Languages January 1St, 2021
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cobol/Cobol Database Interface.Htm Copyright © Tutorialspoint.Com
CCOOBBOOLL -- DDAATTAABBAASSEE IINNTTEERRFFAACCEE http://www.tutorialspoint.com/cobol/cobol_database_interface.htm Copyright © tutorialspoint.com As of now, we have learnt the use of files in COBOL. Now, we will discuss how a COBOL program interacts with DB2. It involves the following terms: Embedded SQL DB2 Application Programming Host Variables SQLCA SQL Queries Cursors Embedded SQL Embedded SQL statements are used in COBOL programs to perform standard SQL operations. Embedded SQL statements are preprocessed by SQL processor before the application program is compiled. COBOL is known as the Host Language. COBOL-DB2 applications are those applications that include both COBOL and DB2. Embedded SQL statements work like normal SQL statements with some minor changes. For example, that output of a query is directed to a predefined set of variables which are referred as Host Variables. An additional INTO clause is placed in the SELECT statement. DB2 Application Programming Following are rules to be followed while coding a COBOL-DB2 program: All the SQL statements must be delimited between EXEC SQL and END-EXEC. SQL statements must be coded in Area B. All the tables that are used in a program must be declared in the Working-Storage Section. This is done by using the INCLUDE statement. All SQL statements other than INCLUDE and DECLARE TABLE must appear in the Procedure Division. Host Variables Host variables are used for receiving data from a table or inserting data in a table. Host variables must be declared for all values that are to be passed between the program and the DB2. They are declared in the Working-Storage Section. -
Scala−−, a Type Inferred Language Project Report
Scala−−, a type inferred language Project Report Da Liu [email protected] Contents 1 Background 2 2 Introduction 2 3 Type Inference 2 4 Language Prototype Features 3 5 Project Design 4 6 Implementation 4 6.1 Benchmarkingresults . 4 7 Discussion 9 7.1 About scalac ....................... 9 8 Lessons learned 10 9 Language Specifications 10 9.1 Introdution ......................... 10 9.2 Lexicalsyntax........................ 10 9.2.1 Identifiers ...................... 10 9.2.2 Keywords ...................... 10 9.2.3 Literals ....................... 11 9.2.4 Punctions ...................... 12 9.2.5 Commentsandwhitespace. 12 9.2.6 Operations ..................... 12 9.3 Syntax............................ 12 9.3.1 Programstructure . 12 9.3.2 Expressions ..................... 14 9.3.3 Statements ..................... 14 9.3.4 Blocksandcontrolflow . 14 9.4 Scopingrules ........................ 16 9.5 Standardlibraryandcollections. 16 9.5.1 println,mapandfilter . 16 9.5.2 Array ........................ 16 9.5.3 List ......................... 17 9.6 Codeexample........................ 17 9.6.1 HelloWorld..................... 17 9.6.2 QuickSort...................... 17 1 of 34 10 Reference 18 10.1Typeinference ....................... 18 10.2 Scalaprogramminglanguage . 18 10.3 Scala programming language development . 18 10.4 CompileScalatoLLVM . 18 10.5Benchmarking. .. .. .. .. .. .. .. .. .. .. 18 11 Source code listing 19 1 Background Scala is becoming drawing attentions in daily production among var- ious industries. Being as a general purpose programming language, it is influenced by many ancestors including, Erlang, Haskell, Java, Lisp, OCaml, Scheme, and Smalltalk. Scala has many attractive features, such as cross-platform taking advantage of JVM; as well as with higher level abstraction agnostic to the developer providing immutability with persistent data structures, pattern matching, type inference, higher or- der functions, lazy evaluation and many other functional programming features. -
Modern Programming Languages CS508 Virtual University of Pakistan
Modern Programming Languages (CS508) VU Modern Programming Languages CS508 Virtual University of Pakistan Leaders in Education Technology 1 © Copyright Virtual University of Pakistan Modern Programming Languages (CS508) VU TABLE of CONTENTS Course Objectives...........................................................................................................................4 Introduction and Historical Background (Lecture 1-8)..............................................................5 Language Evaluation Criterion.....................................................................................................6 Language Evaluation Criterion...................................................................................................15 An Introduction to SNOBOL (Lecture 9-12).............................................................................32 Ada Programming Language: An Introduction (Lecture 13-17).............................................45 LISP Programming Language: An Introduction (Lecture 18-21)...........................................63 PROLOG - Programming in Logic (Lecture 22-26) .................................................................77 Java Programming Language (Lecture 27-30)..........................................................................92 C# Programming Language (Lecture 31-34) ...........................................................................111 PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)........................129 Modern Programming Languages-JavaScript -
