WO 2012/124795 Al 20 September 2012 (20.09.2012) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2012/124795 Al 20 September 2012 (20.09.2012) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/124795 Al 20 September 2012 (20.09.2012) P O P C T (51) International Patent Classification: tahama 4-chome, Chuo-ku, Osaka-shi, Osaka, 5418550 A01N 51/00 (2006.01) A01P 7/02 (2006.01) (JP). A01N 53/00 (2006.01) A01P 7/04 (2006.01) (81) Designated States (unless otherwise indicated, for every A01P 7/00 (2006.01) kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, PCT/JP2012/056796 CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (22) International Filing Date: HR, HU, ID, IL, IN, IS, KE, KG, KM, KN, KP, KR, KZ, 12 March 2012 (12.03.2012) LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, (25) Filing Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, (26) Publication Language: English SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, (30) Priority Data: TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 201 1-058876 17 March 201 1 (17.03.201 1) JP (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): SUM¬ kind of regional protection available): ARIPO (BW, GH, ITOMO CHEMICAL COMPANY, LIMITED [JP/JP]; GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 27-1, Shinkawa 2-chome, Chuo-ku, Tokyo, 1048260 (JP). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (72) Inventor; and DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (75) Inventor/Applicant (for US only): TANAKA, Yoshito LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, [JP/JP]; c/o SUMITOMO CHEMICAL COMPANY LIM SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, ITED, 2-1, Takatsukasa 4-chome, Takarazuka-shi, Hyogo, GW, ML, MR, NE, SN, TD, TG). 6658555 (JP). Published: (74) Agents: NAKAYAMA, Tohru et al; c/o Sumitomo — with international search report (Art. 21(3)) Chemical Intellectual Property Service, Limited, 5-33, Ki- © (54) Title: PEST CONTROL COMPOSITION AND PEST CONTROL METHOD (57) Abstract: The present invention provides a pest control composition containing a combination of (E) - 1 - (2 - chloro - 1, 3 - thiazol - 5 -ylmethyl) - 3 -methyl - 2 - nitroguanidine (clothianidin) and [2, 5-dioxo-3- (2-propynyl) - 1 - imidazolidinyl] methyl 2, 2 - dimethyl - 3 - (2 -methyl - 1 -propenyl) cyclopropanecarboxylate (imiprothrin). DESCRIPTION PEST CONTROL COMPOSITION AND PEST CONTROL METHOD Technical Field The present invention relates to a pest control composition and a control method of pests. Background Art Hitherto, various compounds are known as active ingredient of harmaful arthropod control composition (See e.g., Patent Literature 1 and 2). Citation List Patent Literature Patent Literature 1 : US 5,034,404 Patent Literature 2 : US 4,176,189 Summary of the Invention Problems to be Solved by the Invention An object of the present invention is to provide a pest control composition and control method of pests having an excellent control effect on pests. Means for Solving the Problems The present inventors studied intensively to find a pest control composition having an excellent control effect on pests, and as a result, found that a composition containing a combination of (E) -1- (2-chloro-l, 3-thiazol-5- ylmethyl) -3-methyl-2-nitroguanidine (hereinafter refered to as the Guanidine Compound) and [2, 5-dioxo-3- (2-propynyl) -1- imidazolidinyljmethyl 2 ,2-dimethyl-3- (2-methyl-l- propenyl )cyclopropanecarboxylate (hereinafter refered to as the Ester Compound) has an excellent pest control effect, and led to the invention. The present invention includes: [1] A pest control composition containing a combination of the Guanidine Compound and the Ester Compound as active ingredients . [2] The pest control composition according to [1], wherein the weight ratio of the Guanidine Compound to the Ester Compound is within the range of from 50 : 1 to 1 : 50. [3] A control method of pests which comprises applying effective amount of the Guanidine Compound and the Ester Compound . [4] The control method of pest according to [3], wherein the weight ratio of the Guanidine Compound to the Ester Compound is within the range of from 50 : 1 to 1 : 50. Effect of the Invention Pest can be controlled by using the pest control composition of the present invention. Mode for Carrying Out the Invention The pest control composition of the