Petrochronology of Monazite and Zircon in Ultra-High Temperature Granulite from Rogaland, Norway Antonin Laurent

Total Page:16

File Type:pdf, Size:1020Kb

Petrochronology of Monazite and Zircon in Ultra-High Temperature Granulite from Rogaland, Norway Antonin Laurent Petrochronology of monazite and zircon in ultra-high temperature granulite from Rogaland, Norway Antonin Laurent To cite this version: Antonin Laurent. Petrochronology of monazite and zircon in ultra-high temperature granulite from Rogaland, Norway. Earth Sciences. Université Paul Sabatier - Toulouse III, 2016. English. NNT : 2016TOU30290. tel-01686377 HAL Id: tel-01686377 https://tel.archives-ouvertes.fr/tel-01686377 Submitted on 17 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5)µ4& &OWVFEFMPCUFOUJPOEV %0$503"5%&-6/*7&34*5²%&506-064& %ÏMJWSÏQBS Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) 1SÏTFOUÏFFUTPVUFOVFQBS Antonin LAURENT le mardi 8 novembre 2016 5JUSF Étude pétrologique et chronométrique (U–Th–Pb) de la monazite et du zircon dans les granulites de ultra-haute température du Rogaland, Norvège ²DPMF EPDUPSBMF et discipline ou spécialité ED SDU2E : Sciences de la Terre et des Planètes Solides 6OJUÏEFSFDIFSDIF Géosciences Environnement Toulouse – UMR 5563 %JSFDUFVSUSJDF T EFʾÒTF Mme Stéphanie Duchene (Directrice) Mme Anne-Magali Seydoux-Guillaume (Co-directrice) M. Bernard Bingen (Co-encadrant) Jury : M. Philippe GONCALVES Maître de conférences Rapporteur M. Simon HARLEY Professeur des universités Rapporteur M. Fernando CORFU Professeur des universités Examinateur M. Jean-Marc MONTEL Professeur des universités Examinateur M. Olivier VANDERHAEGHE Professeur des universités Président du jury Mme Valérie BOSSE Maître de conférences Invitée 2 Sommaire Sommaire .............................................................................................. 3 Liste des figures .................................................................................... 8 Liste des tableaux ............................................................................... 12 Liste des annexes ................................................................................ 14 Introduction Générale ........................................................................ 15 Définitions et causes du métamorphisme de UHT ................................................................. 19 Assemblages minéralogiques et relations de phase .................................................................................. 19 Modélisation thermodynamique ............................................................................................................. 21 Les chemins P–T et leur signification géodynamique .............................................................................. 23 Durée du métamorphisme de UHT ...................................................................................................... 24 Lier le temps à la température dans les granulites ................................................................... 25 La mesure du temps dans les granulites .................................................................................... 27 Principe de la géochronologie .................................................................................................................. 27 Comportement du zircon et de la monazite ............................................................................................ 29 Enjeux pour les ressources naturelles stratégiques .................................................................. 31 Problématique et plan de l’étude ................................................................................................ 32 Références ..................................................................................................................................... 33 Chapitre 1 ............................................................................................ 47 Overview of the Sveconorwegian orogeny and Mesoproterozoic evolution of Rogaland, S-Norway ......................................................... 47 Résumé ........................................................................................................................................... 49 Framework of Rodinia assembly ................................................................................................ 51 The Sveconorwegian orogeny .................................................................................................... 52 1280–1150 Ma time interval (pre-Sveconorwegian) ............................................................................. 53 1150–1080 Ma time interval (Arendal phase) .................................................................................... 54 1050–1030 Ma time interval (Agder phase) ....................................................................................... 55 1030–1000 Ma time interval (Agder phase) ....................................................................................... 56 990–970 Ma time interval (Falkenberg phase) .................................................................................... 57 970–950 Ma time interval (Dalane phase) .......................................................................................... 57 950–920 Ma time interval (Dalane phase) .......................................................................................... 58 Tectono-magmatic evolution of Rogaland ............................................................................... 