the relative position of the 232 J.L. Falin and F. Mignard: New Hipparcos solutions two components. In cases of detected duplicity the obser- errors in the Input Catalogue positions, while 253 so- vation model had to be extended to account for resolved lutions were finally rejected as inadequate. systems or for systems exhibiting a significant motion on 2. The solutions with a time dependent proper motion the sky over the mission. One major difficulty in the dou- (solutions flagged G in the Catalogue) refer probably ble star processing was the consequence of the large va- to astrometric binaries with periods above about 10 riety of categories of systems and the difficulty to solve years. There are 2622 such solutions. simultaneously for the relative and absolute astrometry. 3. The stochastic solutions (flagged X in the Catalogue) It was clear when the time came to publish the results that is to say published solutions for which it was that several hundred problem stars were left and their so- not possible to find an acceptable single or multiple lution could not be given with the same level of reliability star solution in reasonable agreement with the ran- as for the bulk of the Catalogue. The main problems were dom error of the abscissas. While a significant fraction primarily linked to the double and multiple star solutions might be short period astrometric binaries, many oth- and much more time would have been required to clear ers could be true double stars with inadequate relative the remaining difficulties for a subset no larger than a astrometry. thousand stars. The main sources of problems were: In addition to these broad categories, there are two other – Due to the presence of a periodic modulation grid, the indications that can be used to pinpoint questionable so- relative position between the two components of a dou- lutions: ble system may be wrong by an integral number of 1. Under field H29 one finds the percentage of data that grid periods, of about 1.2 arcsec. Should this happen, has been rejected in order to converge to an acceptable for particular elementary observations and provided it fit. In general this number is below 10% and a larger remained undetected, no reliable astrometric solution value is an indication that the solution should be taken can be obtained in the subsequent processing. with care as a significant number of outliers has been – The double star processing may provide numerous spu- discarded. rious solutions and in some instances the final choice 2. The field H30 attempts to quantify the quality of the was based on the fact that a solution was found in close final fit, when the outliers have been removed. Values agreement with the ground based configuration. If the larger than 3 or 4 indicate a bad fit to the data. latter was not correct, because of a misidentification or because of the relative motion since the measure- ment epoch, the error was propagated in the Hipparcos 4. Sources of new data solution. – Finally the data processing by FAST and NDAC may Most of the new solutions given in the following sections have led to different solutions for the parameters of were made possible because of the availability of several a binary and a choice was made at the end. Either pieces of information that were not used during the data one solution was retained or the entry was classified as processing for lack of time, or simply because the in- suspect binary and processed as single. In such a case formation did not exist at that time or was overlooked. the final fit was usually of poor quality and published Essentially, the new data consists of updated values for the with a warning or with large standard errors. relative astrometry and/or photometry of double stars. As mentioned above the grid step error could be 3. The doubtful solutions avoided if a good a priori separation and position angle could be secured to select the most likely solutions among The observations reinvestigated during this work are lim- the two or three possible. It is worth emphasising that ited to the Hipparcos entries for which a problem has been for the vast majority of the double stars solved from the detected in the routine processing. This does not mean Hipparcos data, the processing was self-sufficient and did that all such solutions are spurious, in fact most of them not need to rely on a good starting point. Only when the are correct, but the proportion of unreliable solutions is double star signal was too weak or the observation equa- larger in this group than in the rest of the Catalogue. tions poorly conditioned was the starting value more cru- The final statistics published in the Catalogue docu- cial. This concerned only a small fraction of the Hipparcos mentation (ESA 1997, Vol. 1) give an order of magnitude double stars, but a large fraction of the subset reinvesti- of the number of entries to be reinvestigated on a case by gated in this paper. case basis. In addition the different categories help under- Several sources were used to reprocess the Hipparcos stand what kind of problem may be expected in the re- observations of the selected doubtful solutions: processing and provide hints to orient the search for new – The Tycho Catalogue includes components of wide bi- information. naries (ρ ≥ 3 arcsec) observed as two independent 1. There were 263 entries with no astrometric solution entries provides they are brighter than V =10.5. published. Only 10 were not observed because of large From the individual astrometric solutions it was easy J.L.
