Variational Studies of Dressed Quasiparticles' Properties and Their

Total Page:16

File Type:pdf, Size:1020Kb

Variational Studies of Dressed Quasiparticles' Properties and Their Variational studies of dressed quasiparticles’ properties and their interactions with external potentials by S. Hadi Ebrahimnejad Rahbari B.Sc., Tabriz University, 2004 M.Sc., Sharif University of Technology, 2007 M.Sc., The University of British Columbia, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate and Postdoctoral Studies (Physics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2014 c S. Hadi Ebrahimnejad Rahbari 2014 Abstract In this thesis, we investigated the spectral properties of polaronic quasiparti- cles resulting from the coupling of a charge carrier to the bosonic excitations of ordered environments. Holstein polarons, describing an electron locally coupled to dispersionless phonons, and spin polarons in hole-doped antifer- romagnets are considered. The Green’s function of the Holstein polaron in a lattice with various kinds of impurities is calculated using the momentum average approximation. The main finding is that the scenario where the mere effect of the coupling to phonons is to enhance the electron’s effective mass is incomplete as the phonons are found to also renormalize the impurity potential the polaron interacts with. This formalism is applied first to the case of a single impurity and the range of parameters where the polaron’s ground state is localized is identified. The lifetime of the polaron due to scattering from weak but extended disorder is then studied and it is shown that the renormalization of the disorder potential leads to deviation of the strong coupling results from Fermi’s golden rule’s predictions. Motivated by the hole-doped cuprate superconductors, the motion of a hole in a two-dimensional Ising antiferromagnet and its binding to an attractive impurity is studied next, based on a variational scheme that allows for configurations with a certain maximum number of spin flips. The role of the magnetic sublattices in determining the symmetry of the resulting bound states is discussed. Next, a more realistic model describing a hole in a CuO2 layer which retains the O explicitly, is considered. By neglecting the fluctuations of the Cu spins and using a variational principle similar to that of the previous chapter, a semi-analytic solution for the Green’s function of the hole in an infinite 2D lattice is constructed. The resulting quasiparticle dispersion shows the proper ground state and other features observed in experiments. The lack of importance of the background spin fluctuations is justified based on the hole’s ability to move on the O sublattice without disturbing the Cu spins. Finally, the model is generalized to gauge the importance of other relevant O orbitals. ii Preface A version of the work discussed in chapter 2 is published as “H. • Ebrahimnejad and M. Berciu, Physical Review B 85, 165117 (2012)”. It is a development of a previous work by Prof. M. Berciu which was published in Ref. [1]. The work discussed in chapter 3 is published as “H. Ebrahimnejad and • M. Berciu, Physical Review B 86, 205109 (2012)”. The work discussed in chapter 4 is published as “H. Ebrahimnejad and • M. Berciu, Physical Review B 88, 104410 (2013)”. The variational method used here was suggested before by M. Berciu in Ref. [2]. The work discussed in chapter 5 is published as “H. Ebrahimnejad, G. • A. Sawatzky and M. Berciu, Nature Physics 10, 951-955 (2014)”. A more detailed manuscript is under review for publication in another journal. The model we used here was introduced in Ref. [3]. I carried out analytical and numerical work for all four projects and wrote the first draft of the manuscript for the first three, which were then revised by M. Berciu before submission. The preparation of the draft for the paper published in Nature Physics as well as calculations for the three-magnon case are done by M. Berciu. iii Table of Contents Abstract ................................. ii Preface .................................. iii Table of Contents ............................ iv List of Figures .............................. vii Acknowledgements ........................... xv 1 Introduction ............................. 1 1.1 Hamiltonian for lattice polarons . 3 1.1.1 Polarons in systems with other forms of electron-boson coupling ......................... 6 1.2 Studying spectral properties using Green’s function formalism 7 1.3 Green’s function of the Holstein model and its variational calculation ............................ 