Pure Spinor Formalism and Gauge/String Duality

Total Page:16

File Type:pdf, Size:1020Kb

Pure Spinor Formalism and Gauge/String Duality Internationl School for Advanced Studies (SISSA/Trieste) Pure spinor formalism and gauge/string duality by Houman Safaai Supervisor Giulio Bonelli A thesis submitted in partial ful¯llment for the degree of Doctor of Philosophy in the Sector of Elementary Particles Scuola Internazionale Superiore di Studi Avanzati September 2009 \ And that inverted Bowl we call The Sky, Whereunder crawling coop't we live and die, Lift not your hands to It for help¡for It. As impotently moves as you or I." Omar Khayym (11th century), Persian astronomer and poet, Rubiyt of Omar Khayym Abstract Sector of Elementary Particles Scuola Internazionale Superiore di Studi Avanzati Doctor of Philosophy by Houman Safaai A worldsheet interpretation of AdS/CFT duality from the point of view of a topological open/closed string duality using the power of pure spinor formalism will be studied. We will show that the pure spinor superstring on some maximally supersymmetric back- grounds which admit a particular Z4 automorphism can be recasted as a topological A-model action on a fermionic coset plus a BRST exact term. This topological model will be interpreted as the superstring theory at zero radius. Using this decomposition we will prove the exactness of the σ-model on these backgrounds. We then show that corresponding to this topological model, there exist a gauged linear sigma model which makes it possible to sketch the superstring theory in the small radius limit as the dual limit of the perturbative gauge theory. Studying the branch geometry of this gauged sigma model in di®erent phases gives information about how the gauge/string duality is realized at small radius from a similar point of view of the topological open/closed conifold duality studied by Gopakumar, Ooguri and Vafa. Moreover, we will discuss possible D-brane boundary conditions in this model. Using this D-branes, we will make 5 an exact check in the N = 4 SYM/AdS5 £ S duality. We will show that the exact computation of the expectation value of the circular Wilson loops in the gauge theory side can be obtained from the amplitudes of some particular D-branes as the dual of the Wilson loops in the superstring side. The next step will be to construct a BV action for G=G principal chiral model with G 2 P SU(2; 2j4), we will show that after applying di®erent gauge ¯xings of the model, we will get either a topological A-model theory or a topological thery whose supersymmetric charge is equal to the pure spinor BRST charge. Using this model one can explore the cohomology of the pure spinor action from the topological BV model. Then we show that there exist a particular consistent defor- mation of the G=G action equal to the pure spinor superstring action. In this way we generate the superstring action on a non-zero radius AdS background as a perturbation around a topological model corresponding to zero radius limit of the superstring theory. Using this picture we will give an argument based on the worldsheet interpretation of open/closed duality to give a worldsheet explanation for AdS/CFT duality. A better understanding of this picture might give a prove of Maldacena's conjecture. At the end we will show that using the topological A-model, one can also give a prescription for 5 computing multiloop amplitudes in the superstring theory on AdS5 £ S background. Acknowledgements Tracing back my interest into physics reminds me the old days of the early-school time where I, together with very ambitious friends, was always dreaming about physics and deeply indulgated by the beauty of science. I would like to thank all those friends and teachers and very specially my parrents for all their support, encouragement and love they gave me during my life to help me pursuing my dreams. Anything I get in my scienti¯c carrier is the crop of the seeds they planted years ago by their immaculate training and never-ending sacri¯ces. I would like to express my deep thanks to my supervisor in SISSA, Dr. Giulio Bonelli, for all the suuport, time and scienti¯c knowledge he gave me. I enjoyed his way of thinking and working in which I learned many things from him. We spent many hours of our lifes together discussing about physics but I should admit that the part out of the work and the fact that I could count on him as a near and supportive frined was invaluable for me too. I bene¯ted a