Recommended publications
  • ESA Missions AO Analysis
    ESA Announcements of Opportunity Outcome Analysis Arvind Parmar Head, Science Support Office ESA Directorate of Science With thanks to Kate Isaak, Erik Kuulkers, Göran Pilbratt and Norbert Schartel (Project Scientists) ESA UNCLASSIFIED - For Official Use The ESA Fleet for Astrophysics ESA UNCLASSIFIED - For Official Use Dual-Anonymous Proposal Reviews | STScI | 25/09/2019 | Slide 2 ESA Announcement of Observing Opportunities Ø Observing time AOs are normally only used for ESA’s observatory missions – the targets/observing strategies for the other missions are generally the responsibility of the Science Teams. Ø ESA does not provide funding to successful proposers. Ø Results for ESA-led missions with recent AOs presented: • XMM-Newton • INTEGRAL • Herschel Ø Gender information was not requested in the AOs. It has been ”manually” derived by the project scientists and SOC staff. ESA UNCLASSIFIED - For Official Use Dual-Anonymous Proposal Reviews | STScI | 25/09/2019 | Slide 3 XMM-Newton – ESA’s Large X-ray Observatory ESA UNCLASSIFIED - For Official Use Dual-Anonymous Proposal Reviews | STScI | 25/09/2019 | Slide 4 XMM-Newton Ø ESA’s second X-ray observatory. Launched in 1999 with annual calls for observing proposals. Operational. Ø Typically 500 proposals per XMM-Newton Call with an over-subscription in observing time of 5-7. Total of 9233 proposals. Ø The TAC typically consists of 70 scientists divided into 13 panels with an overall TAC chair. Ø Output is >6000 refereed papers in total, >300 per year ESA UNCLASSIFIED - For Official Use
    [Show full text]
  • HD 97658 and Its Super-Earth Spitzer & MOST Transit Analysis and Seismic Modeling of the Host Star
    The space photometry revolution CoRoT3-KASC7 joint meeting HD 97658 and its super-Earth Spitzer & MOST transit analysis and seismic modeling of the host star Valerie Van Grootel (University of Liege, Belgium) M. Gillon (U. Liege), D. Valencia (U. Toronto), N. Madhusudhan (U. Cambridge), D. Dragomir (UC Santa Barbara), and the Spitzer team 1. Introducing HD 97658 and its super-Earth The second brightest star harboring a transiting super-Earth HD 97658 (V=7.7, K=5.7) HD 97658 b, a transiting super-Earth • • Teff = 5170 ± 50 K (Howard et al. 2011) Discovery by Howard et al. (2011) from Keck- Hires RVs: • [Fe/H] = -0.23 ± 0.03 ~ Z - M sin i = 8.2 ± 1.2 M • d = 21.11 ± 0.33 pc ; from Hipparcos P earth - P = 9.494 ± 0.005 d (Van Leeuwen 2007) orb • Transits discovered by Dragomir et al. (2013) with MOST: RP = 2.34 ± 0.18 Rearth From Howard et al. (2011) From Dragomir et al. (2013) Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 2 2. Modeling the host star HD 97658 Rp α R* 2/3 Mp α M* Radial velocities Transits + the age of the star is the best proxy for the age of its planets (Sun: 4.57 Gyr, Earth: 4.54 Gyr) • With Asteroseismology: T. Campante, V. Van Eylen’s talks • Without Asteroseismology: stellar evolution modeling Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 3 2. Modeling the host star HD 97658 • d = 21.11 ± 0.33 pc, V = 7.7 L* = 0.355 ± 0.018 Lsun • +Teff from spectroscopy: R* = 0.74 ± 0.03 Rsun • Stellar evolution code CLES (Scuflaire et al.