8 1.4 Overview of thesis and further reading . 9 2 Trapping of three-dimensional Holstein polarons by various impurities ............................... 12 2.1 Introduction ........................... 12 2.2 Momentum average approximation for inhomogeneous sys- tems................................ 13 2.3 Polaron near a single impurity . 21 2.3.1 Impurity changing the on-site energy . 22 2.3.2 Impurity changing the electron-phonon coupling . 29 2.3.3 Isotopeimpurity . 31 2.4 Summaryandconclusions . 35 iv Table of Contents 3 A perturbational study of the lifetime of a Holstein polaron in the presence of weak disorder ................ 38 3.1 Introduction ........................... 38 3.2 Themodelanditssolution . 39 3.3 Results .............................. 42 3.3.1 Weak electron-phonon coupling . 45 3.3.2 Strong electron-phonon coupling . 47 3.4 Summaryandconclusions . 52 4 Binding carriers to a non-magnetic impurity in a two-dimensional square Ising anti-ferromagnet .................. 55 4.1 Introduction ........................... 55 4.2 TheModel ............................ 57 4.3 Propagation of the hole in the clean system . 59 4.4 Theeffectoftheimpurity . 66 4.4.1 Quasiparticle and impurity on the same sublattice . 67 4.4.2 Quasiparticle and impurity on different sublattices . 71 4.5 Summaryandconclusions . 76 5 Accurate variational solution for a hole doped in a CuO2 layer .................................. 79 5.1 Introduction ........................... 79 5.2 Three-band model for a cuprate layer and its t-J analogue . 80 5.2.1 Doping the CuO2 layer with a hole . 84 5.3 Green’sfunctions ........................ 87 5.3.1 One-magnon approximation . 88 5.3.2 Two-magnon approximation . 93 5.4 Results .............................. 94 5.4.1 Dispersion relations . 94 5.4.2 Effect of various terms in the Hamiltonian . 97 5.5 Quasiparticle weight . 99 5.5.1 ComparisonwithARPES . 99 5.6 Spin polaron vs the Zhang-Rice singlet . 102 5.7 From three-band to five-band model: effect of other in-plane 2p orbitals ............................105 5.8 Conclusion ............................109 6 Summary and development ...................110 6.1 Summaryofthiswork . 110 6.2 Outlook and further developments . 112 v Table of Contents Bibliography ...............................114 Appendices A MA0 solution for the clean system ...............121 B IMA1 ..................................123 0 (n) nm C MA solution for Fk,si(ω) and W (ω) .............126 D Disorder self-energy in Average T-matrix approximation 128 E The equations of motion for G0,R(ω) ..............129 F Derivation of ARPES intensity .................131 G Solving for Gα,β(k,ω) in the five-band model .........135 vi List of Figures d 2.1 Diagrammatic expansion for (a) the disorder GF Gij(ω) (bold 0 red line); (b) the polaron GF in a clean system Gij(˜ω) (double thin line), and (c) the “instantaneous” approximation for the d polaron GF in a disordered system, Gij(˜ω) (double bold red line). The thin black lines depict free electron propagators, the wriggly lines correspond to phonons, and scattering on the disorder potential is depicted the dashed lines ending with circles. See text for more details. 16 2.2 (color online) (a) Diagrammatic expansion for the full MA solution Gij(ω) (thick dashed blue line) in terms of the clean polaron Green’s function (double thin line) and scattering on the renormalized disorder potential ǫl∗(ω), depicted by dashed lines ended with squares. (b) Diagrammatic expansion of ǫl∗(ω). For more details, see text. 19 2.3 LDOS at the impurity site ρ(0,ω) in units of 1/t, vs. the 0 energy ω/t, for (a) MA with lc = 0 for U = 1.8, 1.9, 1.95 and 2.0. The dashed line shows the DOS for the clean system, times 100; (b) Bound polaron peak in MA0 at U/t = 2, and cutoffs in the renormalized potential lc = 0, 1, 2. Panels (c) and (d) are the same as (a) and (b), respectively, but using MA1. Panel (e) shows the DMC results from Ref. [4], for the same parameters as (a) and (b). Other parameters are 3 Ω = 2t, λ = 0.8,η/t = 10− . ................... 24 2.4 Phase diagram separating the regime where the polaron is mobile (below the line) and trapped (above the line). The effective coupling is λ = g2/(6tΩ), and the threshold trapping potential Uc is shown for several values of Ω/t. The MA results (filled symbols) compare well with the DMC results of Ref.[4](emptysymbols). 