59 Magmatism .......................................................................................................................................... 59 Metamorphism ..................................................................................................................................... 62 References ..................................................................................................................................... 64 Tables ............................................................................................................................................. 70 3 Chapitre 2 ........................................................................................... 73 Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts ............................................................... 73 Résumé ........................................................................................................................................... 75 Abstract .......................................................................................................................................... 76 Introduction .................................................................................................................................. 77 Monazite crystal chemistry .......................................................................................................... 78 Geological background ................................................................................................................ 79 Analytical methods ....................................................................................................................... 79 Monazite zoning and micro-chemistry .................................................................................................... 79 Monazite U–Th–Pb geochronology ....................................................................................................... 82 Transmission electron microscopic (TEM) imaging ................................................................................ 83 Results ............................................................................................................................................ 84 Sample petrology ................................................................................................................................... 84 Monazite texture, composition and inclusions ........................................................................................ 85 Nano-characterization of monazite by TEM ......................................................................................... 90 U–Th–Pb geochronology ....................................................................................................................... 90 Discussion ...................................................................................................................................... 94 Mechanism of S incorporation in monazite ............................................................................................ 94 Significance of S-rich monazite .............................................................................................................. 95 Metasomatic replacement of S-rich monazite .......................................................................................... 96 Dating S mobility in metamorphic belts ................................................................................................. 98 Conclusion ..................................................................................................................................... 99 Acknowledgement .....................................................................................................................
Recommended publications
  • Volcanic-Derived Placers As a Potential Resource of Rare Earth Elements: the Aksu Diamas Case Study, Turkey
    minerals Article Volcanic-Derived Placers as a Potential Resource of Rare Earth Elements: The Aksu Diamas Case Study, Turkey Eimear Deady 1,*, Alicja Lacinska 2, Kathryn M. Goodenough 1, Richard A. Shaw 2 and Nick M. W. Roberts 3 1 The Lyell Centre, British Geological Survey, Research Avenue South, Edinburgh EH14 4AP, UK; [email protected] 2 Environmental Science Centre, British Geological Survey, Nicker Hill, Keyworth NG12 5GG, UK; [email protected] (A.L.); [email protected] (R.A.S.) 3 Environmental Science Centre, NERC Isotope Geosciences Laboratory, Nicker Hill, Keyworth NG12 5GG, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)131-6500217 Received: 15 February 2019; Accepted: 26 March 2019; Published: 30 March 2019 Abstract: Rare earth elements (REE) are essential raw materials used in modern technology. Current production of REE is dominated by hard-rock mining, particularly in China, which typically requires high energy input. In order to expand the resource base of the REE, it is important to determine what alternative sources exist. REE placers have been known for many years, and require less energy than mining of hard rock, but the REE ore minerals are typically derived from eroded granitic rocks and are commonly radioactive. Other types of REE placers, such as those derived from volcanic activity, are rare. The Aksu Diamas heavy mineral placer in Turkey has been assessed for potential REE extraction as a by-product of magnetite production, but its genesis was not previously well understood. REE at Aksu Diamas are hosted in an array of mineral phases, including apatite, chevkinite group minerals (CGM), monazite, allanite and britholite, which are concentrated in lenses and channels in unconsolidated Quaternary sands.