present invention is characterized by containing the combination of the Guanidine Compound and the Ester Compound. The Guanidine Compound can be produced, for example, by process discribed in US 5,034,404. A compound selling on the market in the name of clothianidin (common name) can be used for the Guanidine Compound. The Ester Compound can be produced, for example, by process discribed in, for example, US 4,176,189 and US 4 , 827, 020. In the Ester Compound, there are isomers derived from two asymmetric carbon atoms at the 1-position and the 3- position on the cyclopropane ring. Each isomer having pest control activity or a mixture of those isomers in an arbitrary ratio which has pest control activity is included in the present invention. A compound selling on the market in the name of imiprothrin (common name) ([2, 5-dioxo-3- (2-propynyl) -1- imidazolidinyl]methyl (1R) -cis/trans-3- (2-methyl-l- propenyl )-2 ,2-dimethylcyclopropanecarboxylate) can be used for the Ester Compound. Examples of pests on which the pest control composition of the present invention has a control effect include harmful arthropod pest such as harmful insects and harmful acarines, and more specifically, the following pests: Lepidoptera insect pests: Pyralidae such as Chilo suppressalis , Cnaphalocrosis medinalis, Plodia interpunctella , and Ephestia kuehniella; Noctuidae such as Spodoptera litura, Pseudaletia separata, and Mamestra brassicae; Pieridae such as Pieris rapae crucivora; Tortricidae such as Adoxopheyes spp.; Carposinidae; Lyonetiidae; Lymantriidae; Antographa; Agrotis spp., such as Agrotis segetum and Agrotis ipsilon; Helicoverpa spp.; Heliothis spp.; Plutella xylostella; Parnara guttata; Tinea pellionella; Tineola bisselliella , etc . Diptera insect pests: Culex spp. such as Culex pipiens pallens and Culex tritaeniorhynchus ; Aedes spp. such as Aedes aegypti and Aedes albopictus; Anopheles spp. such as Anopheles sinensis ; Chironomidae; Muscidae such as Musca domestica , Muscina stabulans and Fannia canicularis; Calliphoridae; Sarcophagidae; Anthomyiidae such as Delia phatura and Delia antiqua; Tephritidae; Agromyzidae; Drosophilidae; Psychodidae; Phoridae; Simuliidae; Tabanidae; Stomoxyidae; Ceratopogpnnidae, etc. Blattaria insect pests: Blattella germanica, Periplaneta fuliginosa, Periplaneta americana, Periplaneta brunnea, Blatta orientalis , etc. Hymenoptera insect pests: Formicidae such as Camponotus japonicus , Tetramorium tsushimae, Lasius niger, Pachycondyla chinensis , Monomorium intrudens , Lasius fuji, Monomorium pharaonis , Formica fusca japonica , Ochetellus glaber, Pristomyrmex punctatus , Pheidole noda, and Linepith ema humile; Vespidae such as Polistes (Polistes chinensis , Polistes riparius , Polistes jadwigae, Polistes rothneyi , Polistes nipponensis , Polistes snelleni, and Polistes japonicus) , Vespa mandarinia, Vespa simillima xanthoptera, Vespa analis, Vespa crabro, Vespa ducalis, Vespula flaviceps lewisi, Vespula shidai, and Dolichovespula media; Bethylidae; Tenthredinidae such as Athalia rosae ruficornis, etc. Siphonaptera insect pests: Ctenocephalides canis, Ctenocephalides felis, Pulex irritans , etc. Anoplura insect pests: Pediculus humanus, Phthirus pubis, Pediculus humanus captis, Pediculus humanus corporis etc. Psocoptera insect pests: psocid Isoptera insect pests: Subterranean termites such as Reticulitermes speratus , Coptoterm.es formosanus , Reticulitermes flavipes , Reticulitermes hesperus, Reticulitermes virginicus, Reticulitermes tibialis , Heterotermes aureus; drywood termites such as Incisitermes minor; and rottenwood termites such as Zootermopsis nevadensis . Hemiptera insect pests: Delphacidae such as Laodelphax striatellus , Nilaparvara lugens and Sogatella furcifera; Deltocephalidae such as Nephotettix cincticeps and Nephotettix virescens; Aphididae; Pentatomidae such as Nezara antennata , Riptortus clavatus , Eysarcoris lewisi, Eysarcoris parvus, Plautia stali, Halyomorpha mista, Stenotus rubrovittatus , and Trigonotylus caelestialium; Aleyrodidae; Coccidae; Cimicidae such as Cinex lectularius; Tingidae; Psyllidae, etc . Coleoptera insect pests: Attagenus unicolor; Anthrenus verbasci; corn rootworms such as Diabrotica virgifera virgifera and Dabrotica undecimpunctaca howardi; scarabaeidae such as Anomala cuprea and Anomala rufocuprea; Curculionidae such as Sitophilus zeamais, Lissorhoptrus oryzophilus , Anthonomus grandis grandis and Callosobruchus cheninsis; Tenebrionidae such as Tenebrio molitor and Tribolium castaneum; Chrysomelidae such as Oulema oryzae, Phyllotreta striolata and Aulacophora femoralis; Anobiidae; Epilachna spp. such as Henosepilachna vigintioctopunctata ; Lyctidae; Bostrychidae; Ptinidae; Cerambycidae Paederus fuscipes; etc . Thysanoptera insect pests: Thrips palmi, Frankliniella occidentalis , Thrips hawaiiensis , etc. Orthoptera insect pests: Gryllotalpidae, Acrididae,