25 vii List of Figures 2.5 (color online) Effective value of the impurity attraction U ∗/U, extracted from the scaling EB∗ /t∗ = f(U ∗/t∗), for λ = 0.5, 1.5 and Ω = 3t. In order to have the best fit to the data, we plot each curve starting from slightly larger U/t than the corresponding Uc/t given in Fig. (2.4). For more details, see text. ................................ 26 2.6 (color online) Real part of the additional on-site MA0 disorder potential v0(0,ω) over a wide energy range, for U = 2t, Ω = 2t, λ = 0.8 and two values of η. ................. 28 2.7 (color online) Phase diagram separating the regime where the polaron is delocalized (below the line) and trapped (above the line), as a function of the difference between the impu- rity and the bulk electron-phonon coupling, g g. Symbols d − show MA0 results, while the dashed lines correspond to the instantaneous approximation. 30 2.8 For large λ, in the clean system (dashed red line) the first polaron band is separated by an energy gap from the next features in the spectrum (here, the band associated with the second bound state).
Recommended publications
  • Polarons Get the Full Treatment
    VIEWPOINT Polarons Get the Full Treatment A new way to model polarons combines the intuition of modeling with the realism of simulations, allowing these quasiparticles to be studied in a broader range of materials. by Chris G. Van de Walle∗ When an electron travels through a solid, its negative charge exerts an attractive force on the surrounding posi- n 1933, theoretical physicist Lev Landau wrote a tively charged atomic nuclei. In response, the nuclei move 500-word article discussing how an electron traveling away from their equilibrium positions, trying to reach for through a solid might end up trapped by a distortion of the electron. The resulting distortion of the crystalline lat- the surrounding lattice [1]. Those few lines marked the tice creates a lump of positive charge that tags along with Ibeginning of the study of what we now call polarons, some the moving electron. This combination of the electron and of the most celebrated “quasiparticles” in condensed-matter the lattice distortion—which can be seen as an elementary physics—essential to understanding devices such as organic particle moving through the solid—is a polaron [4, 5]. In light-emitting-diode (OLED) displays or the touchscreens of the language of condensed-matter physics, the polaron is a smart devices. Until now, researchers have relied on two quasiparticle formed by “dressing” an electron with a cloud approaches to describe these complex quasiparticles: ide- of phonons, the quantized vibrations of the crystal lattice. alized mathematical models and numerical methods based Polarons may be large or small—depending on how the size on density-functional theory (DFT).
    [Show full text]
  • Large Polaron Formation and Its Effect on Electron Transport in Hybrid
    Large Polaron Formation and its Effect on Electron Transport in Hybrid Perovskite Fan Zheng and Lin-wang Wang∗ 1 Joint Center for Artificial Photosynthesis and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. E-mail: [email protected] 2 Abstract 3 Many experiments have indicated that large polaron may be formed in hybrid per- 4 ovskite, and its existence is proposed to screen the carrier-carrier and carrier-defect 5 scattering, thus contributing to the long lifetime for the carriers. However, detailed 6 theoretical study of the large polaron and its effect on carrier transport at the atomic 7 level is still lacking. In particular, how strong is the large polaron binding energy, 8 how does its effect compare with the effect of dynamic disorder caused by the A-site 9 molecular rotation, and how does the inorganic sublattice vibration impact the mo- 10 tion of the large polaron, all these questions are largely unanswered. In this work, 11 using CH3NH3PbI3 as an example, we implement tight-binding model fitted from the 12 density-functional theory to describe the electron large polaron ground state and to 13 understand the large polaron formation and transport at its strong-coupling limit. We 14 find that the formation energy of the large polaron is around -12 meV for the case 15 without dynamic disorder, and -55 meV by including dynamic disorder. By perform- 16 ing the explicit time-dependent wavefunction evolution of the polaron state, together + − 17 with the rotations of CH3NH3 and vibrations of PbI3 sublattice, we studied the diffu- 18 sion constant and mobility of the large polaron state driven by the dynamic disorder 1 19 and the sublattice vibration.