lot in the collaborations and discussions with Dr. Pietro Antonio Grassi to whom I want to express my thanks for all the things I learned from him and all his support. It is a pleasure for me also to thank my external referee, Prof. Dimitry Sorokin, for his valuable comments and suggestions on the thesis. I would like to thank also my ex- supervisor in Iran, Prof. H. Arfaei, for many things he learned me and for his guidance in the early stages of my scinti¯c carrier. Also I am thankful to all my professors in SISSA. I enjoyed sharing many deep and happy moments of my life with many good friends in Trieste during these four years. Their presence made the life here more familiar and melted the ices of the lonliness. I am thankful to all of them specially to my very early and endless friends Andrea Brini, Davide Forcella and Diego Gallego who has been very near during all these years. Last but of course not least, I would like to thank deeply Ladan, who has been beside me as the nearest one during the last stages of my PhD, for all the invaluable friendship, support, extreme happiness, energy and love she gave me. Trieste, September 2009 v Contents Abstract iv Acknowledgements v 1 Introduction 1 1.1 General gauge/string duality ......................... 1 1.2 AdS/CFT correspondence ........................... 5 1.3 Topological A-model conifold open/closed duality .............. 9 1.4 Towards a worldsheet proof of AdS/CFT duality .............. 17 Conformal exactness of the background: ........... 24 An exact check of AdS/CFT duality: ............. 24 Multiloop amplitudes computation: .............. 26 1.5 G=G principal chiral model and its deformation ............... 26 1.6 R¶esum¶eof the thesis .............................. 29 2 Pure spinor formalism of superstring theory 33 2.1 Green-Schwartz formalism of superstrings .................. 35 5 3 2.1.1 Structure of AdS5 £ S and AdS~ 4 £ CP supercosets ........ 38 2.1.2 Sigma model action for supercosets with Z4 automorphism .... 41 2.2 Pure spinor action for flat background .................... 45 2.3 Pure spinor formalism for curved backgrounds ................ 50 2.3.1 Pure spinor action for superstring on AdS5 £ S5 .......... 52 3 2.3.2 Pure spinor action for superstring on AdS~ 4 £ CP ......... 56 3 Topological decomposition of pure spinor superstring action 63 3.1 Topological A-model on a Grassmannian ................... 63 3.1.1 From KÄahleraction to topological A-model action ......... 67 3.2 Pure spinor superstring on supercosets with Z4 automorphism and the \bonus\ symmetry ............................... 73 3.3 Mapping pure spinor superstring action to topological A-model action .. 77 3.4 On conformal exactness of superstring backgrounds ............. 81 4 An exact check of AdS/CFT duality using the topological A-model 83 4.1 Gauged linear sigma-model for the superstring action ............ 83 5 4.1.1 Gauged linear sigma-model of AdS5 £ S background ....... 84 vii viii 3 4.1.2 Gauged linear sigma-model of AdS~ 4 £ CP background ...... 85 4.2 Vacua of the gauged linear sigma-model ................... 87 4.3 Open sector and D-branes ........................... 91 5 4.3.1 Open sector of topological AdS5 £ S ................ 91 3 4.3.2 Open sector of the topological AdS~ 4 £ CP ............. 92 5 4.4 An exact check in AdS5 £ S =N = 4; d = 4 SYM duality .......... 94 4.4.1 Mirror symmetry, superconifold and matrix model ......... 94 4.4.1.1 Mirror symmetry ....................... 94 First description: ........................ 96 Second description: ....................... 97 4.4.1.2 Geometric transition ..................... 105 4.4.1.3 From open topological B-model superstring to holomor- phic Chern-Simons ...................... 106 4.4.1.4 Dimensional reduction and The Gaussian Matrix model . 109 4.4.2 Circular Wilson loop and its dual in topological model ....... 111 4.4.2.1 Circular Wilson loops in N = 4 d = 4 SYM ........ 112 4.4.2.2 Dual of the circular Wilson loops in the superstring ... 115 5 The Anti¯eld Lagrangian quantization of gauge theories 119 5.1 Basics of gauge theories ............................ 119 5.2 Faddeev-Popov quantization procedure .................... 123 5.3 BRST quantization of gauge theories ..................... 127 5.4 The BV anti¯eld formalism .......................... 130 5.5 Consistent deformation of the BV action ................... 138 6 Towards a worldsheet description of AdS/CFT duality 141 6.1 BV action for the G=G principal chiral model ................ 