On the Lattice of Subgroups of Finite Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ORTHOGONAL GROUP of CERTAIN INDEFINITE LATTICE Chang Heon Kim* 1. Introduction Given an Even Lattice M in a Real Quadratic Space
JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 20, No. 1, March 2007 ORTHOGONAL GROUP OF CERTAIN INDEFINITE LATTICE Chang Heon Kim* Abstract. We compute the special orthogonal group of certain lattice of signature (2; 1). 1. Introduction Given an even lattice M in a real quadratic space of signature (2; n), Borcherds lifting [1] gives a multiplicative correspondence between vec- tor valued modular forms F of weight 1¡n=2 with values in C[M 0=M] (= the group ring of M 0=M) and meromorphic modular forms on complex 0 varieties (O(2) £ O(n))nO(2; n)=Aut(M; F ). Here NM denotes the dual lattice of M, O(2; n) is the orthogonal group of M R and Aut(M; F ) is the subgroup of Aut(M) leaving the form F stable under the natural action of Aut(M) on M 0=M. In particular, if the signature of M is (2; 1), then O(2; 1) ¼ H: O(2) £ O(1) and Borcherds' theory gives a lifting of vector valued modular form of weight 1=2 to usual one variable modular form on Aut(M; F ). In this sense in order to work out Borcherds lifting it is important to ¯nd appropriate lattice on which our wanted modular group acts. In this article we will show: Theorem 1.1. Let M be a 3-dimensional even lattice of all 2 £ 2 integral symmetric matrices, that is, ½µ ¶ ¾ AB M = j A; B; C 2 Z BC Received December 30, 2006. 2000 Mathematics Subject Classi¯cation: Primary 11F03, 11H56. -
ON the SHELLABILITY of the ORDER COMPLEX of the SUBGROUP LATTICE of a FINITE GROUP 1. Introduction We Will Show That the Order C
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 353, Number 7, Pages 2689{2703 S 0002-9947(01)02730-1 Article electronically published on March 12, 2001 ON THE SHELLABILITY OF THE ORDER COMPLEX OF THE SUBGROUP LATTICE OF A FINITE GROUP JOHN SHARESHIAN Abstract. We show that the order complex of the subgroup lattice of a finite group G is nonpure shellable if and only if G is solvable. A by-product of the proof that nonsolvable groups do not have shellable subgroup lattices is the determination of the homotopy types of the order complexes of the subgroup lattices of many minimal simple groups. 1. Introduction We will show that the order complex of the subgroup lattice of a finite group G is (nonpure) shellable if and only if G is solvable. The proof of nonshellability in the nonsolvable case involves the determination of the homotopy type of the order complexes of the subgroup lattices of many minimal simple groups. We begin with some history and basic definitions. It is assumed that the reader is familiar with some of the rudiments of algebraic topology and finite group theory. No distinction will be made between an abstract simplicial complex ∆ and an arbitrary geometric realization of ∆. Maximal faces of a simplicial complex ∆ will be called facets of ∆. Definition 1.1. A simplicial complex ∆ is shellable if the facets of ∆ can be ordered σ1;::: ,σn so that for all 1 ≤ i<k≤ n thereexistssome1≤ j<kand x 2 σk such that σi \ σk ⊆ σj \ σk = σk nfxg. The list σ1;::: ,σn is called a shelling of ∆. -
ON the INTERSECTION NUMBER of FINITE GROUPS Humberto Bautista Serrano University of Texas at Tyler
University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-14-2019 ON THE INTERSECTION NUMBER OF FINITE GROUPS Humberto Bautista Serrano University of Texas at Tyler Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons Recommended Citation Bautista Serrano, Humberto, "ON THE INTERSECTION NUMBER OF FINITE GROUPS" (2019). Math Theses. Paper 9. http://hdl.handle.net/10950/1332 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. ON THE INTERSECTION NUMBER OF FINITE GROUPS by HUMBERTO BAUTISTA SERRANO A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics Kassie Archer, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler April 2019 c Copyright by Humberto Bautista Serrano 2019 All rights reserved Acknowledgments Foremost I would like to express my gratitude to my two excellent advisors, Dr. Kassie Archer at UT Tyler and Dr. Lindsey-Kay Lauderdale at Towson University. This thesis would never have been possible without their support, encouragement, and patience. I will always be thankful to them for introducing me to research in mathematics. I would also like to thank the reviewers, Dr. Scott LaLonde and Dr. David Milan for pointing to several mistakes and omissions and enormously improving the final version of this thesis. -