    [Show full text]
  • Asteroseismology with Corot, Kepler, K2 and TESS: Impact on Galactic Archaeology Talk Miglio’S
    Asteroseismology with CoRoT, Kepler, K2 and TESS: impact on Galactic Archaeology talk Miglio’s CRISTINA CHIAPPINI Leibniz-Institut fuer Astrophysik Potsdam PLATO PIC, Padova 09/2019 AsteroseismologyPlato as it is : a Legacy with CoRoT Mission, Kepler for Galactic, K2 and TESS: impactArchaeology on Galactic Archaeology talk Miglio’s CRISTINA CHIAPPINI Leibniz-Institut fuer Astrophysik Potsdam PLATO PIC, Padova 09/2019 Galactic Archaeology strives to reconstruct the past history of the Milky Way from the present day kinematical and chemical information. Why is it Challenging ? • Complex mix of populations with large overlaps in parameter space (such as Velocities, Metallicities, and Ages) & small volume sampled by current data • Stars move away from their birth places (migrate radially, or even vertically via mergers/interactions of the MW with other Galaxies). • Many are the sources of migration! • Most of information was confined to a small volume Miglio, Chiappini et al. 2017 Key: VOLUME COVERAGE & AGES Chiappini et al. 2018 IAU 334 Quantifying the impact of radial migration The Rbirth mix ! Stars that today (R_now) are in the green bins, came from different R0=birth Radial Migration Sources = bar/spirals + mergers + Inside-out formation (gas accretion) GalacJc Center Z Sun R Outer Disk R = distance from GC Minchev, Chiappini, MarJg 2013, 2014 - MCM I + II A&A A&A 558 id A09, A&A 572, id A92 Two ways to expand volume for GA • Gaia + complementary photometric information (but no ages for far away stars) – also useful for PIC! • Asteroseismology of RGs (with ages!) - also useful for core science PLATO (miglio’s talk) The properties at different places in the disk: AMR CoRoT, Gaia+, K2 + APOGEE Kepler, TESS, K2, Gaia CoRoT, Gaia+, K2 + APOGEE PLATO + 4MOST? Predicon: AMR Scatter increases towards outer regions Age scatter increasestowars outer regions ExtracGng the best froM GaiaDR2 - Anders et al.
    [Show full text]
  • Gaianir Combining Optical and Near-Infra-Red (NIR) Capabilities with Time-Delay-Integration (TDI) Sensors for a Future Gaia-Like Mission
    Proposal title: GaiaNIR Combining optical and Near-Infra-Red (NIR) capabilities with Time-Delay-Integration (TDI) sensors for a future Gaia-like mission. PI: Dr. David Hobbs, Lund Observatory, Box 43, SE-221 00 Lund, Sweden. Email: [email protected]. Tel.: +46-46-22 21573 Core team members: The following minimum team is needed to initiate the project. D. Hobbs Lund Observatory, Sweden. A. Brown Leiden Observatory, Holland. A. Mora Aurora Technology B.V., Spain. C. Crowley HE Space Operations B.V., Spain. N. Hambly University of Edinburgh, UK. J. Portell Institut de Ciències del Cosmos, ICCUB-IEEC, Spain. C. Fabricius Institut de Ciències del Cosmos, ICCUB-IEEC, Spain. M. Davidson University of Edinburgh, UK. Proposal writers: See Appendix A. Other supporting scientists: See Appendix B and Appendix C. Senior science advisors: E. Høg Copenhagen University (Retired), Denmark. L. Lindegren Lund Observatory, Sweden. C. Jordi Institut de Ciències del Cosmos, ICCUB-IEEC, Spain. S. Klioner Lohrmann Observatory, Germany. F. Mignard Observatoire de la Côte d’Azur, France. arXiv:1609.07325v2 [astro-ph.IM] 22 May 2020 Fig. 1: Left is an IR image from the Two Micron All-Sky Survey (image G. Kopan, R. Hurt) while on the right an artist’s concept of the Gaia mission superimposed on an optical image, (Image ESA). Images not to scale. 1 1. Executive summary ESA recently called for new “Science Ideas” to be investigated in terms of feasibility and technological developments – for tech- nologies not yet sufficiently mature. These ideas may in the future become candidates for M or L class missions within the ESA Science Program.