142 6.2 Gauge-¯xing the G=G principal chiral model ................ 147 6.2.1 Gauge ¯xing to topological A-model ................. 147 6.2.2 Gauge ¯xing to a topological model with Qtop = Qpure spinor .... 151 6.3 Consistent deformation of the G=G model .................. 158 6.3.1 Descent equations ........................... 161 6.4 A worldsheet description of AdS/CFT duality ................ 164 7 Amplitudes computation 167 5 7.1 Pure spinor amplitude for AdS5 £ S ..................... 167 7.2 Topological A-model amplitude ........................ 169 5 7.3 Topological A-model of AdS5 £ S ...................... 172 The case g = 0: ......................... 174 The case g = 1: ......................... 175 The case g > 1: ......................... 176 8 Open questions and outlook 179 To my parents, Parvaneh and Behrouz And to the one I love.
Recommended publications
  • UV Behavior of Half-Maximal Supergravity Theories
    UV behavior of half-maximal supergravity theories. Piotr Tourkine, Quantum Gravity in Paris 2013, LPT Orsay In collaboration with Pierre Vanhove, based on 1202.3692, 1208.1255 Understand the pertubative structure of supergravity theories. ● Supergravities are theories of gravity with local supersymmetry. ● Those theories naturally arise in the low energy limit of superstring theory. ● String theory is then a UV completion for those and thus provides a good framework to study their UV behavior. → Maximal and half-maximal supergravities. Maximal supergravity ● Maximally extended supergravity: – Low energy limit of type IIA/B theory, – 32 real supercharges, unique (ungauged) – N=8 in d=4 ● Long standing problem to determine if maximal supergravity can be a consistent theory of quantum gravity in d=4. ● Current consensus on the subject : it is not UV finite, the first divergence could occur at the 7-loop order. ● Impressive progresses made during last 5 years in the field of scattering amplitudes computations. [Bern, Carrasco, Dixon, Dunbar, Johansson, Kosower, Perelstein, Rozowsky etc.] Half-maximal supergravity ● Half-maximal supergravity: – Heterotic string, but also type II strings on orbifolds – 16 real supercharges, – N=4 in d=4 ● Richer structure, and still a lot of SUSY so explicit computations are still possible. ● There are UV divergences in d=4, [Fischler 1979] at one loop for external matter states ● UV divergence in gravity amplitudes ? As we will see the divergence is expected to arise at the four loop order. String models that give half-maximal supergravity “(4,0)” susy “(0,4)” susy ● Type IIA/B string = Superstring ⊗ Superstring Torus compactification : preserves full (4,4) supersymmetry.
    [Show full text]
  • Pitp Lectures
    MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist.
    [Show full text]
  • Abdus Salam United Nations Educational, Scientific and Cultural XA9952968 Organization International Centre
    the IC/99/74 abdus salam united nations educational, scientific and cultural XA9952968 organization international centre international atomic energy agency for theoretical physics D = 4 YANG-MILLS CORRELATORS 5 FROM NSR STRINGS ON AdS5 x S Dimitri Polyakov 30-47 Available at: http://www.ictp.trieste.it/~pub-off IC/99/74 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS D = 4 YANG-MILLS CORRELATORS 5 FROM NSR STRINGS ON AdS5 x S Dimitri Polyakov^ The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. Abstract In our previous work (hep-th/9812044) we have proposed the sigma-model action, conjectured to be the NSR analogue of superstring theory on AdS$ x S5. This sigma- model is the NSR superstring action with potential term corresponding to the exotic 5- form vertex operator (branelike state). This 5-form potential plays the role of cosmological term, effectively curving the flat space-time geometry to that of AdS$ x S5. In this paper we study this ansatz in more detail and provide the derivation of the correlators of the four- dimensional super Yang-Mills theory from the above mentioned sigma-model. In particular, we show that the correlation function of two dilaton vertex operators in such a model reproduces the well-known result for the two-point function in N = 4 four-dimensional 2 2 super Yang-Mills theory: < F (x)F (y) >~ \JLy\» • MIRAMARE - TRIESTE July 1999 E-mail: [email protected] Introduction One of the most profound questions with regard to critical superstring theory in ten dimensions is its relation to our four-dimensional world.