7 LATTICE POINTS and LATTICE POLYTOPES Alexander Barvinok
7 LATTICE POINTS AND LATTICE POLYTOPES Alexander Barvinok INTRODUCTION Lattice polytopes arise naturally in algebraic geometry, analysis, combinatorics, computer science, number theory, optimization, probability and representation the- ory. They possess a rich structure arising from the interaction of algebraic, convex, analytic, and combinatorial properties. In this chapter, we concentrate on the the- ory of lattice polytopes and only sketch their numerous applications. We briefly discuss their role in optimization and polyhedral combinatorics (Section 7.1). In Section 7.2 we discuss the decision problem, the problem of finding whether a given polytope contains a lattice point. In Section 7.3 we address the counting problem, the problem of counting all lattice points in a given polytope. The asymptotic problem (Section 7.4) explores the behavior of the number of lattice points in a varying polytope (for example, if a dilation is applied to the polytope). Finally, in Section 7.5 we discuss problems with quantifiers. These problems are natural generalizations of the decision and counting problems. Whenever appropriate we address algorithmic issues. For general references in the area of computational complexity/algorithms see [AB09]. We summarize the computational complexity status of our problems in Table 7.0.1. TABLE 7.0.1 Computational complexity of basic problems. PROBLEM NAME BOUNDED DIMENSION UNBOUNDED DIMENSION Decision problem polynomial NP-hard Counting problem polynomial #P-hard Asymptotic problem polynomial #P-hard∗ Problems with quantifiers unknown; polynomial for ∀∃ ∗∗ NP-hard ∗ in bounded codimension, reduces polynomially to volume computation ∗∗ with no quantifier alternation, polynomial time 7.1 INTEGRAL POLYTOPES IN POLYHEDRAL COMBINATORICS We describe some combinatorial and computational properties of integral polytopes. -
INTEGER POINTS and THEIR ORTHOGONAL LATTICES 2 to Remove the Congruence Condition
INTEGER POINTS ON SPHERES AND THEIR ORTHOGONAL LATTICES MENNY AKA, MANFRED EINSIEDLER, AND URI SHAPIRA (WITH AN APPENDIX BY RUIXIANG ZHANG) Abstract. Linnik proved in the late 1950’s the equidistribution of in- teger points on large spheres under a congruence condition. The congru- ence condition was lifted in 1988 by Duke (building on a break-through by Iwaniec) using completely different techniques. We conjecture that this equidistribution result also extends to the pairs consisting of a vector on the sphere and the shape of the lattice in its orthogonal complement. We use a joining result for higher rank diagonalizable actions to obtain this conjecture under an additional congruence condition. 1. Introduction A theorem of Legendre, whose complete proof was given by Gauss in [Gau86], asserts that an integer D can be written as a sum of three squares if and only if D is not of the form 4m(8k + 7) for some m, k N. Let D = D N : D 0, 4, 7 mod8 and Z3 be the set of primitive∈ vectors { ∈ 6≡ } prim in Z3. Legendre’s Theorem also implies that the set 2 def 3 2 S (D) = v Zprim : v 2 = D n ∈ k k o is non-empty if and only if D D. This important result has been refined in many ways. We are interested∈ in the refinement known as Linnik’s problem. Let S2 def= x R3 : x = 1 . For a subset S of rational odd primes we ∈ k k2 set 2 D(S)= D D : for all p S, D mod p F× . -
Classification of Finite Abelian Groups
Math 317 C1 John Sullivan Spring 2003 Classification of Finite Abelian Groups (Notes based on an article by Navarro in the Amer. Math. Monthly, February 2003.) The fundamental theorem of finite abelian groups expresses any such group as a product of cyclic groups: Theorem. Suppose G is a finite abelian group. Then G is (in a unique way) a direct product of cyclic groups of order pk with p prime. Our first step will be a special case of Cauchy’s Theorem, which we will prove later for arbitrary groups: whenever p |G| then G has an element of order p. Theorem (Cauchy). If G is a finite group, and p |G| is a prime, then G has an element of order p (or, equivalently, a subgroup of order p). ∼ Proof when G is abelian. First note that if |G| is prime, then G = Zp and we are done. In general, we work by induction. If G has no nontrivial proper subgroups, it must be a prime cyclic group, the case we’ve already handled. So we can suppose there is a nontrivial subgroup H smaller than G. Either p |H| or p |G/H|. In the first case, by induction, H has an element of order p which is also order p in G so we’re done. In the second case, if ∼ g + H has order p in G/H then |g + H| |g|, so hgi = Zkp for some k, and then kg ∈ G has order p. Note that we write our abelian groups additively. Definition. Given a prime p, a p-group is a group in which every element has order pk for some k. -