    [Show full text]
  • Arxiv:2006.13529V2 [Quant-Ph] 1 Jul 2020 Utrwith Ductor Es[E Fig
    Memory-Critical Dynamical Buildup of Phonon-Dressed Majorana Fermions Oliver Kaestle,1, ∗ Ying Hu,2, 3 Alexander Carmele1 1Technische Universit¨at Berlin, Institut f¨ur Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Hardenbergstrae 36, 10623 Berlin, Germany 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China (Dated: July 28, 2021) We investigate the dynamical interplay between topological state of matter and a non-Markovian dissipation, which gives rise to a new and crucial time scale into the system dynamics due to its quan- tum memory. We specifically study a one-dimensional polaronic topological superconductor with phonon-dressed p-wave pairing, when a fast temperature increase in surrounding phonons induces an open-system dynamics. We show that when the memory depth increases, the Majorana edge dynam- ics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior, even when the polaron Hamiltonian is close to the topological phase boundary. Above a critical memory depth, the system can approach a new dressed state of topological superconductor in dynamical equilibrium with phonons, with nearly full buildup of Majorana correlation. Exploring topological properties out of equilibrium is stantial preservation of topological properties far from central in the effort to realize,
    [Show full text]
  • Polaron Formation in Cuprates
    Polaron formation in cuprates Olle Gunnarsson 1. Polaronic behavior in undoped cuprates. a. Is the electron-phonon interaction strong enough? b. Can we describe the photoemission line shape? 2. Does the Coulomb interaction enhance or suppress the electron-phonon interaction? Large difference between electrons and phonons. Cooperation: Oliver Rosch,¨ Giorgio Sangiovanni, Erik Koch, Claudio Castellani and Massimo Capone. Max-Planck Institut, Stuttgart, Germany 1 Important effects of electron-phonon coupling • Photoemission: Kink in nodal direction. • Photoemission: Polaron formation in undoped cuprates. • Strong softening, broadening of half-breathing and apical phonons. • Scanning tunneling microscopy. Isotope effect. MPI-FKF Stuttgart 2 Models Half- Coulomb interaction important. breathing. Here use Hubbard or t-J models. Breathing and apical phonons: Coupling to level energies >> Apical. coupling to hopping integrals. ⇒ g(k, q) ≈ g(q). Rosch¨ and Gunnarsson, PRL 92, 146403 (2004). MPI-FKF Stuttgart 3 Photoemission. Polarons H = ε0c†c + gc†c(b + b†) + ωphb†b. Weak coupling Strong coupling 2 ω 2 ω 2 1.8 (g/ ph) =0.5 (g/ ph) =4.0 1.6 1.4 1.2 ph ω ) 1 ω A( 0.8 0.6 Z 0.4 0.2 0 -8 -6 -4 -2 0 2 4 6-6 -4 -2 0 2 4 ω ω ω ω / ph / ph Strong coupling: Exponentially small quasi-particle weight (here criterion for polarons). Broad, approximately Gaussian side band of phonon satellites. MPI-FKF Stuttgart 4 Polaronic behavior Undoped CaCuO2Cl2. K.M. Shen et al., PRL 93, 267002 (2004). Spectrum very broad (insulator: no electron-hole pair exc.) Shape Gaussian, not like a quasi-particle.
