Generalized Inverses: Theory and Applications Bibliography for the 2Nd Edition (June 21, 2001)
Total Page:16
File Type:pdf, Size:1020Kb
Generalized Inverses: Theory and Applications Bibliography for the 2nd Edition (June 21, 2001) Adi Ben-Israel Thomas N.E. Greville† RUTCOR–Rutgers Center for Operations Research, Rutgers University, 640 Bartholomew Rd, Piscataway, NJ 08854-8003, USA E-mail address: [email protected] Bibliography 16. A. Albert and R. W. Sittler, A method for comput- ing least squares estimators that keep up with the data, SIAM J. Control 3 (1965), 384–417. 1. K. Abdel-Malek and Harn-Jou Yeh, On the deter- 17. V. Aleksi´cand V. Rakoˇcevi´c, Approximate proper- mination of starting points for parametric surface ties of the Moore-Penrose inverse, VIII Conference intersections, Computer-aided Design 29 (1997), on Applied Mathematics (Tivat, 1993), Univ. Mon- no. 1, 21–35. tenegro, Podgorica, 1994, pp. 1–14. 2. N. N. Abdelmalek, On the solutions of the linear 18. E. L. Allgower, K. B¨ohmer, A. Hoy, and least squares problems and pseudo–inverses, Com- V. Janovsk´y, Direct methods for solving singu- puting 13 (1974), no. 3-4, 215–228. lar nonlinear equations, ZAMM Z. Angew. Math. 3. V. M. Adukov, Generalized inversion of block Mech. 79 (1999), 219–231. Toeplitz matrices, Linear Algebra and its Appli- 19. M. Altman, A generalization of Newton’s method, cations 274 (1998), 85–124. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. 4. , Generalized inversion of finite rank Han- Phys. 3 (1955), 189–193. kel and Toeplitz operators with rational matrix 20. , On a generalization of Newton’s method, symbols, Linear Algebra and its Applications 290 Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. (1999), no. 1-3, 119–134. Phys. 5 (1957), 789–795. 5. S. N. Afriat, On the latent vectors and characteris- 21. J. K. Amburgey, T. O. Lewis, and T. L. Boul- tic values of products of pairs of symmetric idem- lion, On computing generalized characteristic vec- potents, Quart. J. Math. Oxford Ser. (2) 7 (1956), tors and values for a rectangular matrix, In Boul- 76–78. lion and Odell [207], pp. 267–275. 6. , Orthogonal and oblique projectors and the 22. A. R. Amir-Mo´ez, Geometry of generalized in- characteristics of pairs of vector spaces, Proc. Cam- verses, Math. Mag. 43 (1970), 33–36. bridge Philos. Soc. 53 (1957), 800–816. 23. , Extreme properties of linear transforma- 7. J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The tions, Polygonal Publ. House, Washington, NJ, theory of splines and their applications, Academic 1990. Press, New York, 1967. 24. C. L. Anderson, A geometric theory of pseudoin- 8. A. C. Aitken, On least squares and linear combi- verses and some applications in statistics, Mas- nations of observations, Proceedings of the Royal ter’s thesis in statistics, Southern Methodist Univ., Society of Edinburgh, Sec A 55 (1934), 42–47. 1967. 9. Y. Akatsuka and T. Matsuo, Optimal control of 25. W. N. Anderson, Jr., Shorted operators, SIAM J. linear discrete systems using the generalized inverse Appl. Math. 20 (1971), 520–525. of a matrix, Techn Rept. 13, Institute of Automatic 26. W. N. Anderson, Jr. and R. J. Duffin, Series and Control, Nagoya Univ., Nagoya, Japan, 1965. parallel addition of matrices, SIAM J. Appl. Math. 10. I. S. Alalouf and G. P. H. Styan, Characterizations 26 (1969), 576–594, (see [878]). of estimability in the general linear model, Ann. 27. W. N. Anderson, Jr. and M. Schreiber, The infi- Statist. 7 (1979), no. 1, 194–200. mum of two projections, Acta Sci. Math. (Szeged) 11. , Estimability and testability in restricted 33 (1972), 165–168. linear models, Math. Operationsforsch. Statist. Ser. 28. W. N. Anderson, Jr. and G. E. Trapp, Inequalities Statist. 10 (1979), no. 2, 189–201. for the parallel connection of resistive n-port net- 12. A. Albert, Conditions for positive and nonnegative works, J. Franklin Inst. 209 (1975), no. 5, 305–313. definiteness in terms of pseudo–inverses, SIAM J. 29. , Shorted operators. II, SIAM J. Appl. Appl. Math. 17 (1969), 434–440. Math. 28 (1975), 60–71, (this concept first intro- 13. , Regression and the Moore–Penrose Pseu- duced by Krein [880]). doinverse, Academic Press, New York, 1972. 30. , Analytic operator functions and electrical 14. , The Gauss–Markov theorem for regression networks, In Campbell [267], pp. 12–26. models with possibly singular covariabes, SIAM J. 31. , Inverse problems for means of matrices, Appl. Math. 24 (1973), 182–187. SIAM J. Algebraic Discrete Methods 7 (1986), 15. , Statistical applications of the pseudo in- no. 2, 188–192. verse, In Nashed [1116], pp. 525–548. 32. T. Ando, Generalized Schur complements, Linear Algebra and its Applications 27 (1979), 173–186. 