    [Show full text]
  • Phase Decomposition Upon Alteration of Radiation-Damaged Monazite–(Ce) from Moss, Østfold, Norway
    MINERALOGY CHIMIA 2010, 64, No. 10 705 doi:10.2533/chimia.2010.705 Chimia 64 (2010) 705–711 © Schweizerische Chemische Gesellschaft Phase Decomposition upon Alteration of Radiation-Damaged Monazite–(Ce) from Moss, Østfold, Norway Lutz Nasdala*a, Katja Ruschela, Dieter Rhedeb, Richard Wirthb, Ljuba Kerschhofer-Wallnerc, Allen K. Kennedyd, Peter D. Kinnye, Friedrich Fingerf, and Nora Groschopfg Abstract: The internal textures of crystals of moderately radiation-damaged monazite–(Ce) from Moss, Norway, indicate heavy, secondary chemical alteration. In fact, the cm-sized specimens are no longer mono-mineral monazite but rather a composite consisting of monazite–(Ce) and apatite pervaded by several generations of fractures filled with sulphides and a phase rich in Th, Y, and Si. This composite is virtually a ‘pseudomorph’ after primary euhedral monazite crystals whose faces are still well preserved. The chemical alteration has resulted in major reworking and decomposition of the primary crystals, with potentially uncontrolled elemental changes, including extensive release of Th from the primary monazite and local redeposition of radionuclides in fracture fillings. This seems to question the general alteration-resistance of orthophosphate phases in a low-temperature, ‘wet’ environment, and hence their suitability as potential host ceramics for the long-term immobilisation of ra- dioactive waste. Keywords: Chemical alteration · Monazite–(Ce) · Radiation damage · Thorium silicate 1. Introduction eventually to the formation of a non-crys- to undergo chemical alteration, and its in- talline form.[1,2] Such normally crystalline, crease with cumulative radiation damage, The accumulation of structural damage irradiation-amorphised minerals are com- ii) how exactly chemical alteration proc- generated by the corpuscular self-irra- monly described by the term ‘metamict’.[3] esses take place, and iii) as to which de- diation of minerals containing actinide The metamictisation process is controlled gree these materials (i.e.
    [Show full text]
  • Monazite Trumps Zircon: Applying SHRIMP U–Pb Geochronology To
    Contrib Mineral Petrol (2017) 172:63 DOI 10.1007/s00410-017-1386-5 ORIGINAL PAPER Monazite trumps zircon: applying SHRIMP U–Pb geochronology to systematically evaluate emplacement ages of leucocratic, low-temperature granites in a complex Precambrian orogen Agnieszka M. Piechocka1 · Courtney J. Gregory1 · Jian-Wei Zi1 · Stephen Sheppard1 · Michael T. D. Wingate2 · Birger Rasmussen1 Received: 13 January 2017 / Accepted: 24 June 2017 / Published online: 7 July 2017 © The Author(s) 2017. This article is an open access publication Abstract Although zircon is the most widely used geochro- U–Pb zircon dating of these leucocratic granites either yielded nometer to determine the crystallisation ages of granites, it can ages that were inconclusive (e.g., multiple concordant ages) or be unreliable for low-temperature melts because they may not incompatible with other geochronological data. To overcome crystallise new zircon. For leucocratic granites U–Pb zircon this we used SHRIMP U–Th–Pb monazite geochronology to dates, therefore, may refect the ages of the source rocks rather obtain igneous crystallisation ages that are consistent with the than the igneous crystallisation age. In the Proterozoic Cap- geological and geochronological framework of the orogen. ricorn Orogen of Western Australia, leucocratic granites are The U–Th–Pb monazite geochronology has resolved the time associated with several pulses of intracontinental magmatism interval over which two granitic supersuites were emplaced; a spanning ~800 million years. In several instances, SHRIMP Paleoproterozoic supersuite thought to span ~80 million years was emplaced in less than half that time (1688–1659 Ma) and a small Meso- to Neoproterozoic supersuite considered to Communicated by Franck Poitrasson.