About ILE C/C++ Compiler Reference
IBM i 7.3 Programming IBM Rational Development Studio for i ILE C/C++ Compiler Reference IBM SC09-4816-07 Note Before using this information and the product it supports, read the information in “Notices” on page 121. This edition applies to IBM® Rational® Development Studio for i (product number 5770-WDS) and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models. This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is licensed to you under the terms of the IBM License Agreement for Machine Code. © Copyright International Business Machines Corporation 1993, 2015. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents ILE C/C++ Compiler Reference............................................................................... 1 What is new for IBM i 7.3.............................................................................................................................3 PDF file for ILE C/C++ Compiler Reference.................................................................................................5 About ILE C/C++ Compiler Reference......................................................................................................... 7 Prerequisite and Related Information.................................................................................................. -
Technical Study Desktop Internationalization
Technical Study Desktop Internationalization NIC CH A E L T S T U D Y [This page intentionally left blank] X/Open Technical Study Desktop Internationalisation X/Open Company Ltd. December 1995, X/Open Company Limited All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owners. X/Open Technical Study Desktop Internationalisation X/Open Document Number: E501 Published by X/Open Company Ltd., U.K. Any comments relating to the material contained in this document may be submitted to X/Open at: X/Open Company Limited Apex Plaza Forbury Road Reading Berkshire, RG1 1AX United Kingdom or by Electronic Mail to: [email protected] ii X/Open Technical Study (1995) Contents Chapter 1 Internationalisation.............................................................................. 1 1.1 Introduction ................................................................................................. 1 1.2 Character Sets and Encodings.................................................................. 2 1.3 The C Programming Language................................................................ 5 1.4 Internationalisation Support in POSIX .................................................. 6 1.5 Internationalisation Support in the X/Open CAE............................... 7 1.5.1 XPG4 Facilities......................................................................................... -
The Future: the Story of Squeak, a Practical Smalltalk Written in Itself
Back to the future: the story of Squeak, a practical Smalltalk written in itself Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay [Also published in OOPSLA ’97: Proc. of the 12th ACM SIGPLAN Conference on Object-oriented Programming, 1997, pp. 318-326.] VPRI Technical Report TR-1997-001 Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761 Back to the Future The Story of Squeak, A Practical Smalltalk Written in Itself by Dan Ingalls Ted Kaehler John Maloney Scott Wallace Alan Kay at Apple Computer while doing this work, now at Walt Disney Imagineering 1401 Flower Street P.O. Box 25020 Glendale, CA 91221 [email protected] Abstract Squeak is an open, highly-portable Smalltalk implementation whose virtual machine is written entirely in Smalltalk, making it easy to debug, analyze, and change. To achieve practical performance, a translator produces an equivalent C program whose performance is comparable to commercial Smalltalks. Other noteworthy aspects of Squeak include: a compact object format that typically requires only a single word of overhead per object; a simple yet efficient incremental garbage collector for 32-bit direct pointers; efficient bulk- mutation of objects; extensions of BitBlt to handle color of any depth and anti-aliased image rotation and scaling; and real-time sound and music synthesis written entirely in Smalltalk. Overview Squeak is a modern implementation of Smalltalk-80 that is available for free via the Internet, at http://www.research.apple.com/research/proj/learning_concepts/squeak/ and other sites. It includes platform-independent support for color, sound, and image processing. -
10 Programming Languages You Should Learn Right Now by Deborah Rothberg September 15, 2006 8 Comments Posted Add Your Opinion