    [Show full text]
  • JHEP01(2008)065 Larity Trans- January 17, 2008 January 22, 2008 January 28, 2008 (5) Pure Spinor U / 10) ) Ghosts, Together with Spin-Half RNS Fermions Alism
    Published by Institute of Physics Publishing for SISSA Received: January 17, 2008 Accepted: January 22, 2008 Published: January 28, 2008 Explaining the pure spinor formalism for the JHEP01(2008)065 superstring Nathan Berkovits Instituto de F´ısica Te´orica, State University of S˜ao Paulo, Rua Pamplona 145, 01405-900, S˜ao Paulo, SP, Brasil E-mail: [email protected] Abstract: After adding a pair of non-minimal fields and performing a similarity trans- formation, the BRST operator in the pure spinor formalism is expressed as a conventional- looking BRST operator involving the Virasoro constraint and (b, c) ghosts, together with 12 fermionic constraints. This BRST operator can be obtained by gauge-fixing the Green- Schwarz superstring where the 8 first-class and 8 second-class Green-Schwarz constraints are combined into 12 first-class constraints. Alternatively, the pure spinor BRST opera- tor can be obtained from the RNS formalism by twisting the ten spin-half RNS fermions into five spin-one and five spin-zero fermions, and using the SO(10)/ U(5) pure spinor variables to parameterize the different ways of twisting. GSO( ) vertex operators in the − pure spinor formalism are constructed using spin fields and picture-changing operators in a manner analogous to Ramond vertex operators in the RNS formalism. Keywords: Superstrings and Heterotic Strings, Topological Strings. Contents 1. Introduction 1 2. Conventional-looking pure spinor BRST operator 4 2.1 Brief review of pure spinor formalism 4 2.2 Non-minimal fields and similarity transformation 6 JHEP01(2008)065 3. GSO(−) states in the pure spinor formalism 8 3.1 GSO(+) vertex operators 8 3.2 GSO( ) vertex operators 8 − 3.3 Picture-changing operators 9 3.4 Scattering amplitudes 10 4.
    [Show full text]
  • Brane Effective Actions, Kappa-Symmetry and Applications
    Living Rev. Relativity, 15, (2012), 3 LIVINGREVIEWS http://www.livingreviews.org/lrr-2012-3 in relativity Brane Effective Actions, Kappa-Symmetry and Applications Joan Sim´on School of Mathematics, The University of Edinburgh, and Maxwell Institute for Mathematical Sciences Edinburgh EH9 3JZ, U.K. email: [email protected] Accepted on 9 January 2012 Published on 27 February 2012 Abstract This is a review on brane effective actions, their symmetries and some of their applications. Its first part covers the Green{Schwarz formulation of single M- and D-brane effective actions focusing on kinematical aspects: the identification of their degrees of freedom, the importance of world volume diffeomorphisms and kappa symmetry to achieve manifest spacetime covari- ance and supersymmetry, and the explicit construction of such actions in arbitrary on-shell supergravity backgrounds. Its second part deals with applications. First, the use of kappa symmetry to determine supersymmetric world volume solitons. This includes their explicit construction in flat and curved backgrounds, their interpretation as Bogomol'nyi{Prasad–Sommerfield (BPS) states carrying (topological) charges in the supersymmetry algebra and the connection between su- persymmetry and Hamiltonian BPS bounds. When available, I emphasise the use of these solitons as constituents in microscopic models of black holes. Second, the use of probe approx- imations to infer about the non-trivial dynamics of strongly-coupled gauge theories using the anti de Sitter/conformal field theory (AdS/CFT) correspondence. This includes expectation values of Wilson loop operators, spectrum information and the general use of D-brane probes to approximate the dynamics of systems with small number of degrees of freedom interacting with larger systems allowing a dual gravitational description.
