Japanese Macaques As Laboratory Animals

Total Page:16

File Type:pdf, Size:1020Kb

Japanese Macaques As Laboratory Animals Exp. Anim. 58(5), 451–457, 2009 —Review— Review Series: Animal Bioresource in Japan Japanese Macaques as Laboratory Animals Tadashi ISA, Itaru YAMANE, Miya HAMAI, and Haruhisa INAGAKI Section for NBR Promotion, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan Abstract: The Japanese macaque (Macaca fuscata), along with rhesus and long-tailed macaques, is one of the macaca species. In Japan, it has been preferred for use as a laboratory animal, particularly in the field of neuroscience, because of its high level of intelligence and its gentle nature. In addition, the species has a relatively homogeneous genetic background and field researchers have accumulated abundant information on the social behavior of wild Japanese macaques. As future neuroscience research will undoubtedly be more focused on the higher cognitive functions of the brain, including social behavior among multiple individuals, the Japanese macaque can be expected to become even more valuable as a laboratory animal in the near future. The Ministry of Education, Culture, Sports, Science and Technology has launched a National BioResource Project (NBRP) to establish a stable breeding and supply system for Japanese macaques for laboratory use. The project is in progress and should lead to the establishment of a National Primate Center in Japan, which will support the supply of monkeys as well as social outreach and handling of animal welfare issues. Key words: bio-resource, laboratory animal, Macaca fuscata, NBRP, neuroscience Introduction ratory animals. In Japan, however, the Japanese macaque (Macaca fuscata) has been frequently employed, in part Macaque monkeys have proved to be a useful animal because Japanese macaques are native to Japan. Until model for a variety of reasons. First, they are phyloge- recently, they were regarded in many rural areas as an netically closer to humans than other animals routinely agricultural pest, and were captured and legally trans- used, e.g., mice and rats. Second, they have a similar ferred to researchers by local authorities. Now, for body structure and physiological properties to humans, various reasons, the use of animals of wild origin for and consequently have proved of value for virology, laboratory research is restricted. Nevertheless, Japanese neuroscience, and reproduction research, etc. Indeed, macaques are still the preferred choice for many types there are some types of research in which macaque mon- of laboratory research, particularly in the field of neuro- keys cannot be replaced by other animal species, such science targeting the higher brain functions. Here, we as rodents, or by cell lines. Globally, rhesus macaques describe the unique contribution of Japanese macaques (Macaca mulatta) and long-tailed macaques (Macaca to neuroscience research. fascicularis) are most commonly used primates as labo- (Received 18 June 2009 / Accepted 25 August 2009) Address corresponding: T. Isa, Section for NBR Promotion, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan 452 T. ISA, ET AL. Table 1. The research areas and the number of studies where macaca species were used Micr Neur Bioc Gene Cons HIV Phar HIV Etho Surg Endo Total Cons Phar Phys M. mulatta 102 251 36 27 13 76 106 35 35 46 39 766 M. fascicularis 38 132 26 11 6 51 16 13 36 18 12 359 M. fuscata 2 37 6 4 9 2 2 16 5 2 5 90 Total 142 420 68 42 28 129 124 64 76 66 56 1,215 Micr, microbiology. HIV, HIV/AIDS. Neur, neuroscience. Etho, ethology. Bioc, biochemistry. Surg, surgery/anatomy. Gene, genetics. Endo, endocrinology/reproduction. Cons, conservation/ecology/anthropology. Phys, physiology. Phar, pharmacology. (derived from Carlsson et al. 2004 [1]) Macaque Monkeys in Life Science Research However, in 2000, the Ministry of Environment in Japan decided to restrict the use of monkeys caught in the wild Global trend for research in response to concerns raised by prima- The number of articles published resulting from stud- tologists regarding the possibly deleterious effect on ies in which one of the macaque species was employed Japanese macaque populations. Although the numbers is shown in Table 1 (derived from Carlsson [1]). As is of wild-derived animals used in laboratories was only a clear from the table, macaque species have been used in small portion of the total number of captured monkeys, a wide range of life science studies, including microbiol- it was argued that the existence of the path for such us- ogy, neuroscience, pharmacology, and HIV/AIDS. The age might encourage levels of capture that were inap- overall proportion of studies involving Japanese ma- propriate with regard to conservation of the species. The caques (Macaca fuscata) is small in a global context as change in regulation reduced the use of wild-derived they have mainly been used by Japanese scientists. In Japanese macaques, however, a demand for the species those studies in which they have been employed, Japa- remains as many Japanese researchers regard the Japa- nese macaques have been used most frequently in