Recommended publications
  • Analysis of the Evolutionary Relationship and Geographical Patterns of Genetically Varied Populations of Diamondback Moth, Plutella Xylostella (L.)
    Analysis of the evolutionary relationship and geographical patterns of genetically varied populations of diamondback moth, Plutella xylostella (L.) by Shijun You MSc., The University of British Columbia, 2010 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Botany) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2017 © Shijun You, 2017 Abstract The diamondback moth (DBM), Plutella xylostella, is well known for its extensive adaptation and distribution, high level of genetic variation and polymorphism, and strong resistance to a broad range of synthetic insecticides. Although understanding of the P. xylostella biology and ecology has been considerably improved, knowledge on the genetic basis of these traits remains surprisingly limited. Based on data generated by different sets of molecular markers, we uncovered the history of evolutionary origin and regional dispersal, identified the patterns of genetic diversity and variation, characterized the demographic history, and revealed natural and human-aided factors that are potentially responsible for contemporary distribution of P. xylostella. These findings rewrite our understanding of this exceptional system, revealing that South America might be a potential origin of P. xylostella, and recently colonized across most parts of the world resulting possibly from intensified human activities. With the data from selected continents, we demonstrated signatures of localized selection associated with environmental adaptation and insecticide resistance of P. xylostella. This work brings us to a better understanding of the regional movement and genetic bases on rapid adaptation and development of agrochemical resistance, and provides a solid foundation for better monitoring and management of this worldwide herbivore and forecast of regional pest status of P.
    [Show full text]
  • Is Diadegma Insulare Or Microplitis Plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella Xylostella ?
    War of the Wasps: Is Diadegma insulare or Microplitis plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella xylostella ? ADAMO YOUNG 108 Homestead Street, Ottawa Ontario K2E 7N6 Canada; email: [email protected] Young, Adamo. 2013. War of the wasps: is Diadegma insulare or Microplitis plutellae a more effective parasitoid of the Dia - mondback Moth, Plutella xylostella ? Canadian Field-Naturalist 127(3): 211–215. Parasitism levels by Diadegma insulare (Muesebeck) (Hymenoptera: Ichneumonidae) and Microplitis plutellae (Haliday) (Hymenoptera: Braconidae) at various densities of their host, Plutella xylostella (L.) (Lepidoptera: Plutellidae), were assessed. Cages with densities of 10 hosts, 20 hosts, and 40 hosts were set up, with the cage volume (40 500 cm 3) and number of wasps (2 females) remaining constant. The host populations were also exposed to the wasps for two different exposure times: 1 day and 3 days. The study showed that D. insulare was a better parasitoid overall, achieving a level of parasitism equal to or higher than M. plutellae at all densities. Microplitis plutellae performed best at a lower host density (76% ± 9% of 10 hosts vs. 43% ± 3% of 40 hosts). Diadegma insulare performed similarly at all densities tested (75% ± 5% of 10 hosts, 83% ± 4% of 20 hosts, and 79% ± 6% of 40 hosts). This suggests that D. insulare may be the better parasitoid overall and should be applied in severe, large-scale infestations, while M. plutellae may be better for small-scale infestations. Key Words: Diamondback Moth; Plutella xylostella; Microplitis plutellae; Diadegma insulare; parasitoids; biological control Introduction ical control can provide better control than pesticides.