    [Show full text]
  • Llallagua Tin Ore Deposit (Bolivia)
    resources Article Speculations Linking Monazite Compositions to Origin: Llallagua Tin Ore Deposit (Bolivia) Elizabeth J. Catlos * and Nathan R. Miller Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, 1 University Sta. C9000, EPS 1.130, Austin, TX 78712, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-512-471-4762 Received: 3 May 2017; Accepted: 25 July 2017; Published: 29 July 2017 Abstract: Monazite [(Ce,Th)PO4] from the Llallagua tin ore deposit in Bolivia is characterized by low radiogenic element contents. Previously reported field evidence and mineral associations suggest the mineral formed via direct precipitation from hydrothermal fluids. Monazite compositions thus may provide insight into characteristics of the fluids from which it formed. Chemical compositions of three Llallagua monazite grains were obtained using Electron Probe Microanalysis (EPMA, n = 64) and laser ablation mass spectrometry (LA-ICP-MS, n = 56). The mineral has higher amounts of U (123 ± 17 ppm) than Th (39 ± 20 ppm) (LA-ICP-MS, ±1σ). Grains have the highest amounts of fluorine ever reported for monazite (0.88 ± 0.10 wt %, EPMA, ±1σ), and F-rich fluids are effective mobilizers of rare earth elements (REEs), Y, and Th. The monazite has high Eu contents and positive Eu anomalies, consistent with formation in a highly-reducing back-arc environment. We speculate that F, Ca, Si and REE may have been supplied via dissolution of pre-existing fluorapatite. Llallagua monazite oscillatory zoning is controlled by an interplay of low (P + Ca + Si + Y) and high atomic number (REE) elements.
    [Show full text]
  • 1 REVISION #3 Generalizations About Monazite: Implications For
    1 1 REVISION #3 2 Generalizations about monazite: Implications for geochronologic studies 3 Elizabeth J. Catlos 4 University of Texas at Austin, Jackson School of Geosciences, Dept. of Geological Sciences, 1 5 University Sta. C9000 EPS 1.130, Austin, TX 78712, USA 6 Abstract. With the advent of techniques that preclude mineral separation, ages from specific 7 compositional domains in monazite [(Ce, La, Th)PO4] have provided a wealth of information 8 regarding the timing of the geologic evolution of numerous regions. However, confusion can 9 arise when single grains show large differences in age that fail to correlate to chemistry or 10 location within the monazite. Generalizations that lead to incorrect age interpretations include 11 that monazite zoning in Y, Th, and/or the rare earth elements (REE) always identify (1) distinct 12 tectonic events, (2) environment of crystallization, and (3) provenance of detrital grains. 13 Increasing Th contents in monazite do not always reflect (1) increasing grade in metamorphic 14 grains, (2) changes in silicate melt composition in igneous grains, (3) make the mineral more 15 susceptible to alteration, nor (4) control the mineral’s uptake of REE. Metamorphic monazites 16 from Himalayan garnet-bearing rocks with co-existing allanite show no relationship between Th 17 content and REE. Instead, chondrite-normalized REE patterns of the allanite mirror those of the 18 monazite, indicating the variations are related to the reactant that formed the mineral. 19 Generalizations about Pb behavior in monazite remain problematic. Incorporation of Pb into 20 monazite has thus far been precluded by experimental studies, yet common Pb has been 21 measured in many studies of natural monazite.
    [Show full text]
  • Raman Spectroscopic Study of Variably Recrystallized Metamict Zircon from Amphibolite-Facies Metagranites, Serbo-Macedonian Massif, Bulgaria
    1357 The Canadian Mineralogist Vol. 44, pp. 1357-1366 (2006) RAMAN SPECTROSCOPIC STUDY OF VARIABLY RECRYSTALLIZED METAMICT ZIRCON FROM AMPHIBOLITE-FACIES METAGRANITES, SERBO-MACEDONIAN MASSIF, BULGARIA ROSITSA TITORENKOVA§ Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Street 107, 1113 Sofi a, Bulgaria BORIANA MIHAILOVA Mineralogisch-Petrographisches Institut, University of Hamburg, Grindelallee 48, D–20146 Hamburg. Germany LUDMIL KONSTANTINOV Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Street 107, 1113 Sofi a, Bulgaria ABSTRACT We investigated zircon from high-grade metagranites of the Serbo-Macedonian Massif, in Bulgaria, by cathodoluminescence (CL), back-scattered-electron imaging, electron-microprobe analysis, and Raman microspectroscopy. The structural state in various zones was assessed using: (i) the position and width of the Raman peak near 1008 cm–1, (ii) the relative Raman intensity –1 of the symmetrical and anti-symmetrical SiO4 modes, (iii) the width of the peaks near 357 and 439 cm , and (iv) the occurrence of extra Raman scattering near 162, 509, 635 and 785 cm–1. The analyzed zones are divided into two main groups: (A) areas with a well-resolved Raman peak near 1008 cm–1, and (B) areas with a very weak Raman scattering near 1008 cm–1. Group B can be classifi ed into two subgroups: (B-i) dark zones in CL images, with a high concentration of uranium (up to 7000 ppm), and (B-ii) outermost bright zones in CL images with a concentration of U lower than that in the inner areas and commonly below the detection limit.