3 4 BIBLIOGRAPHY 33. Mihai Anitescu, Dan I. Coroian, M. Zuhair Nashed, 50. G. Backus, Inference from inadequate and inaccu- and Florian A. Potra, Outer inverses and multi- rate data. I, II, Proc. Nat. Acad. Sci. U.S.A. 65 body system simulation, Numer. Funct. Anal. Op- (1970), 1–7; ibid. 65 (1970), 281–287. tim. 17 (1996), no. 7-8, 661–678. 51. G. Backus and F. Gilbert, Uniqueness in the inver- 34. P. M. Anselone and P. J. Laurent, A general method sion of inaccurate gross Earth data, Philos. Trans. for the construction of interpolating or smoothing Roy. Soc. London Ser. A 266 (1970), no. 1173, 123– spline-functions, Numer. Math. 12 (1968), 66–82. 192. 35. H. Anton and C. S. Duris, On minimum norm and 52. C. Badea and M. Mbekhta, Generalized inverses best approximate solutions of Av = b in normed and the maximal radius of regularity of a Fredholm spaces, J. Approximation Theory 16 (1976), no. 3, operator, Integral Equations Operator Theory 28 245–250. (1997), no. 2, 133–146. 36. E. Arghiriade, Sur les matrices qui sont permuta- 53. , Compressions of resolvents and maximal bles avec leur inverse g´en´eralis´ee, Atti Accad. Naz. radius of regularity, Trans. Amer. Math. Soc. 351 Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser. VIII 35 (1999), no. 7, 2949–2960. (1963), 244–251. 54. J. K. Baksalary and R. Kala, The matrix equation 37. , On the generalized inverse of a product of AX−YB = C, Linear Algebra and its Applications matrices, An. Univ. Timi¸soaraSer. S¸ti. Mat.-Fiz. 25 (1979), 41–43. No. 5 (1967), 37–42. 55. , The matrix equation AXB + CYD = E, 38. , Remarques sur l’inverse g´en´eralis´eed’un Linear Algebra and its Applications 30 (1980), produit de matrices, Atti Accad. Naz. Lincei Rend. 141–147. Cl. Sci. Fis. Mat. Natur. Ser. VIII 42 (1967), 621– 56. , Two properties of a nonnegative definite 625. matrix, Bull. Acad. Polon. Sci. S´er. Sci. Math. 28 39. , Sur quelques ´equations fonctionnelles de (1980), no. 5-6, 233–235 (1981). matrices, Rev. Roumaine Math. Pures Appl. 12 57. , Range invariance of certain matrix prod- (1967), 1127–1133. ucts, Linear and Multilinear Algebra 14 (1983), 40. , Sur l’inverse g´en´eralis´ee d’un operateur no. 1, 89–96. lineaire dans les espaces de Hilbert, Atti Accad. 58. J. K. Baksalary and T. Mathew, Rank invariance Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser. criterion and its application to the unified theory of VIII 45 (1968), 471–477. least squares, Linear Algebra and its Applications 41. E. Arghiriade and A. Dragomir, Une nouvelle 127 (1990), 393–401. d´efinition de l’inverse g´en´eralis´ee d’une matrice, 59. J. K. Baksalary, P. R. Pordzik, and G. Trenkler, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. A note on generalized ridge estimators, Comm. Natur. (8) 35 (1963), 158–165. Statist. Theory Methods 19 (1990), no. 8, 2871– 42. , Remarques sur quelques th´eoremes rela- 2877. tives a l’inverse g´en´eralis´eed’un operateur lineaire 60. J. K. Baksalary and F. Pukelsheim, On the L¨owner, dans les espaces de hilbert, Atti Accad. Naz. Lincei minus, and star partial orderings of nonnegative Rend. Cl. Sci. Fis. Mat. Natur. Ser. VIII 46 (1969), definite matrices and their squares, Linear Algebra 333–338. and its Applications 151 (1991), 135–141. 43. I. K. Argyros, Local convergence theorems of New- 61. J. K. Baksalary, S. Puntanen, and H. Yanai, ton’s method for nonlinear equations using outer Canonical correlations associated with symmetric or generalized inverses, Czechoslovak Math. J. reflexive generalized inverses of the dispersion ma- 50(125) (2000), no. 3, 603–614. trix, Linear Algebra and its Applications 176 44. S. Aronowitz and B. E. Eichinger, Petrie matrices (1992), 61–74. and generalized inverses, J. Math. Phys. 16 (1975), 62. A. V. Balakrishnan, An operator theoretic formu- 1278–1283. lation of a class of control problems and a steepest 45. F. V. Atkinson, The normal solvability of linear descent method of solution, J. Soc. Indust. Appl. equations in normed spaces (russian), Mat. Sbornik Math. Ser. A: Control 1 (1963), 109–127. N.S. 28(70) (1951), 3–14. 63. K. F. Baldwin and A. E. Hoerl, Bounds of min- 46. , On relatively regular operators, Acta Sci. imum mean squared error in ridge regression, Math. Szeged 15 (1953), 38–56. Comm. Statist. A—Theory Methods 7 (1978), 47. K. E. Atkinson, The solution of non-unique linear no. 13, 1209–1218. integral equations, Numer. Math. 10 (1967), 117– 64. J. A. Ball, M. Rakowski, and B. F. Wyman, Cou- 124, (see also [1090]). pling operators, Wedderburn-Forney spaces, and 48. L. Autonne, Bull. Soc. Math. France 30 (1902), generalized inverses, Linear Algebra and its Ap- 121–133. plications 203/204 (1994), 111–138. 49. , Sur les matrices hypohermitiennes et sur 65. K. S. Banerjee, Singularity in Hotelling’s weigh- les matrices unitaires, Ann. Univ. Lyon 38 (1917), ing designs and generalized inverses, Ann.