    [Show full text]
  • Variation Among 532 Genomes Unveils the Origin and Evolutionary
    ARTICLE https://doi.org/10.1038/s41467-020-16178-9 OPEN Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore ✉ Minsheng You 1,2,20 , Fushi Ke1,2,20, Shijun You 1,2,3,20, Zhangyan Wu4,20, Qingfeng Liu 4,20, ✉ ✉ Weiyi He 1,2,20, Simon W. Baxter1,2,5, Zhiguang Yuchi 1,6, Liette Vasseur 1,2,7 , Geoff M. Gurr 1,2,8 , Christopher M. Ward 9, Hugo Cerda1,2,10, Guang Yang1,2, Lu Peng1,2, Yuanchun Jin4, Miao Xie1,2, Lijun Cai1,2, Carl J. Douglas1,2,3,21, Murray B. Isman 11, Mark S. Goettel1,2,12, Qisheng Song 1,2,13, Qinghai Fan1,2,14, ✉ Gefu Wang-Pruski1,2,15, David C. Lees16, Zhen Yue 4 , Jianlin Bai1,2, Tiansheng Liu1,2, Lianyun Lin1,5, 1234567890():,; Yunkai Zheng1,2, Zhaohua Zeng1,17, Sheng Lin1,2, Yue Wang1,2, Qian Zhao1,2, Xiaofeng Xia1,2, Wenbin Chen1,2, Lilin Chen1,2, Mingmin Zou1,2, Jinying Liao1,2, Qiang Gao4, Xiaodong Fang4, Ye Yin4, Huanming Yang4,17,19, Jian Wang4,18,19, Liwei Han1,2, Yingjun Lin1,2, Yanping Lu1,2 & Mousheng Zhuang1,2 The diamondback moth, Plutella xylostella is a cosmopolitan pest that has evolved resistance to all classes of insecticide, and costs the world economy an estimated US $4-5 billion annually. We analyse patterns of variation among 532 P. xylostella genomes, representing a worldwide sample of 114 populations. We find evidence that suggests South America is the geographical area of origin of this species, challenging earlier hypotheses of an Old-World origin.
    [Show full text]
  • The Origins of Infestations of Diamondback Moth, Plutella Xylostella (L.), in Canola in Western Canada L.M. Dosdall1, P.G. Mason
    The management of diamondback moth and other crucifer pests The origins of infestations of diamondback moth, Plutella xylostella (L.), in canola in western Canada L.M. Dosdall1, P.G. Mason2, O. Olfert3, L. Kaminski3, and B.A. Keddie4 1Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5 2Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, Canada K1A 0C6 3Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2 4Dept. of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9 Corresponding author: [email protected] Abstract Recent evidence that a population of Plutella xylostella (L.) overwintered successfully in western Canada prompted studies to evaluate overwintering survival of diamondback moth under field conditions in Alberta and Saskatchewan. Successful overwintering was not demonstrated at either site for any life stage under a variety of tillage and organic matter treatments, using either laboratory-reared or field-acclimated specimens of diamondback moth. Diamondback moth infestations in western Canada evidently originate primarily from southern U.S.A. or Mexico when strong winds carry adults northward in spring. To provide early warning predictions of infestations, air parcel trajectories into western Canada were investigated for monitoring long-range movement of P. xylostella early in the season. Using wind fields generated by the Canadian Meteorological Centre’s Global Environmental Multiscale model, three-dimensional air parcel trajectories were calculated using time-forward (prognostic) and time-backward (diagnostic) modes for several sites in North America. The model predicted strong northerly airflow in May 2001 which coincided with the occurrence of massive infestations of diamondback moth in canola in western Canada.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Plutella Xylostella (Lepidoptera: Plutellidae) Using Radiation-Induced Sterility