neu- nese macaque as a valuable animal model, particularly roscience and HIV/AIDS research. in studies of higher brain functions. Japanese macaques have the reputation of being relatively tame and gentle Why Japanese Macaques? compared to other macaque species, such as rhesus and long-tailed macaques. In some types of neuroscience Unique situation in Japan research, macaques undergo behavioral testing in the Initially, Japanese macaques were used in Japanese laboratories after extensive training at particular tasks. laboratories because they are a native species that was The somewhat more gentle nature of Japanese macaques readily available from rural local authorities that trapped makes them more amenable to such test procedures. them as an agricultural pest. The number of Japanese Moreover, although it is less widely appreciated, ethol- macaques trapped has been reported to be about 10,000 ogists have accumulated a considerable amount of in- per year [6]. The majority of these animals were killed, formation on the behavior of Japanese macaques in the but in the past, some were transferred to researchers, wild (see the next section). In neuroscience research, mainly for use in medical studies. In neuroscience re- there is an increasing trend toward including studies of search, the number of articles published in the two lead- the neural basis of social behaviors. For such research, ing journals, the Journal of Neurophysiology and the the possibility of integrating data collected in the field Journal of Neuroscience, with Macaca fuscata as the with that gathered in laboratory studies is attractive as experimental model, dramatically increased after the mid it might provide valuable insights into many aspects of 1980s (Fig. 1). Thus, Macaca fuscata has been one of social behavior. To illustrate the potential benefits that the principal animal species used in this research field, might be gained from such studies, we briefly summarize especially among Japanese neuroscientists (Fig. 2B). the history of ethological research on Japanese macaques JAPANESE MACAQUES AS LABORATORY ANIMALS 453 Fig. 1. The number of articles published in the Journal of Neurophysiology ( ) and the Journal of Neuroscience ( ) in which Japanese macaques were used. The abscissa (“x”) axis indicates the published year. The ordinate (“y”) axis indicates the numbers of articles. Fig. 2. The comparative rates of use of different macaque species in studies published in 2008. (A) Each bar indicates the percentage of each macaca species ( M. fuscata; M. mulatta; M. fascicularis) per journal. The fi gure above each bar indicates the total number of articles. (B) The number of articles published by Japanese scientists using different macaque species. in the next section. Another little known aspect of One possible explanation for this phenomenon is that Japanese macaques is that they show considerably less only a small population of Japanese macaques initially genetic variance than other macaque species (Fig. 3). colonized the islands of Japan during the Ice Age, when 454 T. ISA, ET AL. Fig. 3. Estimated genetic variability of various species. Each bar indicates the expected average heterozygosity calculated from the mean of gene frequencies in the subpopulations of each species (Nozawa et al. 1996 [10]). The ordinate (“y”) axis indicates the value of heterozygosity. these islands were connected to the mainland, and that involving focal-animal data sampling based on indi- the modern population is derived from this relatively vidual identification. This approach led to the discovery restricted group of founders. This unique characteristic of primate “pre-culture” (i.e., sweet potato washing [4]), of Japanese macaques compared to the other macaca which is often cited as the beginning of “cultural prima- species (rhesus and long-tailed macaques) that are prev- tology”. Furthermore, such “ethnography of monkeys” alent in south-east Asian countries is of considerable also attracted public attention in Japan. Six wild popu- benefit for laboratory studies. lations were designated as National Treasures, and as resources for tourism and education, monkey watching Accumulation of ethological data at “saru-yama” (zoo enclosures) and “wild monkey From an ethological perspective, the Japanese ma- parks” (free-ranging, provisioned sites) became popular. caque is one of the most well-studied primate species. Later, from the 1970s, researchers initiated attempts to The behavior of these monkeys has been under study for habituate wild troops without provisioning to eliminate more than 50 years and there are continuous demograph- undesirable human influences on their behavior and ecol- ic records from various ecological settings. ogy. As a result of these efforts over many years, an In 1952, researchers from Kyoto University started extensive understanding of the behavior and ecology of provisioning and observing wild monkey troops at Ko- the Japanese macaque has been obtained. shima, Miyazaki and Takasakiyama, Oita, with a strong An illustration of the extent of this data gathering focus on evolution of sociality in their studies.