    [Show full text]
  • Unraveling the Geologic History of the Avalon Terrane in MA Erin Nevens
    Undergraduate Review Volume 2 Article 12 2006 Unraveling the Geologic History of the Avalon Terrane in MA Erin Nevens Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Geology Commons Recommended Citation Nevens, Erin (2006). Unraveling the Geologic History of the Avalon Terrane in MA. Undergraduate Review, 2, 56-66. Available at: http://vc.bridgew.edu/undergrad_rev/vol2/iss1/12 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2006 Erin Nevens 56 Unraveling the Geologic History ofthe Avalon Terrane in MA BY ERIN NEYENS Erin Nevens wrote this piece under the Abstract mentorship of Dr. Michael Krol. "PO-. ield and petrographic analysis of rocks at Black Rock Beach in Co­ 10_.. hasset, MA record at least two phases of metamorphism and mag­ matic activity and three episodes ofdeformation. The earliest phase of metamorphism and deformation are recorded by mafic gneiss xenoliths. These xenoliths preserve a mylonitic texture, which represents de­ velopment in a ductile deformation environment. The xenoliths occur as large blocks that were later incorporated into the intruding magma of the Dedham granodiorite. Following crystallization, the Dedham granodiorite experienced an episode of plastic deformation. This event resulted in the development of a weak foliation defined by aligned feldspar porphyroclasts. Quartz and feldspar microstructures indicate deformation occurred between 350-450"C. A second phase of magmatic activity was associated with the intrusion ofseveral 1·2 me· ter wide porphyritic basalt dikes that cross-cut both the xenoliths and grano­ diorite,.and resulted in the brittle cataclasis of the Dedham granodiorite, The basalt dikes were emplaced during a time ofcrustal extension and subsequently experienced a late-stage hydrothermal alteration.
    [Show full text]
  • Comparison of Detrital Zircon U-Pb and Muscovite 40Ar/39Ar Ages in the Yangtze Sediment: Implications for Provenance Studies
    minerals Article Comparison of Detrital Zircon U-Pb and Muscovite 40Ar/39Ar Ages in the Yangtze Sediment: Implications for Provenance Studies Xilin Sun 1,2,* , Klaudia F. Kuiper 2, Yuntao Tian 1, Chang’an Li 3, Zengjie Zhang 1 and Jan R. Wijbrans 2 1 School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China; [email protected] (Y.T.); [email protected] (Z.Z.) 2 Department of Earth Sciences, Cluster Geology and Geochemistry, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; [email protected] (K.F.K.); [email protected] (J.R.W.) 3 School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; [email protected] * Correspondence: [email protected] Received: 30 June 2020; Accepted: 17 July 2020; Published: 20 July 2020 Abstract: Detrital zircon U-Pb and muscovite 40Ar/39Ar dating are useful tools for investigating sediment provenance and regional tectonic histories. However, the two types of data from same sample do not necessarily give consistent results. Here, we compare published detrital muscovite 40Ar/39Ar and zircon U-Pb ages of modern sands from the Yangtze River to reveal potential factors controlling differences in their provenance age signals. Detrital muscovite 40Ar/39Ar ages of the Major tributaries and Main trunk suggest that the Dadu River is a dominant sediment contributor to the lower Yangtze. However, detrital zircon data suggest that the Yalong, Dadu, and Min rivers are the most important sediment suppliers. This difference could be caused by combined effects of lower reaches dilution, laser spot location on zircons and difference in closure temperature and durability between muscovite and zircon.