    XA0201546 Field trials in South China to control the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) using radiation-induced sterility R. Yang, D. Xia, W. Gu, Y. Zhang Institute for Application of Atomic Energy, Zheijang Academy of Agricultural Sciences, Hanzshou, China Abstract. This paper discusses the control of the diamondback moth, Plutella xylostella by the sterile insect technique (SIT). Our studies included mating characteristics, sterility of the Fi generation, dispersal and recapture of irradiated moths, as well as control of DBM using SIT and Fx sterility, and an economic evaluation of Fi sterility to protect cabbage. Male DBM mated an average of 16 times and female DBM mated an average of 4 times. However, irradiated male DBM only mated an average of 7.2 times. Seventy percent of matings occurred from 18:00-24:00 h with an average duration of 80 min. Irradiated male moths and untreated male moths exhibited the same attraction to female moths. After 10 days, most (94.2%) of the released, sterile DBM were recaptured within 40 m of the release site. Only one DBM was recaptured at 120 m from the release site. The area of dispersal was calculated to be 696 m2 during the first three days, hi a field study to control DBM by releases of irradiated insects, the ratio of sterile to wild DBM was 4.7:1. During this study, the egg sterility in the Fi and F2 generations was 79.0% and 81.7%, respectively. The developmental times for the Fi and F2 generations were 4 and 12 days longer, respectively, than for DBM in the control area.
    [Show full text]
  • Thesis Template
    TAXONOMY, DISTRIBUTION AND PEST STATUS OF PLUTELLA SPECIES (LEPIDOPTERA: PLUTELLIDAE) IN AUSTRALIA AND NEW ZEALAND Kariyawasam Haputhanthri Kankanamge Tharanga Niroshini Submitted in fulfilment of the requirements for the degree of Master of Applied Sciences (Research) School of Earth Environmental and Biological Sciences Science and Engineering Faculty Queensland University of Technology 2018 Keywords Adults, ANOVA, Bayesian analysis, CO1 barcode gene, crops, DNA, genitalia morphological features, host plant, larvae, light trap, maximum likelihood, measurements, PCR, phylogenetic analyses, Plutella australiana, Plutella xylostella, R statistical analyses, Sanger sequencing, taxonomy. i Abstract The diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae), is the most destructive agricultural pest in the word causing damage to brassica crops such as cabbage, kale, broccoli, and cauliflower. Its global distribution, movement over long distances and rapid evolution of insecticide resistance make this a key pest of international importance. P. xylostella was introduced to Australia in 1882 and has become widely distributed in Australia. Despite reports of low levels of genetic variation in the Australian population (Endersby et al., 2006), more recent molecular studies indicated the presence of variants within the Australian Plutella population. A study of allozymes in P. xylostella populations from 14 locations worldwide included specimens from 5 different locations in Australia (Adelaide, Brisbane, North Queensland, Melbourne
    [Show full text]
  • Volatile DMNT Directly Protects Plants Against Plutella Xylostella By
    RESEARCH ARTICLE Volatile DMNT directly protects plants against Plutella xylostella by disrupting the peritrophic matrix barrier in insect midgut Chen Chen1†, Hongyi Chen1†, Shijie Huang1†, Taoshan Jiang1, Chuanhong Wang1, Zhen Tao1, Chen He1, Qingfeng Tang2, Peijin Li1* 1The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei, China; 2Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, the School of Plant Protection, Anhui Agricultural University, Hefei, China Abstract Insect pests negatively affect crop quality and yield; identifying new methods to protect crops against insects therefore has important agricultural applications. Our analysis of transgenic Arabidopsis thaliana plants showed that overexpression of pentacyclic triterpene synthase 1, encoding the key biosynthetic enzyme for the natural plant product (3E)-4,8-dimethyl- 1,3,7-nonatriene (DMNT), led to a significant resistance against a major insect pest, Plutella xylostella. DMNT treatment severely damaged the peritrophic matrix (PM), a physical barrier isolating food and pathogens from the midgut wall cells. DMNT repressed the expression of PxMucin in midgut cells, and knocking down PxMucin resulted in PM rupture and P. xylostella death. A 16S RNA survey revealed that DMNT significantly disrupted midgut microbiota *For correspondence: populations and that midgut microbes were essential for DMNT-induced killing. Therefore, we [email protected] propose that the midgut microbiota assists DMNT in killing P. xylostella. These findings may †These authors contributed provide a novel approach for plant protection against P. xylostella. equally to this work Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • A Wasp Parasitoid, Diadegma Insulare (Cresson) (Insecta: Hymenotera: Ichneumonidae)1 Andrei Sourakov and Everett Mitchell2