Recommended publications
  • Rhesus Macaque Sequencing
    White Paper for Complete Sequencing of the Rhesus Macaque (Macaca mulatta) Genome Jeffrey Rogers1, Michael Katze 2, Roger Bumgarner2, Richard A. Gibbs 3 and George M. Weinstock3 I. Introduction Humans are members of the Order Primates and our closest evolutionary relatives are other primate species. This makes primate models of human disease particularly important, as the underlying physiology and metabolism, as well as genomic structure, are more similar to humans than are other mammals. Chimpanzees (Pan troglodytes) are the animals most similar to humans in overall DNA sequence, with interspecies sequence differences of approximately 1- 1.5% (Stewart and Disotell 1998, Page and Goodman 2001). The other apes, including gorillas and orangutans are nearly as similar to humans. The animals next most closely related to humans are Old World monkeys, superfamily Cercopithecoidea. This group includes the common laboratory species of rhesus macaque (Macaca mulatta), baboon (Papio hamadryas), pig-tailed macaque (Macaca nemestrina) and African green monkey (Chlorocebus aethiops). The human evolutionary lineage separated from the ancestors of chimpanzees about 6-7 million years ago (MYA), while the human/ape lineage diverged from Old World monkeys about 25 MYA (Stewart and Disotell 1998), and from another important primate group, the New World monkeys, more than 35-40 MYA. In comparison, humans diverged from mice and other non- primate mammals about 65-85 MYA (Kumar and Hedges 1998, Eizirik et al 2001). In the evaluation of primate candidates for genome sequencing there should be more to selection of an organism than evolutionary considerations. The chimpanzee’s status as Closest Relative To Human has earned it an exemption from this consideration.
    [Show full text]
  • The Behavioral Ecology of the Tibetan Macaque
    Fascinating Life Sciences Jin-Hua Li · Lixing Sun Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associ- ated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthu- siasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Jin-Hua Li • Lixing Sun • Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Editors Jin-Hua Li Lixing Sun School of Resources Department of Biological Sciences, Primate and Environmental Engineering Behavior and Ecology Program Anhui University Central Washington University Hefei, Anhui, China Ellensburg, WA, USA International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology Anhui, China School of Life Sciences Hefei Normal University Hefei, Anhui, China Peter M. Kappeler Behavioral Ecology and Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research Göttingen, Germany Department of Anthropology/Sociobiology University of Göttingen Göttingen, Germany ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-030-27919-6 ISBN 978-3-030-27920-2 (eBook) https://doi.org/10.1007/978-3-030-27920-2 This book is an open access publication.
    [Show full text]
  • Laboratory Primate Newsletter
    LABORATORY PRIMATE NEWSLETTER Vol. 45, No. 3 July 2006 JUDITH E. SCHRIER, EDITOR JAMES S. HARPER, GORDON J. HANKINSON AND LARRY HULSEBOS, ASSOCIATE EDITORS MORRIS L. POVAR, CONSULTING EDITOR ELVA MATHIESEN, ASSISTANT EDITOR ALLAN M. SCHRIER, FOUNDING EDITOR, 1962-1987 Published Quarterly by the Schrier Research Laboratory Psychology Department, Brown University Providence, Rhode Island ISSN 0023-6861 POLICY STATEMENT The Laboratory Primate Newsletter provides a central source of information about nonhuman primates and re- lated matters to scientists who use these animals in their research and those whose work supports such research. The Newsletter (1) provides information on care and breeding of nonhuman primates for laboratory research, (2) dis- seminates general information and news about the world of primate research (such as announcements of meetings, research projects, sources of information, nomenclature changes), (3) helps meet the special research needs of indi- vidual investigators by publishing requests for research material or for information related to specific research prob- lems, and (4) serves the cause of conservation of nonhuman primates by publishing information on that topic. As a rule, research articles or summaries accepted for the Newsletter have some practical implications or provide general information likely to be of interest to investigators in a variety of areas of primate research. However, special con- sideration will be given to articles containing data on primates not conveniently publishable elsewhere. General descriptions of current research projects on primates will also be welcome. The Newsletter appears quarterly and is intended primarily for persons doing research with nonhuman primates. Back issues may be purchased for $5.00 each.