    [Show full text]
  • Magnon-Drag Thermopower in Antiferromagnets Versus Ferromagnets
    Journal of Materials Chemistry C Magnon-drag thermopower in antiferromagnets versus ferromagnets Journal: Journal of Materials Chemistry C Manuscript ID TC-ART-11-2019-006330.R1 Article Type: Paper Date Submitted by the 06-Jan-2020 Author: Complete List of Authors: Polash, Md Mobarak Hossain; North Carolina State University, Department of Materials Science and Engineering Mohaddes, Farzad; North Carolina State University, Department of Electrical and Computer Engineering Rasoulianboroujeni, Morteza; Marquette University, School of Dentistry Vashaee, Daryoosh; North Carolina State University, Department of Electrical and Computer Engineering Page 1 of 17 Journal of Materials Chemistry C Magnon-drag thermopower in antiferromagnets versus ferromagnets Md Mobarak Hossain Polash1,2, Farzad Mohaddes2, Morteza Rasoulianboroujeni3, and Daryoosh Vashaee1,2 1Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606, US 2Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, US 3School of Dentistry, Marquette University, Milwaukee, WI 53233, US Abstract The extension of magnon electron drag (MED) to the paramagnetic domain has recently shown that it can create a thermopower more significant than the classical diffusion thermopower resulting in a thermoelectric figure-of-merit greater than unity. Due to their distinct nature, ferromagnetic (FM) and antiferromagnetic (AFM) magnons interact differently with the carriers and generate different amounts of drag-thermopower. The question arises if the MED is stronger in FM or in AFM semiconductors. Two material systems, namely MnSb and CrSb, which are similar in many aspects except that the former is FM and the latter AFM, were studied in detail, and their MED properties were compared.
    [Show full text]
  • Plasmon‑Polaron Coupling in Conjugated Polymers on Infrared Metamaterials
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials Wang, Zilong 2015 Wang, Z. (2015). Plasmon‑polaron coupling in conjugated polymers on infrared metamaterials. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/65636 https://doi.org/10.32657/10356/65636 Downloaded on 04 Oct 2021 22:08:13 SGT PLASMON-POLARON COUPLING IN CONJUGATED POLYMERS ON INFRARED METAMATERIALS WANG ZILONG SCHOOL OF PHYSICAL & MATHEMATICAL SCIENCES 2015 Plasmon-Polaron Coupling in Conjugated Polymers on Infrared Metamaterials WANG ZILONG WANG WANG ZILONG School of Physical and Mathematical Sciences A thesis submitted to the Nanyang Technological University in partial fulfilment of the requirement for the degree of Doctor of Philosophy 2015 Acknowledgements First of all, I would like to express my deepest appreciation and gratitude to my supervisor, Asst. Prof. Cesare Soci, for his support, help, guidance and patience for my research work. His passion for sciences, motivation for research and knowledge of Physics always encourage me keep learning and perusing new knowledge. As one of his first batch of graduate students, I am always thankful to have the opportunity to join with him establishing the optical spectroscopy lab and setting up experiment procedures, through which I have gained invaluable and unique experiences comparing with many other students. My special thanks to our collaborators, Professor Dr. Harald Giessen and Dr. Jun Zhao, Ms. Bettina Frank from the University of Stuttgart, Germany. Without their supports, the major idea of this thesis cannot be experimentally realized.
    [Show full text]
  • 2 Quantum Theory of Spin Waves
    2 Quantum Theory of Spin Waves In Chapter 1, we discussed the angular momenta and magnetic moments of individual atoms and ions. When these atoms or ions are constituents of a solid, it is important to take into consideration the ways in which the angular momenta on different sites interact with one another. For simplicity, we will restrict our attention to the case when the angular momentum on each site is entirely due to spin. The elementary excitations of coupled spin systems in solids are called spin waves. In this chapter, we will introduce the quantum theory of these excita- tions at low temperatures. The two primary interaction mechanisms for spins are magnetic dipole–dipole coupling and a mechanism of quantum mechanical origin referred to as the exchange interaction. The dipolar interactions are of importance when the spin wavelength is very long compared to the spacing between spins, and the exchange interaction dominates when the spacing be- tween spins becomes significant on the scale of a wavelength. In this chapter, we focus on exchange-dominated spin waves, while dipolar spin waves are the primary topic of subsequent chapters. We begin this chapter with a quantum mechanical treatment of a sin- gle electron in a uniform field and follow it with the derivations of Zeeman energy and Larmor precession. We then consider one of the simplest exchange- coupled spin systems, molecular hydrogen. Exchange plays a crucial role in the existence of ordered spin systems. The ground state of H2 is a two-electron exchange-coupled system in an embryonic antiferromagnetic state.