Mathematics 310 Examination 1 Answers 1. (10 Points) Let G Be A
Mathematics 310 Examination 1 Answers 1. (10 points) Let G be a group, and let x be an element of G. Finish the following definition: The order of x is ... Answer: . the smallest positive integer n so that xn = e. 2. (10 points) State Lagrange’s Theorem. Answer: If G is a finite group, and H is a subgroup of G, then o(H)|o(G). 3. (10 points) Let ( a 0! ) H = : a, b ∈ Z, ab 6= 0 . 0 b Is H a group with the binary operation of matrix multiplication? Be sure to explain your answer fully. 2 0! 1/2 0 ! Answer: This is not a group. The inverse of the matrix is , which is not 0 2 0 1/2 in H. 4. (20 points) Suppose that G1 and G2 are groups, and φ : G1 → G2 is a homomorphism. (a) Recall that we defined φ(G1) = {φ(g1): g1 ∈ G1}. Show that φ(G1) is a subgroup of G2. −1 (b) Suppose that H2 is a subgroup of G2. Recall that we defined φ (H2) = {g1 ∈ G1 : −1 φ(g1) ∈ H2}. Prove that φ (H2) is a subgroup of G1. Answer:(a) Pick x, y ∈ φ(G1). Then we can write x = φ(a) and y = φ(b), with a, b ∈ G1. Because G1 is closed under the group operation, we know that ab ∈ G1. Because φ is a homomorphism, we know that xy = φ(a)φ(b) = φ(ab), and therefore xy ∈ φ(G1). That shows that φ(G1) is closed under the group operation. -
(Hereditarily) Just Infinite Property in Profinite Groups
Inverse system characterizations of the (hereditarily) just infinite property in profinite groups Colin D. Reid October 6, 2018 Abstract We give criteria on an inverse system of finite groups that ensure the limit is just infinite or hereditarily just infinite. More significantly, these criteria are ‘universal’ in that all (hereditarily) just infinite profinite groups arise as limits of the specified form. This is a corrected and revised version of [8]. 1 Introduction Notation. In this paper, all groups will be profinite groups, all homomorphisms are required to be continuous, and all subgroups are required to be closed; in particular, all references to commutator subgroups are understood to mean the closures of the corresponding abstractly defined subgroups. For an inverse system Λ= {(Gn)n>0, ρn : Gn+1 ։ Gn} of finite groups, we require all the homomorphisms ρn to be surjective. A subscript o will be used to indicate open inclusion, for instance A ≤o B means that A is an open subgroup of B. We use ‘pronilpotent’ and ‘prosoluble’ to mean a group that is the inverse limit of finite nilpotent groups or finite soluble groups respectively, and ‘G-invariant subgroup of H’ to mean a subgroup of H normalized by G. A profinite group G is just infinite if it is infinite, and every nontrivial normal subgroup of G is of finite index; it is hereditarily just infinite if in addition every arXiv:1708.08301v1 [math.GR] 28 Aug 2017 open subgroup of G is just infinite. At first sight the just infinite property is a qualitative one, like that of simplicity: either a group has nontrivial normal subgroups of infinite index, or it does not. -
Groups with Identical Subgroup Lattices in All Powers
GROUPS WITH IDENTICAL SUBGROUP LATTICES IN ALL POWERS KEITH A. KEARNES AND AGNES´ SZENDREI Abstract. Suppose that G and H are groups with cyclic Sylow subgroups. We show that if there is an isomorphism λ2 : Sub (G × G) ! Sub (H × H), then there k k are isomorphisms λk : Sub (G ) ! Sub (H ) for all k. But this is not enough to force G to be isomorphic to H, for we also show that for any positive integer N there are pairwise nonisomorphic groups G1; : : : ; GN defined on the same finite set, k k all with cyclic Sylow subgroups, such that Sub (Gi ) = Sub (Gj ) for all i; j; k. 1. Introduction To what extent is a finite group determined by the subgroup lattices of its finite direct powers? Reinhold Baer proved results in 1939 implying that an abelian group G is determined up to isomorphism by Sub (G3) (cf. [1]). Michio Suzuki proved in 1951 that a finite simple group G is determined up to isomorphism by Sub (G2) (cf. [10]). Roland Schmidt proved in 1981 that if G is a finite, perfect, centerless group, then it is determined up to isomorphism by Sub (G2) (cf. [6]). Later, Schmidt proved in [7] that if G has an elementary abelian Hall normal subgroup that equals its own centralizer, then G is determined up to isomorphism by Sub (G3). It has long been open whether every finite group G is determined up to isomorphism by Sub (G3). (For more information on this problem, see the books [8, 11].) One may ask more generally to what extent a finite algebraic structure (or algebra) is determined by the subalgebra lattices of its finite direct powers. -