    [Show full text]
  • Introduction to Path Integral Methods in String Theory
    Introduction to path integral methods in string theory Sergio Ernesto Aguilar Guti´errez1 1Instituto de F´ısica Te´orica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, 01140-070 S~aoPaulo, SP, Brazil∗ (Dated: November 30, 2018) Contents I. Introduction 1 II. Functional methods in bosonic string theory 2 A. Polyakov action 2 B. Symmetries 3 C. Equations of motion and boundary conditions 4 D. Polyakov path integral 6 E. BRST quantization 10 F. Representation theory 11 III. Functional methods in the RNS formalism 12 A. Superstring theory in the RNS formalism 12 B. R and NS sectors 14 C. Local symmetries of the action 16 D. Path integrals in RNS 17 References 19 I. INTRODUCTION The fundamentals of path integral methods in string theory are reviewed with emphasis in the development of the Faddeev Popov ghost that emerge from overcounting of configurations and the conditions that the string theory requires for maintaining Weyl invariance. Since the lecture is presented for a course that does not assume previous knowledge in string theory, I include an introduction to both bosonic and superstring theory (in the RNS formalism). This text begins with an introduction to bosonic string theory, we study the symmetries of the Polyakov action, we work out the canonical quantization of the theory to calculate its central charge. Later the path integral formulation is introduced with the appearance of Faddeev-Popov ghosts, we consider their canonical quantization for computing the central charge. The total central charge generates an anomaly in the Weyl invariance of the theory. The vanishing of such term has powerful implications that yield conditions related with the possible physical states and the dimensions of the theory.
    [Show full text]
  • Introduction to Superstring Theory
    Introduction to Superstring Theory Carmen N´u~nez IAFE (UBA-CONICET) & PHYSICS DEPT. (University of Buenos Aires) VI ICTP LASS 2015 Mexico, 26 October- 6 November 2015 . Programme Class 1: The classical fermionic string Class 2: The quantized fermionic string Class 3: Partition Function Class 4: Interactions . Outline Class 1: The classical fermionic string The action and its symmetries Gauge fixing and constraints Equations of motion and boundary conditions Oscillator expansions . The spectra of bosonic strings contain a tachyon ! it might indicate the vacuum has been incorrectly identified. The mass squared of a particle T is the quadratic term in the 2 @2V (T ) j − 4 ) action: M = @T 2 T =0 = α0 = we are expanding around a maximum of V . If there is some other stable vacuum, this is not an actual inconsistency. Why superstrings? . The mass squared of a particle T is the quadratic term in the 2 @2V (T ) j − 4 ) action: M = @T 2 T =0 = α0 = we are expanding around a maximum of V . If there is some other stable vacuum, this is not an actual inconsistency. Why superstrings? The spectra of bosonic strings contain a tachyon ! it might indicate the vacuum has been incorrectly identified. If there is some other stable vacuum, this is not an actual inconsistency. Why superstrings? The spectra of bosonic strings contain a tachyon ! it might indicate the vacuum has been incorrectly identified. The mass squared of a particle T is the quadratic term in the 2 @2V (T ) j − 4 ) action: M = @T 2 T =0 = α0 = we are expanding around a maximum of V .