    [Show full text]
  • High-Ranking Geladas Protect and Comfort Others After Conflicts
    www.nature.com/scientificreports OPEN High-Ranking Geladas Protect and Comfort Others After Conficts Elisabetta Palagi1, Alessia Leone1, Elisa Demuru1 & Pier Francesco Ferrari2 Post-confict afliation is a mechanism favored by natural selection to manage conficts in animal Received: 2 January 2018 groups thus avoiding group disruption. Triadic afliation towards the victim can reduce the likelihood Accepted: 30 August 2018 of redirection (benefts to third-parties) and protect and provide comfort to the victim by reducing its Published: xx xx xxxx post-confict anxiety (benefts to victims). Here, we test specifc hypotheses on the potential functions of triadic afliation in Theropithecus gelada, a primate species living in complex multi-level societies. Our results show that higher-ranking geladas provided more spontaneous triadic afliation than lower- ranking subjects and that these contacts signifcantly reduced the likelihood of further aggression on the victim. Spontaneous triadic afliation signifcantly reduced the victim’s anxiety (measured by scratching), although it was not biased towards kin or friends. In conclusion, triadic afliation in geladas seems to be a strategy available to high-ranking subjects to reduce the social tension generated by a confict. Although this interpretation is the most parsimonious one, it cannot be totally excluded that third parties could also be afected by the negative emotional state of the victim thus increasing a third party’s motivation to provide comfort. Therefore, the debate on the linkage between third-party afliation and emotional contagion in monkeys remains to be resolved. Conficts in social animals can have various immediate and long-term outcomes. Immediately following a con- fict, opponents may show a wide range of responses, from tolerance and avoidance of open confict, to aggres- sion1.
    [Show full text]
  • Molecular Cytogenetic Analysis of One African and Five Asian Macaque Species Reveals Identical Karyotypes As in Mandrill
    Send Orders for Reprints to [email protected] Current Genomics, 2018, 19, 207-215 207 RESEARCH ARTICLE Molecular Cytogenetic Analysis of One African and Five Asian Macaque Species Reveals Identical Karyotypes as in Mandrill Wiwat Sangpakdee1,2, Alongkoad Tanomtong2, Arunrat Chaveerach2, Krit Pinthong1,2,3, Vladimir Trifonov1,4, Kristina Loth5, Christiana Hensel6, Thomas Liehr1,*, Anja Weise1 and Xiaobo Fan1 1Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany; 2Department of Biology Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang Dis- trict, Khon Kaen 40002, Thailand; 3Faculty of Science and Technology, Surindra Rajabhat University, 186 Moo 1, Maung District, Surin 32000, Thailand; 4Institute of Molecular and Cellular Biology, Lavrentev Str. 8/2, Novosibirsk 630090, Russian Federation; 5Serengeti-Park Hodenhagen, Am Safaripark 1, D-29693 Hodenhagen, Germany; 6Thüringer Zoopark Erfurt, Am Zoopark 1, D-99087 Erfurt, Germany Abstract: Background: The question how evolution and speciation work is one of the major interests of biology. Especially, genetic including karyotypic evolution within primates is of special interest due to the close phylogenetic position of Macaca and Homo sapiens and the role as in vivo models in medical research, neuroscience, behavior, pharmacology, reproduction and Acquired Immune Defi- ciency Syndrome (AIDS). Material & Methods: Karyotypes of five macaque species from South East Asia and of one macaque A R T I C L E H I S T O R Y species as well as mandrill from Africa were analyzed by high resolution molecular cytogenetics to obtain new insights into karyotypic evolution of old world monkeys.