    [Show full text]
  • Astronomy & Astrophysics a Hipparcos Study of the Hyades
    A&A 367, 111–147 (2001) Astronomy DOI: 10.1051/0004-6361:20000410 & c ESO 2001 Astrophysics A Hipparcos study of the Hyades open cluster Improved colour-absolute magnitude and Hertzsprung{Russell diagrams J. H. J. de Bruijne, R. Hoogerwerf, and P. T. de Zeeuw Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, The Netherlands Received 13 June 2000 / Accepted 24 November 2000 Abstract. Hipparcos parallaxes fix distances to individual stars in the Hyades cluster with an accuracy of ∼6per- cent. We use the Hipparcos proper motions, which have a larger relative precision than the trigonometric paral- laxes, to derive ∼3 times more precise distance estimates, by assuming that all members share the same space motion. An investigation of the available kinematic data confirms that the Hyades velocity field does not contain significant structure in the form of rotation and/or shear, but is fully consistent with a common space motion plus a (one-dimensional) internal velocity dispersion of ∼0.30 km s−1. The improved parallaxes as a set are statistically consistent with the Hipparcos parallaxes. The maximum expected systematic error in the proper motion-based parallaxes for stars in the outer regions of the cluster (i.e., beyond ∼2 tidal radii ∼20 pc) is ∼<0.30 mas. The new parallaxes confirm that the Hipparcos measurements are correlated on small angular scales, consistent with the limits specified in the Hipparcos Catalogue, though with significantly smaller “amplitudes” than claimed by Narayanan & Gould. We use the Tycho–2 long time-baseline astrometric catalogue to derive a set of independent proper motion-based parallaxes for the Hipparcos members.
    [Show full text]
  • Two Fundamental Theorems About the Definite Integral
    Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than that used by Stewart, but is based on the same fundamental ideas. 1 The definite integral Recall that the expression b f(x) dx ∫a is called the definite integral of f(x) over the interval [a,b] and stands for the area underneath the curve y = f(x) over the interval [a,b] (with the understanding that areas above the x-axis are considered positive and the areas beneath the axis are considered negative). In today's lecture I am going to prove an important connection between the definite integral and the derivative and use that connection to compute the definite integral. The result that I am eventually going to prove sits at the end of a chain of earlier definitions and intermediate results. 2 Some important facts about continuous functions The first intermediate result we are going to have to prove along the way depends on some definitions and theorems concerning continuous functions. Here are those definitions and theorems. The definition of continuity A function f(x) is continuous at a point x = a if the following hold 1. f(a) exists 2. lim f(x) exists xœa 3. lim f(x) = f(a) xœa 1 A function f(x) is continuous in an interval [a,b] if it is continuous at every point in that interval. The extreme value theorem Let f(x) be a continuous function in an interval [a,b].
    [Show full text]
  • Herschel Space Observatory and the NASA Herschel Science Center at IPAC
    Herschel Space Observatory and The NASA Herschel Science Center at IPAC u George Helou u Implementing “Portals to the Universe” Report April, 2012 Implementing “Portals to the Universe”, April 2012 Herschel/NHSC 1 [OIII] 88 µm Herschel: Cornerstone FIR/Submm Observatory z = 3.04 u Three instruments: imaging at {70, 100, 160}, {250, 350 and 500} µm; spectroscopy: grating [55-210]µm, FTS [194-672]µm, Heterodyne [157-625]µm; bolometers, Ge photoconductors, SIS mixers; 3.5m primary at ambient T u ESA mission with significant NASA contributions, May 2009 – February 2013 [+/-months] cold Implementing “Portals to the Universe”, April 2012 Herschel/NHSC 2 Herschel Mission Parameters u Userbase v International; most investigator teams are international u Program Model v Observatory with Guaranteed Time and competed Open Time v ESA “Corner Stone Mission” (>$1B) with significant NASA contributions v NASA Herschel Science Center (NHSC) supports US community u Proposals/cycle (2 Regular Open Time cycles) v Submissions run 500 to 600 total, with >200 with US-based PI (~x3.5 over- subscription) u Users/cycle v US-based co-Investigators >500/cycle on >100 proposals u Funding Model v NASA funds US data analysis based on ESA time allocation u Default Proprietary Data Period v 6 months now, 1 year at start of mission Implementing “Portals to the Universe”, April 2012 Herschel/NHSC 3 Best Practices: International Collaboration u Approach to projects led elsewhere needs to be designed carefully v NHSC Charter remains firstly to support US community v But ultimately success of THE mission helps everyone v Need to express “dual allegiance” well and early to lead/other centers u NHSC became integral part of the larger team, worked for Herschel success, though focused on US community participation v Working closely with US community reveals needs and gaps for all users v Anything developed by NHSC is available to all users of Herschel v Trust follows from good teaming: E.g.