    [Show full text]
  • Polaron Physics Beyond the Holstein Model
    Polaron physics beyond the Holstein model by Dominic Marchand B.Sc. in Computer Engineering, Universit´eLaval, 2002 B.Sc. in Physics, Universit´eLaval, 2004 M.Sc. in Physics, The University of British Columbia, 2006 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Physics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) September 2011 c Dominic Marchand 2011 Abstract Many condensed matter problems involve a particle coupled to its environment. The polaron, originally introduced to describe electrons in a polarizable medium, describes a particle coupled to a bosonic field. The Holstein polaron model, although simple, including only optical Einstein phonons and an interaction that couples them to the electron density, captures almost all of the standard polaronic properties. We herein investigate polarons that differ significantly from this behaviour. We study a model with phonon-modulated hopping, and find a radically different behaviour at strong couplings. We report a sharp transition, not a crossover, with a diverging effective mass at the critical coupling. We also look at a model with acoustic phonons, away from the perturbative limit, and again discover unusual polaron properties. Our work relies on the Bold Diagrammatic Monte Carlo (BDMC) method, which samples Feynman diagrammatic expansions efficiently, even those with weak sign problems. Proposed by Prokof’ev and Svistunov, it is extended to lattice polarons for the first time here. We also use the Momentum Average (MA) approximation, an analytical method proposed by Berciu, and find an excellent agreement with the BDMC results. A novel MA approximation able to treat dispersive phonons is also presented, along with a new exact solution for finite systems, inspired by the same formalism.
    [Show full text]
  • Room Temperature and Low-Field Resonant Enhancement of Spin
    ARTICLE https://doi.org/10.1038/s41467-019-13121-5 OPEN Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets R. Ramos 1*, T. Hioki 2, Y. Hashimoto1, T. Kikkawa 1,2, P. Frey3, A.J.E. Kreil 3, V.I. Vasyuchka3, A.A. Serga 3, B. Hillebrands 3 & E. Saitoh1,2,4,5,6 1234567890():,; Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently discovered in Y3Fe5O12 (YIG). This effect is explained by hybridization between the magnon and phonon dispersions. However, this effect was observed at low temperatures and high magnetic fields, limiting the scope for applications. Here we report observation of phonon-resonant enhancement of SSE at room temperature and low magnetic field. We observe in fi Lu2BiFe4GaO12 an enhancement 700% greater than that in a YIG lm and at very low magnetic fields around 10À1 T, almost one order of magnitude lower than that of YIG. The result can be explained by the change in the magnon dispersion induced by magnetic compensation due to the presence of non-magnetic ion substitutions. Our study provides a way to tune the magnon response in a crystal by chemical doping, with potential applications for spintronic devices. 1 WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan. 2 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan. 3 Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany. 4 Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan. 5 Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan.