    [Show full text]
  • Aspects of Brane World-Volume Dynamics in String Theory
    Aspects of Brane World-Volume Dynamics in String Theory Gianni Tallarita y A thesis submitted for the degree of Doctor of Philosophy y Centre for Research in String Theory, School of Physics Queen Mary University of London Mile End Road, London E1 4NS, UK [email protected] To my Parents Abstract This thesis investigates the non-abelian dynamics of D-Brane systems in String Theory, specifically focussing on the fate of the open string Tachyon. Starting from the action of two coincident non-BPS D9-branes, we investigate kink configura- tions of the U(2) matrix tachyon field, considering both symmetrised (Str) and conventional (Tr) prescriptions for the trace over gauge indices of the non-BPS action. Non-abelian tachyon condensation in the theory with Tr prescription, and the resulting fluctuations about the kink profile, are shown to give rise to a theory of two coincident BPS D8-branes. Next we investigate magnetic monopole solutions of the non-abelian Dirac- Born-Infeld (DBI) action describing two coincident non-BPS D9-branes in flat space. These monopole configurations are singular in the first instance and require regularization. We discuss a suitable non-abelian ansatz which describes a point- like magnetic monopole and show it solves the equations of motion to leading order in the regularization parameter. Fluctuations are studied and shown to describe a codimension three BPS D6-brane, a formula is derived for its tension. Finally, we investigate the dynamics of a pair of coincident D5 branes in the background of k NS5 branes. We extend Kutasov's original proposal to the non- abelian case of multiple D-Branes and find that the duality still holds provided one promotes the radial direction to a matrix valued field associated with a non- abelian geometric tachyon and a particular parametrization for the transverse scalar fields is chosen.
    [Show full text]
  • String Creation, D-Branes and Effective Field Theory
    Preprint typeset in JHEP style - HYPER VERSION DAMTP-2008-12 String Creation, D-branes and Effective Field Theory Ling-Yan Hung Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA, UK E-mail: [email protected] Abstract: This paper addresses several unsettled issues associated with string creation in systems of orthogonal Dp-D(8 p) branes. The interaction between the branes can be − understood either from the closed string or open string picture. In the closed string picture it has been noted that the DBI action fails to capture an extra RR exchange between the branes. We demonstrate how this problem persists upon lifting to M-theory. These D- brane systems are analysed in the closed string picture by using gauge-fixed boundary states in a non-standard lightcone gauge, in which RR exchange can be analysed precisely. The missing piece in the DBI action also manifests itself in the open string picture as a mismatch between the Coleman-Weinberg potential obtained from the effective field theory and the corresponding open string calculation. We show that this difference can be reconciled by taking into account the superghosts in the (0+1) effective theory of the chiral fermion, that arises from gauge fixing the spontaneously broken world-line local supersymmetries. arXiv:0802.3603v1 [hep-th] 25 Feb 2008 Keywords: String creation, light Cone Gauge. Contents 1. Introduction 1 2. Dp brane probes in D(8 p) backgrounds 4 − 2.1 Example in M-theory 5 3. Boundary states and extra duality relations 8 4. Closed string generalisation of Arvis gauge 10 4.1 The bosonic case 10 4.1.1 Spectrum 12 4.2 Superstring generalisation 13 4.2.1 RNS formalism 13 4.2.2 GS formalism 14 4.2.3 Spectrum 16 4.3 Boundary States 16 4.4 Tree-level interaction between boundary states 18 5.
    [Show full text]
  • String Theory and M-Theory: a Modern Introduction Katrin Becker, Melanie Becker, and John H
    Cambridge University Press 978-0-521-86069-7 - String Theory and M-Theory: A Modern Introduction Katrin Becker, Melanie Becker, and John H. Schwarz Frontmatter More information STRING THEORY AND M-THEORY A MODERN INTRODUCTION String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to very recent developments at the frontier of string theory research. The book begins with the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, and moves on to describe modern developments, including D-branes, string dualities and M-theory. It then covers string geometry (including Calabi–Yau compactifications) and flux compactifications, and applications to cosmology and particle physics. One chapter is dedicated to black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. The book concludes by presenting matrix theory, AdS/CFT duality and its generalizations. This book is ideal for graduate students studying modern string theory, and it will make an excellent textbook for a 1-year course on string theory. It will also be useful for researchers interested in learning about developments in modern string theory. The book contains about 120 solved exercises, as well as about 200 homework problems, solutions of which are available for lecturers on a pass- word protected website at www.cambridge.org/9780521860697. K ATRIN B ECKER is a Professor of physics at Texas A & M University. She was awarded the Radcliffe Fellowship from Harvard University in 2006 and received the Alfred Sloan Fellowship in 2003.