Semimodular Lattices Theory and Applications
P1: SDY/SIL P2: SDY/SJS QC: SSH/SDY CB178/Stern CB178-FM March 3, 1999 9:46 ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Semimodular Lattices Theory and Applications MANFRED STERN P1: SDY/SIL P2: SDY/SJS QC: SSH/SDY CB178/Stern CB178-FM March 3, 1999 9:46 PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia c Cambridge University Press 1999 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1999 Printed in the United States of America Typeset in 10/13 Times Roman in LATEX2ε[TB] A catalog record for this book is available from the British Library. Library of Congress Cataloging-in-Publication Data Stern, Manfred. Semimodular lattices: theory and applications. / Manfred Stern. p. cm. – (Encyclopedia of mathematics and its applications ; v. 73) Includes bibliographical references and index. I. Title. II. Series. QA171.5.S743 1999 511.303 – dc21 98-44873 CIP ISBN 0 521 46105 7 hardback P1: SDY/SIL P2: SDY/SJS QC: SSH/SDY CB178/Stern CB178-FM March 3, 1999 9:46 Contents Preface page ix 1 From Boolean Algebras to Semimodular Lattices 1 1.1 Sources of Semimodularity -
Lie Groups and Lie Algebras
2 LIE GROUPS AND LIE ALGEBRAS 2.1 Lie groups The most general definition of a Lie group G is, that it is a differentiable manifold with group structure, such that the multiplication map G G G, (g,h) gh, and the inversion map G G, g g−1, are differentiable.× → But we shall7→ not need this concept in full generality.→ 7→ In order to avoid more elaborate differential geometry, we will restrict attention to matrix groups. Consider the set of all invertible n n matrices with entries in F, where F stands either for the real (R) or complex× (C) numbers. It is easily verified to form a group which we denote by GL(n, F), called the general linear group in n dimensions over the number field F. The space of all n n matrices, including non- invertible ones, with entries in F is denoted by M(n,×F). It is an n2-dimensional 2 vector space over F, isomorphic to Fn . The determinant is a continuous function det : M(n, F) F and GL(n, F) = det−1(F 0 ), since a matrix is invertible → −{ } 2 iff its determinant is non zero. Hence GL(n, F) is an open subset of Fn . Group multiplication and inversion are just given by the corresponding familiar matrix 2 2 2 2 2 operations, which are differentiable functions Fn Fn Fn and Fn Fn respectively. × → → 2.1.1 Examples of Lie groups GL(n, F) is our main example of a (matrix) Lie group. Any Lie group that we encounter will be a subgroups of some GL(n, F). -
Chapter 25 Finite Simple Groups
Chapter 25 Finite Simple Groups Chapter 25 Finite Simple Groups Historical Background Definition A group is simple if it has no nontrivial proper normal subgroup. The definition was proposed by Galois; he showed that An is simple for n ≥ 5 in 1831. It is an important step in showing that one cannot express the solutions of a quintic equation in radicals. If possible, one would factor a group G as G0 = G, find a normal subgroup G1 of maximum order to form G0/G1. Then find a maximal normal subgroup G2 of G1 and get G1/G2, and so on until we get the composition factors: G0/G1,G1/G2,...,Gn−1/Gn, with Gn = {e}. Jordan and Hölder proved that these factors are independent of the choices of the normal subgroups in the process. Jordan in 1870 found four infinite series including: Zp for a prime p, SL(n, Zp)/Z(SL(n, Zp)) except when (n, p) = (2, 2) or (2, 3). Between 1982-1905, Dickson found more infinite series; Miller and Cole showed that 5 (sporadic) groups constructed by Mathieu in 1861 are simple. Chapter 25 Finite Simple Groups In 1950s, more infinite families were found, and the classification project began. Brauer observed that the centralizer has an order 2 element is important; Feit-Thompson in 1960 confirmed the 1900 conjecture that non-Abelian simple group must have even order. From 1966-75, 19 new sporadic groups were found. Thompson developed many techniques in the N-group paper. Gorenstein presented an outline for the classification project in a lecture series at University of Chicago in 1972.