    EENY-124 A Wasp Parasitoid, Diadegma insulare (Cresson) (Insecta: Hymenotera: Ichneumonidae)1 Andrei Sourakov and Everett Mitchell2 Distribution Description Diadegma insulare is found in the United States and South Egg America: New Hampshire west to southern British Colum- The egg is clear, and is hard to distinguish from the host’s bia, south to Florida, Texas, and California; Hawaii, West fat body when it is dissected. Unlike Cotesia plutella, Indies, and Mexico south to Venezuela. another parasitoid of the diamondback moth, the egg is rounded rather than pointed and lacks a projection. These wasps are found in cruciferous crops, overwintering as a cocoon. The number of generations per year cor- responds to the number of generations of its hosts: Hellula undalis (F.), Plutella armoracia Bsk., and P. xylostella (L.), the diamondback moth. Figure 2. Egg of Diadegma insulare (Cresson), a parasitoid wasp. Figure 1. Male Diadegma insulare (Cresson), a parasitoid wasp, and Credits: Guangye Hu , USDA mature larvae of the diamondback moth, Plutella xylostella (Linnaeus). Credits: Andrei Sourakov, Florida Museum of Natural History 1. This document is EENY-124, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date March 2000. Revised November 2005. Reviewed May 2020. Visit the EDIS website at https://edis.ifas.ufl.edu. This document is also available on the Featured Creatures website at http://entnemdept.ifas.ufl.edu/creatures/. 2. Andrei Sourakov, Florida Museum of Natural History; and Everett Mitchell, USDA, Gainesville, FL. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations.
    [Show full text]
  • Evolutionary Ecology of Diamondback Moth, Plutella Xylostella (L.) and Diadegma Insulare (Cresson) in North America: a Review
    Annual Research & Review in Biology 5(3): 189-206, 2015, Article no.ARRB.2015.021 ISSN: 2347-565X SCIENCEDOMAIN international www.sciencedomain.org Evolutionary Ecology of Diamondback Moth, Plutella xylostella (L .) and Diadegma insulare (Cresson) in North America: A Review Sadia Munir 1* , Lloyd M. Dosdall 1 and John T. O’Donovan 2 1Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada. 2Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada. Authors’ contributions This work was carried out in collaboration between all authors. Author SM managed the literature searches and wrote the first draft of the manuscript. Author LMD supervised and critically reviewed the manuscript and author JTO helped in editing and final revision of manuscript. All authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2015/11834 Editor(s): (1) George Perry, Dean and Professor of Biology, University of Texas at San Antonio, USA. Reviewers: (1) Anonymous, Osmania University, India. (2) Anonymous, Southwest University, China. (3) Isabel Bertolaccini, Department of Plant Production, Facultad de Ciencias Agrarias (U.N.L.), Kreder 2805, (3080) Esperanza (Santa Fe), Argentina. Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=668&id=32&aid=6211 Received 5th June 2014 th Review Article Accepted 7 July 2014 Published 24 th September 2014 ABSTRACT The diamondback moth (DBM), Plutella xylostella (L.), is recognized as a widely distributed destructive insect pest of Brassicaceae. The frequency and severity of P. xylostella outbreaks has increased in recent years, due to climate changes, high production of host plants (vegetable and oilseed Brassica crops), genetic flexibility of the pest that enables it to develop resistance to almost all known insecticides and establish quickly and easily in new environment.