    [Show full text]
  • THE STRATIGRAPHY and GEOCHEMISTRY of the GRANITE GNEISSES, BROKEN HILL, N.S.W. by IAN D. BLUCHER Department of Mining and Minera
    THE STRATIGRAPHY AND GEOCHEMISTRY OF THE . GRANITE GNEISSES, BROKEN HILL, N.S.W. by IAN D. BLUCHER Department of Mining and Mineral Sciences, w.s. & L.B. Robinson University College, University of New South Wales. MARCH, 1983. This thesis contains no material which has been accepted for the award of any other degree or diploma in any Tertiary Institution; nor does it contain any material previously published or written by any other person except where due reference and acknowledgement is made in the text. I.D. BLUCHER. ACKNOWLEDGEMENTS I would like to thank my supervisors Ors. K.D. Tuckwell and P.C. Rickwood for their advice and help during the preparation of this thesis. The analytical expertise of both Dr. T. Hughes of Melbourne University and The Zinc Corporation, Limited assay laboratory is greatly appreciated. The financial support provided by the Broken Hill Mining Managers' Association, the geological staff of both The Zinc Corporation, Limited and North Broken Hill Limited for specimens, maps and helpful discussions and the technical expertise of Mr. J. Vaughan, Mrs. K. Goldie, Ms. J. Gray and Mrs. J. Day all contributed to the successful completion of this study. Abstract The Granite gneisses located at Broken Hill have been examined in order to establish their internal stratigraphy, the significance of any chemical trends present and also an origin for these gneisses. Mineralogically these gneisses,which are chemically indistinguish­ able from one another can be divided into garnet-bearing or garnet-absent, quartz-feldspar-biotite gneisses, and an aplitic-textured quartz-feldspar­ rich fels. The first two gneiss types may in places be rich in feldspar augen and grade vertically into augen-poor or layered gneisses.
    [Show full text]
  • Geology of New Gold Discoveries in the Coffee Creek Area, White Gold District, West-Central Yukon
    Geology of new gold discoveries in the Coffee Creek area, White Gold district, west-central Yukon Alan J. Wainwright1, Adam T. Simmons, Craig S. Finnigan, Tim R. Smith and Robert L. Carpenter Kaminak Gold Corp. Wainwright, A.J., Simmons, A.T., Finnigan, C.S., Smith, T.R. and Carpenter, R.L., 2011. Geology of new gold discoveries in the Coffee Creek area, White Gold District, west-central Yukon. In: Yukon Exploration and Geology 2010, K.E. MacFarlane, L.H. Weston and C. Relf (eds.), Yukon Geological Survey, p. 233-247. abstraCt A new widespread, structurally controlled gold mineralizing system has been identified during the 2010 exploration drilling program at the Coffee Project, west-central Yukon. The Coffee Creek area is underlain by a sequence of shallowly to moderately south to southwest-dipping Paleozoic metamorphic rocks that are considered to be part of the Yukon-Tanana terrane and are intruded by the Cretaceous Coffee Creek granite along a west to northwest-trending contact. During the 2010 drilling program, structurally controlled gold mineralization was discovered in all major lithological units underlying the Coffee property. Importantly, these mineralized zones correspond to a number of discrete structural corridors. The gold zones are steeply dipping and characterized by extensive silicification in addition to sericite and clay alteration accompanied by variable As-Ag-Sb-Ba-Mo enrichment. Polyphase breccias of both hydrothermal and tectonic origin, in addition to andesite- dacite dykes, are common within the gold-bearing structural corridors. The dominant sulphide is pyrite, although trace arsenopyrite, chalcopyrite and stibnite are observed locally. The similarity of breccia textures and alteration/sulphide mineralogy between all gold zones currently defined on the Coffee property implies a common mineralizing event.