    [Show full text]
  • Michael Perryman
    Michael Perryman Cavendish Laboratory, Cambridge (1977−79) European Space Agency, NL (1980−2009) (Hipparcos 1981−1997; Gaia 1995−2009) [Leiden University, NL,1993−2009] Max-Planck Institute for Astronomy & Heidelberg University (2010) Visiting Professor: University of Bristol (2011−12) University College Dublin (2012−13) Lecture program 1. Space Astrometry 1/3: History, rationale, and Hipparcos 2. Space Astrometry 2/3: Hipparcos science results (Tue 5 Nov) 3. Space Astrometry 3/3: Gaia (Thu 7 Nov) 4. Exoplanets: prospects for Gaia (Thu 14 Nov) 5. Some aspects of optical photon detection (Tue 19 Nov) M83 (David Malin) Hipparcos Text Our Sun Gaia Parallax measurement principle… Problematic from Earth: Sun (1) obtaining absolute parallaxes from relative measurements Earth (2) complicated by atmosphere [+ thermal/gravitational flexure] (3) no all-sky visibility Some history: the first 2000 years • 200 BC (ancient Greeks): • size and distance of Sun and Moon; motion of the planets • 900–1200: developing Islamic culture • 1500–1700: resurgence of scientific enquiry: • Earth moves around the Sun (Copernicus), better observations (Tycho) • motion of the planets (Kepler); laws of gravity and motion (Newton) • navigation at sea; understanding the Earth’s motion through space • 1718: Edmond Halley • first to measure the movement of the stars through space • 1725: James Bradley measured stellar aberration • Earth’s motion; finite speed of light; immensity of stellar distances • 1783: Herschel inferred Sun’s motion through space • 1838–39: Bessell/Henderson/Struve
    [Show full text]
  • Photometry of Be Stars in the Vicinity of COROT Primary Targets for Asteroseismology
    Comm. in Asteroseismology Vol. 143, 2003 Photometry of Be stars in the vicinity of COROT primary targets for asteroseismology J. Guti´errez-Soto1, J. Fabregat1, J. Suso2, A.M. Hubert3, M. Floquet3 and R. Garrido4 1 Observatori Astron`omic, Universitat de Val`encia 2 Instituto Ciencia de los Materiales, Universitat de Val`encia 3GEPI, Observatoire de Paris-Meudon 4Instituto de Astrof´ısica de Andaluc´ıa Abstract We present differential photometry of Be stars close to potential COROT pri- mary targets for asteroseismology. Several stars are found to be short pe- riod variables. We propose them to be considered as secondary targets in the COROT asteroseismology fields. Introduction The observation of classical Be stars by COROT will provide important keys to understand the physics of these objects and the nature of the Be phenomenon. In particular, the detection of photospheric multiperiodicity will confirm the presence of non radial pulsations (nrp) as the origin of the short term variability. COROT observations will allow the study of the beat phenomenon of nrp modes and its relation with recurrent outbursts and the building of the circumstellar disc. Our group is proposing the observation of Be stars as secondary targets for the asteroseismology fields. A sample of stars in the vicinity of the main target candidates is under study for this purpose. Hubert et al. (2001, 2003) presented the selected objects and performed a study of their short term variability using Hipparcos photometric data. We have obtained new ground based photometry with a more suitable time sampling to further characterize their variability. 2 Photometry of Be stars in the vicinity of COROT primary targets for asteroseismology Observations and data analysis Observations were done at the 0.9 m telescope of the Observatorio de Sierra Nevada (Granada, Spain).