10 Programming Languages You Should Learn Right Now By Deborah Rothberg September 15, 2006 8 comments posted Add your opinion Knowing a handful of programming languages is seen by many as a harbor in a job market storm, solid skills that will be marketable as long as the languages are. Yet, there is beauty in numbers. While there may be developers who have had riches heaped on them by knowing the right programming language at the right time in the right place, most longtime coders will tell you that periodically learning a new language is an essential part of being a good and successful Web developer. "One of my mentors once told me that a programming language is just a programming language. It doesn't matter if you're a good programmer, it's the syntax that matters," Tim Huckaby, CEO of San Diego-based software engineering company CEO Interknowlogy.com, told eWEEK. However, Huckaby said that while his company is "swimmi ng" in work, he's having a nearly impossible time finding recruits, even on the entry level, that know specific programming languages. "We're hiring like crazy, but we're not having an easy time. We're just looking for attitude and aptitude, kids right out of school that know .Net, or even Java, because with that we can train them on .Net," said Huckaby. "Don't get fixated on one or two languages. When I started in 1969, FORTRAN, COBOL and S/360 Assembler were the big tickets. Today, Java, C and Visual Basic are. In 10 years time, some new set of languages will be the 'in thing.' …At last count, I knew/have learned over 24 different languages in over 30 years," Wayne Duqaine, director of Software Development at Grandview Systems, of Sebastopol, Calif., told eWEEK. -
Unix Standardization and Implementation
Contents 1. Preface/Introduction 2. Standardization and Implementation 3. File I/O 4. Standard I/O Library 5. Files and Directories 6. System Data Files and Information 7. Environment of a Unix Process 8. Process Control 9. Signals 10.Inter-process Communication * All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003. Standardization and Implementation Why Standardization? Proliferation of UNIX versions What should be done? The specifications of limits that each implementation must define! * All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003. 1 UNIX Standardization ANSI C American National Standards Institute ISO/IEC 9899:1990 International Organization for Standardization (ISO) Syntax/Semantics of C, a standard library Purpose: Provide portability of conforming C programs to a wide variety of OS’s. 15 areas: Fig 2.1 – Page 27 * All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003. UNIX Standardization ANSIC C <assert.h> - verify program assertion <ctype.h> - char types <errno.h> - error codes <float.h> - float point constants <limits.h> - implementation constants <locale.h> - locale catalogs <math.h> - mathematical constants <setjmp.h> - nonlocal goto <signal.h> - signals <stdarg.h> - variable argument lists <stddef.h> - standard definitions <stdio.h> - standard library <stdlib.h> - utilities functions <string.h> - string operations <time.h> - time and date * All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003. 2 UNIX Standardization POSIX.1 (Portable Operating System Interface) developed by IEEE Not restricted for Unix-like systems and no distinction for system calls and library functions Originally IEEE Standard 1003.1-1988 1003.2: shells and utilities, 1003.7: system administrator, > 15 other communities Published as IEEE std 1003.1-1990, ISO/IEC9945-1:1990 New: the inclusion of symbolic links No superuser notion * All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003. -
The Scala Experience Safe Programming Can Be Fun!
The Scala Programming Language Mooly Sagiv Slides taken from Martin Odersky (EPFL) Donna Malayeri (CMU) Hila Peleg (Technion) Modern Functional Programming • Higher order • Modules • Pattern matching • Statically typed with type inference • Two viable alternatives • Haskel • Pure lazy evaluation and higher order programming leads to Concise programming • Support for domain specific languages • I/O Monads • Type classes • ML/Ocaml/F# • Eager call by value evaluation • Encapsulated side-effects via references • [Object orientation] Then Why aren’t FP adapted? • Education • Lack of OO support • Subtyping increases the complexity of type inference • Programmers seeks control on the exact implementation • Imperative programming is natural in certain situations Why Scala? (Coming from OCaml) • Runs on the JVM/.NET • Can use any Java code in Scala • Combines functional and imperative programming in a smooth way • Effective libraries • Inheritance • General modularity mechanisms The Java Programming Language • Designed by Sun 1991-95 • Statically typed and type safe • Clean and Powerful libraries • Clean references and arrays • Object Oriented with single inheritance • Interfaces with multiple inheritance • Portable with JVM • Effective JIT compilers • Support for concurrency • Useful for Internet Java Critique • Downcasting reduces the effectiveness of static type checking • Many of the interesting errors caught at runtime • Still better than C, C++ • Huge code blowouts • Hard to define domain specific knowledge • A lot of boilerplate code • -