    [Show full text]
  • Camera Traps in the Fight Against Primate Declines
    Don’t be camera shy: camera traps in the fight against primate declines By Caspian Johnson, 30th September 2020 Macaques are a diverse genus of primates, but nowhere is this diversity better appreciated than on the island of Sulawesi. This large island, situated within the Indonesian archipelago, is home to an astonishing array of endemic mammals, reptiles, birds and fish. Amongst these are five macaque species. In the forests of the northernmost tip of Sulawesi lives arguably the most striking—the crested black macaque. Listed as Critically Endangered by the IUCN Red List, there are c. eight important populations of crested black macaques distributed across 2,106 km2. Yaki (Macaca nigra) on a beach in Tangkoko, North Sulawesi. Photo: Andrew Walmsley The crested black macaque gained notoriety when a young male in Tangkoko Nature Reserve commandeered a photographer’s camera and took a selfie with it in 2011. The intelligence and mischievousness required for such a feat is in itself compelling. Add their jet-black coat and punk rock hairstyles and you have an animal of considerable charm and charisma. Left: Macaques were unconcerned by our camera traps, often spending a good deal of time investigating the cameras and relaxing within shot. Right: Our camera trap effort resulted in almost 10,000 camera-trap days. We detected crested black macaques on 473 of these in 71 out of 111 cameras. Photos: Selamatkan Yaki & WCS Indonesia However, behind the image of grinning macaques is juxtaposed a narrative of hunting, habitat loss and persecution. This is a primate that is being pushed to the brink of extinction by a multitude of anthropogenic threats.
    [Show full text]
  • NATIONAL STUDBOOK Pig Tailed Macaque (Macaca Leonina)
    NATIONAL STUDBOOK Pig Tailed Macaque (Macaca leonina) Published as a part of the Central Zoo Authority sponsored project titled “Development and maintenance of studbooks for selected endangered species in Indian zoos” Data: Till December 2013 Published: March 2014 NATIONAL STUDBOOK Pig Tailed Macaque (Macaca leonine) Published as a part of the Central Zoo Authority sponsored project titled “Development and maintenance of studbooks for selected endangered species in Indian zoos” Compiled and analyzed by Ms. Nilofer Begum Junior Research Fellow Project Consultant Dr. Anupam Srivastav, Ph.D. Supervisors Dr. Parag Nigam Shri. P.C. Tyagi Copyright © WII, Dehradun, and CZA, New Delhi, 2014 This report may be quoted freely but the source must be acknowledged and cited as: Nigam P., Nilofer B., Srivastav A. & Tyagi P.C. (2014) National Studbook of Pig-tailed Macaque (Macaca leonina), Wildlife Institute of India, Dehradun and Central Zoo Authority, New Delhi. FOREWORD For species threatened with extinction in their natural habitats ex-situ conservation offers an opportunity for ensuring their long-term survival. This can be ensured by scientific management to ensure their long term genetic viability and demographic stability. Pedigree information contained in studbooks forms the basis for this management. The Central Zoo Authority (CZA) in collaboration with zoos in India has initiated a conservation breeding program for threatened species in Indian zoos. As a part of this endeavor a Memorandum of Understanding has been signed with the Wildlife Institute of India for compilation and update of studbooks of identified species in Indian zoos. As part of the project outcomes the WII has compiled the studbook for Pig tailed macaque (Macaca leonina) in Indian zoos.