    [Show full text]
  • Alteration of Magmatic Monazite In
    Title: Alteration of magmatic monazite in granitoids from the Ryoke belt (SW Japan): processes and consequences Manuscript Number: 7025R - CORRECTION Authors: Etienne Skrzypek, University of Graz Shuhei Sakata, Gakushuin University Dominik Sorger, University of Graz 1 Alteration of magmatic monazite in granitoids from the Ryoke belt (SW Japan): 2 processes and consequences 3 4 REVISION 1 st 5 Corrected October 31 2019 6 1,2* 3 2 7 ETIENNE SKRZYPEK , SHUHEI SAKATA AND DOMINIK SORGER 8 1Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, 9 Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan 10 2Department of Petrology and Geochemistry, NAWI Graz Geocenter, University of Graz, 11 Universitätsplatz 2, 8010 Graz, Austria 12 3Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima- 13 ku, Tokyo 171-8588, Japan 14 * E-mail: [email protected] 15 16 Running title: Alteration of magmatic monazite 17 18 With 7 figures and 2 tables 19 1 1 20 ABSTRACT 21 The alteration of magmatic monazite and its consequences for monazite geochronology are 22 explored in granitoids from the western part of the Ryoke belt (Iwakuni-Yanai area, SW 23 Japan). Biotite-granite samples were collected in two plutons emplaced slightly before the 24 main tectono-metamorphic event: one, a massive granite (Shimokuhara) adjoins schistose 25 rocks affected by greenschist facies metamorphism; and the second, a gneissose granite 26 (Namera) adjoins migmatitic gneiss that experienced upper-amphibolite facies conditions. 27 Despite contrasting textures, the granite samples have similar mineral modes and 28 compositions. Monazite in the massive granite is dominated by primary domains with limited 29 secondary recrystallization along cracks and veinlets.
    [Show full text]
  • Apatite Thermochronology in Modern Geology
    Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Apatite thermochronology in modern geology F. LISKER1*, B. VENTURA1 & U. A. GLASMACHER2 1Fachbereich Geowissenschaften, Universita¨t Bremen, PF 330440, 28334 Bremen, Germany 2Institut fu¨r Geowissenschaften, Ruprecht-Karls-Universita¨t Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany *Corresponding author (e-mail: fl[email protected]) Abstract: Fission-track and (U–Th–Sm)/He thermochronology on apatites are radiometric dating methods that refer to thermal histories of rocks within the temperature range of 408–125 8C. Their introduction into geological research contributed to the development of new concepts to interpreting time-temperature constraints and substantially improved the understanding of cooling processes within the uppermost crust. Present geological applications of apatite thermochronological methods include absolute dating of rocks and tectonic processes, investigation of denudation histories and long-term landscape evolution of various geological settings, and basin analysis. Thermochronology may be described as the the analysis of radiation damage trails (‘fission quantitative study of the thermal histories of rocks tracks’) in uranium-bearing, non-conductive using temperature-sensitive radiometric dating minerals and glasses. It is routinely applied on the methods such as 40Ar/39Ar and K–Ar, fission minerals apatite, zircon and titanite. Fission tracks track, and (U–Th)/He (Berger & York 1981). are produced continuously through geological time Amongst these different methods, apatite fission as a result of the spontaneous fission of 238U track (AFT) and apatite (U–Th–Sm)/He (AHe) atoms. They are submicroscopic features with an are now, perhaps, the most widely used thermo- initial width of approximately 10 nm and a length chronometers as they are the most sensitive to low of up to 20 mm (Paul & Fitzgerald 1992) that can temperatures (typically between 40 and c.
    [Show full text]