    [Show full text]
  • PHYS 652: String Theory II Homework 2
    PHYS 652: String Theory II Homework 2 Due 2/27/2017 (Assigned 2/15/2017) 1 Heterotic Strings Last semester, you constructed the closed bosonic string by combining left- and right-moving copies of the open bosonic string subject to the level-matching condition. In this class we repeated that construction to obtain the type-II closed superstrings from two copies of the open type-I superstring. In the RNS formalism we employed a GSO projection to remove the tachyon and computed the massless spectrum in lightcone gauge. In the GS formalism spacetime supersymmetry extends the lightcone gauge to superspace and there is no tachyon. Despite the differences between the two formulations, the massless spectra agree. The heterotic strings are closed superstrings obtained by combining the bosonic string for the left-movers with the type-I superstring for the right-movers, again subject to level-matching. Split the 26 coordinates of the critical bosonic string into 10 X's and 16 Y 's and treat the X's as the left-moving side of the spacetime coordinate with the right-moving side identified with the 10 X's of the critical type-I superstring. Using level-matching, construct the massless spectrum in both the RNS and GS formalisms and interpret it in terms of gauge and gravity multiplets. At this point, it is not possible to determine the gauge group of this theory but you can deduce the rank. If, in addition, you were told that the gauge algebra is semi-simple and its dimension is 496, what are the possibilities for the heterotic strings? Why is this string called \heterotic"? 2 Fermionization and Picture Fixing reparameterization-invariance of the bosonic string to conformal gauge requires the in- clusion of the bc ghost system.
    [Show full text]
  • Heterotic String Theory on Calabi-Yau - Manifolds in the Green-Schwarz Formalism*
    1 . SLAC - PUB - 4071 August 1986 -. T HETEROTIC STRING THEORY ON CALABI-YAU - MANIFOLDS IN THE GREEN-SCHWARZ FORMALISM* ASHOKE SEN Stanford Linear Accelerator Center - Stanford University, Stanford, California, 94305 ABSTRACT The a-model describing the propagation of the heterotic string in a Calabi- Yau background is written down in the Green-Schwarz formulation. This model has manifest N=l space-time supersymmetry, however only the SO(2) subgroup - of the four dimensional Lorentz group is realized linearly. The criteria for the existence of the full SO(3,l) L orentz symmetry in this model are studied. These requirements turn out to be identical to those obtained by demanding the exis- =- tence of space-time supersymmetry in the Neveu-Schwarz-Ramond formulation - of the theory, where the SO(3,l) L orentz symmetry is manifest, but space-time supersymmetry is not. The analysis is easily generalized to more general back- grounds, which give rise to (2,0) su p erconformal field theories on the world sheet. Finally it is shown that if the requirements which give unbroken N=l space-time supersymmetry and full SO(3,l) L orentz invariance are satisfied, then the unbro- ken gauge group after the compactification of the &3 x J?& heterotic string theory on Calabi-Yau spaces iS Es X Es. - Submitted to Nuclear Physics B * Work supported by the Department of Energy, contract DE - AC03 - 76SF00515. 1. INTRODUCTION Current interest in string theories has its origin at the discovery of anomaly cancellation,[ll subsequent discovery of the heterotic string theory, 121and the -- - semi-realistic compactification of this theory on Calabi-Yau manifolds PI and orbifolds.
    [Show full text]