    [Show full text]
  • An Introduced Primate Species, Chlorocebus Sabaeus, in Dania
    AN INTRODUCED PRIMATE SPECIES, CHLOROCEBUS SABAEUS, IN DANIA BEACH, FLORIDA: INVESTIGATING ORIGINS, DEMOGRAPHICS, AND ANTHROPOGENIC IMPLICATIONS OF AN ESTABLISHED POPULATION by Deborah M. Williams A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL May 2019 Copyright 2019 by Deborah M. Williams ii AN INTRODUCED PRIMATE SPECIES, CHLOROCEBUS SABAEUS, IN DANIA BEACH, FLORIDA: INVESTIGATING ORIGINS, DEMOGRAPHICS, AND ANTHROPOGENIC IMPLICATIONS OF AN ESTABLISHED POPULATION by Deborah M. Williams This dissertation was prepared under the direction of the candidate's dissertation advisor, Dr. Kate Detwiler, Department of Biological Sciences, and has been approved by all members of the supervisory committee. It was submitted to the faculty of the Charles E. Schmidt College of Science and was accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. SUPERVISORY COMMITTEE: ~ ~,'£-____ Colin Hughes, Ph.D. ~~ Marianne Porter, P6.D. I Sciences arajedini, Ph.D. Dean, Charles E. Schmidt College of Science ~__5~141'~ Khaled Sobhan, Ph.D. Interim Dean, Graduate College iii ACKNOWLEDGEMENTS There are so many people who made this possible. It truly takes a village. A big thank you to my husband, Roy, who was my rock during this journey. He offered a shoulder to lean on, an ear to listen, and a hand to hold. Also, thank you to my son, Blake, for tolerating the late pick-ups from school and always knew when a hug was needed. I could not have done it without them.
    [Show full text]
  • OPTIMAL FORAGING on the ROOF of the WORLD: a FIELD STUDY of HIMALAYAN LANGURS a Dissertation Submitted to Kent State University
    OPTIMAL FORAGING ON THE ROOF OF THE WORLD: A FIELD STUDY OF HIMALAYAN LANGURS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Kenneth A. Sayers May 2008 Dissertation written by Kenneth A. Sayers B.A., Anderson University, 1996 M.A., Kent State University, 1999 Ph.D., Kent State University, 2008 Approved by ____________________________________, Dr. Marilyn A. Norconk Chair, Doctoral Dissertation Committee ____________________________________, Dr. C. Owen Lovejoy Member, Doctoral Dissertation Committee ____________________________________, Dr. Richard S. Meindl Member, Doctoral Dissertation Committee ____________________________________, Dr. Charles R. Menzel Member, Doctoral Dissertation Committee Accepted by ____________________________________, Dr. Robert V. Dorman Director, School of Biomedical Sciences ____________________________________, Dr. John R. D. Stalvey Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES ............................................................................................... vi LIST OF TABLES ............................................................................................... viii ACKNOWLEDGEMENTS .....................................................................................x Chapter I. PRIMATES AT THE EXTREMES ..................................................1 Introduction: Primates in marginal habitats ......................................1 Prosimii .............................................................................................2
    [Show full text]
  • Theropithecus Gelada) on an Intact Afro-Alpine Grassland at Guassa, Ethiopia ______
    LONG-TERM RANGING PATTERNS OF WILD GELADA MONKEYS (THEROPITHECUS GELADA) ON AN INTACT AFRO-ALPINE GRASSLAND AT GUASSA, ETHIOPIA ____________________________________ A Thesis Presented to the Faculty of California State University, Fullerton ____________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Arts in Anthropology ____________________________________ By Cha Moua Thesis Committee Approval: Associate Professor Peter J. Fashing, Chair Associate Professor Nga Nguyen, Department of Anthropology Associate Professor Elizabeth G. Pillsworth, Department of Anthropology Fall, 2015 ABSTRACT Long-term studies of animal ranging ecology are critical to understanding how animals utilize their habitat across space and time. Although gelada monkeys (Theropithecus gelada) inhabit an unusual, high altitude habitat that presents unique ecological challenges, no long-term studies of their ranging behavior have been conducted. To close this gap, I investigated the daily path length (DPL), annual home ranges (95%), and annual core areas (50%) of a band of ~220 wild gelada monkeys at Guassa, Ethiopia, from January 2007 to December 2011 (for total of n = 785 full-day follows). I estimated annual home ranges and core area using the fixed kernel reference (FK REF) and smoothed cross-validation (FK SCV) bandwidths, and the minimum convex polygon (MCP) method. Both annual home range (MCP - 2007: 5.9 km2; 2008: 8.6 km2; 2009: 9.2 km2; 2010: 11.5 km2; 2011: 11.6 km2) and core area increased over the 5-year study period. The MCP and FK REF generated broadly consistent, though slightly larger estimates that contained areas in which the geladas were never observed. All three methods omitted one to 19 sleeping sites from the home range depending on the year.