    [Show full text]
  • PHYSICAL REVIEW B 102, 245115 (2020) Memory-Critical Dynamical
    PHYSICAL REVIEW B 102,245115(2020) Memory-critical dynamical buildup of phonon-dressed Majorana fermions Oliver Kaestle ,1,* Yue Sun, 2,3 Ying Hu,2,3 and Alexander Carmele 1 1Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China (Received 2 July 2020; revised 24 November 2020; accepted 24 November 2020; published 11 December 2020) We investigate the dynamical interplay between the topological state of matter and a non-Markovian dis- sipation, which gives rise to a crucial timescale into the system dynamics due to its quantum memory. We specifically study a one-dimensional polaronic topological superconductor with phonon-dressed p-wave pairing, when a fast temperature increase in surrounding phonons induces an open-system dynamics. We show that when the memory depth increases, the Majorana edge dynamics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior, even when the polaron Hamiltonian is close to the topological phase boundary. Above a critical memory depth, the system can approach a new dressed state of the topological superconductor in dynamical equilibrium with phonons, with nearly full buildup of the Majorana correlation. DOI: 10.1103/PhysRevB.102.245115 I. INTRODUCTION phonon-renormalized Hamiltonian parameters (see Fig. 1). In contrast to Markovian decoherence that typically destroys Exploring topological properties out of equilibrium is cen- topological features for long times, we show that a finite tral in the effort to realize, probe, and exploit topological states quantum memory allows for substantial preservation of topo- of matter in the laboratory [1–15].
    [Show full text]
  • The Higgs Particle in Condensed Matter
    The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky, A.A, Phys. Rev. Lett. 110, 140401 (2013); S. Gazit, D. Podolsky, A.A., D. Arovas, Phys. Rev. Lett. 117, (2016). D. Sherman et. al., Nature Physics (2015) S. Poran, et al., Nature Comm. (2017) Outline _ Brief history of the Anderson-Higgs mechanism _ The vacuum is a condensate _ Emergent relativity in condensed matter _ Is the Higgs mode overdamped in d=2? _ Higgs near quantum criticality Experimental detection: Charge density waves Cold atoms in an optical lattice Quantum Antiferromagnets Superconducting films 1955: T.D. Lee and C.N. Yang - massless gauge bosons 1960-61 Nambu, Goldstone: massless bosons in spontaneously broken symmetry Where are the massless particles? 1962 1963 The vacuum is not empty: it is stiff. like a metal or a charged Bose condensate! Rewind t 1911 Kamerlingh Onnes Discovery of Superconductivity 1911 R Lord Kelvin Mathiessen R=0 ! mercury Tc = 4.2K T Meissner Effect, 1933 Metal Superconductor persistent currents Phil Anderson Meissner effect -> 1. Wave fncton rigidit 2. Photns get massive Symmetry breaking in O(N) theory N−component real scalar field : “Mexican hat” potential : Spontaneous symmetry breaking ORDERED GROUND STATE Dan Arovas, Princeton 1981 N-1 Goldstone modes (spin waves) 1 Higgs (amplitude) mode Relativistic Dynamics in Lattice bosons Bose Hubbard Model Large t/U : system is a superfluid, (Bose condensate). Small t/U : system is a Mott insulator, (gap for charge fluctuations).
    [Show full text]
  • Introducing Coherent Time Control to Cavity Magnon-Polariton Modes
    ARTICLE https://doi.org/10.1038/s42005-019-0266-x OPEN Introducing coherent time control to cavity magnon-polariton modes Tim Wolz 1*, Alexander Stehli1, Andre Schneider 1, Isabella Boventer1,2, Rair Macêdo 3, Alexey V. Ustinov1,4, Mathias Kläui 2 & Martin Weides 1,3* 1234567890():,; By connecting light to magnetism, cavity magnon-polaritons (CMPs) can link quantum computation to spintronics. Consequently, CMP-based information processing devices have emerged over the last years, but have almost exclusively been investigated with single-tone spectroscopy. However, universal computing applications will require a dynamic and on- demand control of the CMP within nanoseconds. Here, we perform fast manipulations of the different CMP modes with independent but coherent pulses to the cavity and magnon sys- tem. We change the state of the CMP from the energy exchanging beat mode to its normal modes and further demonstrate two fundamental examples of coherent manipulation. We first evidence dynamic control over the appearance of magnon-Rabi oscillations, i.e., energy exchange, and second, energy extraction by applying an anti-phase drive to the magnon. Our results show a promising approach to control building blocks valuable for a quantum internet and pave the way for future magnon-based quantum computing research. 1 Institute of Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany. 2 Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany. 3 James Watt School of Engineering, Electronics & Nanoscale Engineering
    [Show full text]