    [Show full text]
  • MATH 1512: Calculus – Spring 2020 (Dual Credit) Instructor: Ariel
    MATH 1512: Calculus – Spring 2020 (Dual Credit) Instructor: Ariel Ramirez, Ph.D. Email: [email protected] Office: LRC 172 Phone: 505-925-8912 OFFICE HOURS: In the Math Center/LRC or by Appointment COURSE DESCRIPTION: Limits. Continuity. Derivative: definition, rules, geometric and rate-of- change interpretations, applications to graphing, linearization and optimization. Integral: definition, fundamental theorem of calculus, substitution, applications to areas, volumes, work, average. Meets New Mexico Lower Division General Education Common Core Curriculum Area II: Mathematics (NMCCN 1614). (4 Credit Hours). Prerequisites: ((123 or ACCUPLACER College-Level Math =100-120) and (150 or ACT Math =28- 31 or SAT Math Section =660-729)) or (153 or ACT Math =>32 or SAT Math Section =>730). COURSE OBJECTIVES: 1. State, motivate and interpret the definitions of continuity, the derivative, and the definite integral of a function, including an illustrative figure, and apply the definition to test for continuity and differentiability. In all cases, limits are computed using correct and clear notation. Student is able to interpret the derivative as an instantaneous rate of change, and the definite integral as an averaging process. 2. Use the derivative to graph functions, approximate functions, and solve optimization problems. In all cases, the work, including all necessary algebra, is shown clearly, concisely, in a well-organized fashion. Graphs are neat and well-annotated, clearly indicating limiting behavior. English sentences summarize the main results and appropriate units are used for all dimensional applications. 3. Graph, differentiate, optimize, approximate and integrate functions containing parameters, and functions defined piecewise. Differentiate and approximate functions defined implicitly. 4. Apply tools from pre-calculus and trigonometry correctly in multi-step problems, such as basic geometric formulas, graphs of basic functions, and algebra to solve equations and inequalities.
    [Show full text]
  • Differentiating an Integral
    Differentiating an Integral P. Haile, February 2020 b(t) Leibniz Rule. If (t) = a(t) f(z, t)dz, then R d b(t) @f(z, t) db da = dz + f (b(t), t) f (a(t), t) . dt @t dt dt Za(t) That’s the rule; now let’s see why this is so. We start by reviewing some things you already know. Let f be a smooth univariate function (i.e., a “nice” function of one variable). We know from the fundamental theorem of calculus that if the function is defined as x (x) = f(z) dz Zc (where c is a constant) then d (x) = f(x). (1) dx You can gain some really useful intuition for this by remembering that the x integral c f(z) dz is the area under the curve y = f(z), between z = a and z = x. Draw this picture to see that as x increases infinitessimally, the added contributionR to the area is f (x). Likewise, if c (x) = f(z) dz Zx then d (x) = f(x). (2) dx Here, an infinitessimal increase in x reduces the area under the curve by an amount equal to the height of the curve. Now suppose f is a function of two variables and define b (t) = f(z, t)dz (3) Za where a and b are constants. Then d (t) b @f(z, t) = dz (4) dt @t Za i.e., we can swap the order of the operations of integration and differentiation and “differentiate under the integral.” You’ve probably done this “swapping” 1 before.
    [Show full text]
  • International Space Station Basics Components of The
    National Aeronautics and Space Administration International Space Station Basics The International Space Station (ISS) is the largest orbiting can see 16 sunrises and 16 sunsets each day! During the laboratory ever built. It is an international, technological, daylight periods, temperatures reach 200 ºC, while and political achievement. The five international partners temperatures during the night periods drop to -200 ºC. include the space agencies of the United States, Canada, The view of Earth from the ISS reveals part of the planet, Russia, Europe, and Japan. not the whole planet. In fact, astronauts can see much of the North American continent when they pass over the The first parts of the ISS were sent and assembled in orbit United States. To see pictures of Earth from the ISS, visit in 1998. Since the year 2000, the ISS has had crews living http://eol.jsc.nasa.gov/sseop/clickmap/. continuously on board. Building the ISS is like living in a house while constructing it at the same time. Building and sustaining the ISS requires 80 launches on several kinds of rockets over a 12-year period. The assembly of the ISS Components of the ISS will continue through 2010, when the Space Shuttle is retired from service. The components of the ISS include shapes like canisters, spheres, triangles, beams, and wide, flat panels. The When fully complete, the ISS will weigh about 420,000 modules are shaped like canisters and spheres. These are kilograms (925,000 pounds). This is equivalent to more areas where the astronauts live and work. On Earth, car- than 330 automobiles.
    [Show full text]