    [Show full text]
  • A Molecular Phylogeny for Yponomeutoidea (Insecta, Lepidoptera, Ditrysia) and Its Implications for Classification, Biogeography and the Evolution of Host Plant Use
    A Molecular Phylogeny for Yponomeutoidea (Insecta, Lepidoptera, Ditrysia) and Its Implications for Classification, Biogeography and the Evolution of Host Plant Use Jae-Cheon Sohn1*, Jerome C. Regier1, Charles Mitter1, Donald Davis2, Jean-Franc¸ois Landry3, Andreas Zwick4, Michael P. Cummings5 1 Department of Entomology, University of Maryland, College Park, Maryland, United States of America, 2 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington DC, United States of America, 3 Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, C.E.F., Ottawa, Canada, 4 Department of Entomology, State Museum of Natural History, Stuttgart, Germany, 5 Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America Abstract Background: Yponomeutoidea, one of the early-diverging lineages of ditrysian Lepidoptera, comprise about 1,800 species worldwide, including notable pests and insect-plant interaction models. Yponomeutoids were one of the earliest lepidopteran clades to evolve external feeding and to extensively colonize herbaceous angiosperms. Despite the group’s economic importance, and its value for tracing early lepidopteran evolution, the biodiversity and phylogeny of Yponomeutoidea have been relatively little studied. Methodology/Principal Findings: Eight nuclear genes (8 kb) were initially sequenced for 86 putative yponomeutoid species, spanning all previously recognized suprageneric groups, and 53 outgroups representing 22 families and 12 superfamilies. Eleven to 19 additional genes, yielding a total of 14.8 to 18.9 kb, were then sampled for a subset of taxa, including 28 yponomeutoids and 43 outgroups. Maximum likelihood analyses were conducted on data sets differing in numbers of genes, matrix completeness, inclusion/weighting of synonymous substitutions, and inclusion/exclusion of ‘‘rogue’’ taxa.
    [Show full text]
  • On Plutella Xylostella (Lepidoptera: Plutellidae) Larvae Parasitized by Cotesia Plutellae (Hymenoptera: Braconidae) and Its Impact on Cabbage
    Available online at www.sciencedirect.com Biological Control 45 (2008) 386–395 www.elsevier.com/locate/ybcon Predation by Podisus maculiventris (Hemiptera: Pentatomidae) on Plutella xylostella (Lepidoptera: Plutellidae) larvae parasitized by Cotesia plutellae (Hymenoptera: Braconidae) and its impact on cabbage Nathan J. Herrick a,*, Stuart R. Reitz b, James E. Carpenter c, Charles W. O’Brien d,1 a Department of Entomology, Virginia Polytechnic Institute and State University, 216 Price Hall (0319), Blacksburg, VA 24061, USA b USDA-ARS-CMAVE, 6383 Mahan Drive, Tallahassee, FL 32308, USA c USDA-ARS-CPMRU, 2747 Davis Road, Tifton, GA 31794, USA d Formerly: CBC-CESTA, 105 Perry-Paige Building [South], Florida A&M University, FL 32307, USA Received 17 September 2007; accepted 20 February 2008 Available online 4 March 2008 Abstract Biological control offers potentially effective suppression of the diamondback moth (DBM), Plutella xylostella, a serious pest of Bras- sica crops. Little is known of whether multiple natural enemies have additive, antagonistic, or synergistic effects on DBM populations. No-choice and choice tests were conducted to assess predation by Podisus maculiventris on DBM larvae parasitized by Cotesia plutellae and unparasitized larvae. In no-choice tests, P. maculiventris preyed on greater numbers of parasitized than unparasitized larvae and greater numbers of young larvae than old larvae. In choice tests with early third instar DBM, there was no difference in predation between parasitized or unparasitized larvae. However, in choice tests with older prey, P. maculiventris preyed on more parasitized than unparasitized larvae. Two field studies were conducted to test if this predator and parasitoid have additive, antagonistic or synergistic effects on DBM populations and plant damage in cabbage (Brassica oleracea var.
    [Show full text]