    [Show full text]
  • Two Newly Observed Cases of Fish-Eating in Anubis Baboons
    Vol. 7 No.1 (2016) 5-9. and folivore needs longer feeding time. The risk of losing Two Newly Observed time when folivore fail to catch fish or vertebrate might Cases of Fish-eating in be serious for them. Examination of possible factors of fish-eating in non-human primates shed a light on this Anubis Baboons question. One of the factors is seasonality. Catching fish be- Akiko Matsumoto-Oda 1,*, Anthony D. Collins 2 comes easier during the dry season because temporary small pools or shallow rivers appear (Hamilton & Tilson, 1 Graduate School of Tourism Sciences, University of the Ryukyus, Okinawa 903-0213, Japan 1985; de Waal, 2001). Most of cases that non-human 2 The Jane Goodall Institute, Gombe Stream Research Centre, Kigoma P.O. primates obtained fishes were beside shallow water Box 185, Tanzania (Stewart, Gordon, Wich, Schroor, & Meijaard, 2008). *Author for correspondence ([email protected]) In rehabilitant orangutans in Central Kalimantan, 79% events (19/24) were in the wet-dry transition or in the dry Most non-human primates are omnivorous and eat season, and they obtained 21% (4/19) of fsh from shallow a wide variety of food types like as fruit, leaves, ponds and 79% (15/19) on riverbanks (Russon et al., 2014). seeds, insects, gums or a mixture of these items. In Hunting frequency becomes high when low availability spite of frequent eating of fish in human, there are of preferred foods create a need for fallback foods (e.g., few species to eat fishes in non-human primates. Teleki, 1973; Rose, 2001).
    [Show full text]
  • (Mandrillus Leucophaeus) CAPTIUS Mireia De Martín Marty
    COMUNICACIÓ VOCAL EN DRILS (Mandrillus leucophaeus) CAPTIUS Mireia de Martín Marty Tesi presentada per a l’obtenció del grau de Doctor (Juny 2004) Dibuix: Dr. J. Sabater Pi Codirigida pel Dr. J. Sabater Pi i el Dr. C. Riba Departament de Psiquiatria i Psicobiologia Clínica Facultat de Psicologia. Universitat de Barcelona REFLEXIONS FINALS I CONCLUSIONS 7.1 ASPECTES DE COMUNICACIÓ UNIVERSAL L’alçada de la freqüència dins d’un repertori correlaciona amb el context o missatge que es vol emetre. Es podria pensar que és un universal en la comunicació. Davant de situacions de disconfort o en contextos anagonístics, la freqüència d’emissió s’eleva. A més tensió articulatòria, augmenta el to cap a l’agut. La intensitat és un recurs que augmenta la capacitat d’impressionar l’atenció del que escolta. A la natura trobem diferents exemplificacions d’aquest fet, fins i tot en espècies molt allunyades filogenèticament com el gos o l’abellot que en emetre el zum-zum, si se sent amenaçat, eleva la freqüència d’emissió. En les vocalitzacions de les diferents espècies de primats hi ha trets acústics homòlegs, que s’emeten en similars circumstàncies socials. Els senyals d’amenaça acostumen a ser de to baix en els primats i, en canvi, els anagonístics estridents i molt aguts; alguns senyals d’alarma tenen patrons comuns en els dibuixos espectrogràfics i, fins i tot, altres espècies diferents a l’espècie emissora en reconeixen el significat. Podríem deduir una funció comunicativa derivada de l’estructura acústica. En crides de cohesió, les de reclam d’atenció o amistoses, l’estructura acústica és tonal; quan informa d’una ubicació, tenen diferents bandes de freqüència; les agressives i d’alarma tenen denses bandes freqüencials; i les agonístiques o més emotives – que expressen un elevat estat emocional (‘desesperat’)- són noisy o molt compactes.
    [Show full text]