1 Ocaml for the Masses
PROGRAMMING LANGUAGES OCaml for the Masses Why the next language you learn should be functional Yaron Minsky, Jane Street Sometimes, the elegant implementation is a function. Not a method. Not a class. Not a framework. Just a function. - John Carmack Functional programming is an old idea with a distinguished history. Lisp, a functional language inspired by Alonzo Church’s lambda calculus, was one of the first programming languages developed at the dawn of the computing age. Statically typed functional languages such as OCaml and Haskell are newer, but their roots go deep—ML, from which they descend, dates back to work by Robin Milner in the early ’70s relating to the pioneering LCF (Logic for Computable Functions) theorem prover. Functional programming has also been enormously influential. Many fundamental advances in programming language design, from garbage collection to generics to type inference, came out of the functional world and were commonplace there decades before they made it to other languages. Yet functional languages never really made it to the mainstream. They came closest, perhaps, in the days of Symbolics and the Lisp machines, but those days seem quite remote now. Despite a resurgence of functional programming in the past few years, it remains a technology more talked about than used. It is tempting to conclude from this record that functional languages don’t have what it takes. They may make sense for certain limited applications, and contain useful concepts to be imported into other languages; but imperative and object-oriented languages are simply better suited to the vast majority of software engineering tasks. -
Smalltalk's Influence on Modern Programming
1 Smalltalk’s Influence on Modern Programming Smalltalk’s Influence on Modern Programming Matt Savona. February 1 st , 2008. In September 1972 at Xerox PARC, Alan Kay, Ted Kaeher and Dan Ingalls were discussing programming languages in the hallway of their office building. Ted and Dan had begun to consider how large a language had to be to have “great power.” Alan took a different approach, and “asserted that you could define the "most powerful language in the world" in "a page of code."” Ted and Dan replied, “Put up or shut up” (Kay). And with that, the bet to develop the most powerful language was on. Alan arrived at PARC every morning at 4am for two weeks, and devoted his time from 4am to 8am to the development of the language. That language was Smalltalk. Kay had “originally made the boast because McCarthy's self-describing LISP interpreter was written in itself. It was about "a page", and as far as power goes, LISP was the whole nine- yards for functional languages.” He was sure that he could “do the same for object-oriented languages” and still have a reasonable syntax. By the eighth morning, Kay had a version of Smalltalk developed where “symbols were byte-coded and the receiving of return-values from a send was symmetric” (Kay). Several days later, Dan Ingalls had coded Kay’s scheme in BASIC, added a “token scanner”, “list maker” and many other features. “Over the next ten years he made at least 80 major releases of various flavors of Smalltalk” (Kay). -
GNU Cobol FAQ
GNU Cobol FAQ | Status This is a 2.1 work in progress release of the GNU Cobol FAQ. Sourced at gcfaqrrst. Courtesty of ReStructuredText, Sphinx and Pygments. GNU Cobol 2.1 is not currently rolled out, but is available for testing. GNUCobolFAQppdf is also available, but broken, as a work in progress, with no work done yet, using Texlive and Sphinx. This FAQ is more than a FAQ and less than a FAQ. Someday that will change and this document will be split into a GNU Cobol manual and a simplified Frequently Asked Questions file. Website favicon by Mark James, help.png from the FAMFAMFAM Silk icon set. http://creativecommons.org/licenses/by/2.5/ Banner courtesy of the GIMP, Copyright © 2008-2014 Brian Tif- fin licensed under Creative Commons Attribution-Share Alike 2.0 Generic License http://creativecommons.org/licenses/by-sa/2.0/ Authors Brian Tiffin [btiffin]_ Answers, quotes and contributions: John Ellis [jrls_swla]_, Vincent Coen, Jim Currey, Bill Klein [wmk- lein]_, Ganymede, Simon Sobisch [human]_, Rildo Pragana, Sergey Kashyrin, Federico Priolo, Frank Swarbrick, Angus, DamonH, Parhs, Gerald Chudyk Compiler by: *Roger While* [Roger]_, *Keisuke Nishida* [Keisuke]_, *Ron Norman* [Ron]_, *Sergey Kashyrin* [Sergey]_, (with the invaluable assistance of many others) Special credits to *Gary Cutler* author of the GNU Cobol Programmers Guide Joseph James Frantz for hosting and advocacy [aoirthoir]_ 1 Version 2.1.17, May 24th, 2014 Status never complete; like a limit, limaq→0 f(aq) = 42 Copyright Copyright © 2008-2014 Brian Tiffin ChangeLog ChangeLog_ note Regarding COBOL Standards, Official COBOL Standards: There are many references to standards in this document.