Known Predators of Crown-Of-Thorns Starfish (Acanthaster Spp.) And

Total Page:16

File Type:pdf, Size:1020Kb

Known Predators of Crown-Of-Thorns Starfish (Acanthaster Spp.) And diversity Review Known Predators of Crown-of-Thorns Starfish (Acanthaster spp.) and Their Role in Mitigating, If Not Preventing, Population Outbreaks Zara-Louise Cowan 1,*, Morgan Pratchett 1, Vanessa Messmer 1 and Scott Ling 2 1 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; [email protected] (M.P.); [email protected] (V.M.) 2 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-7-4781-5747 Academic Editors: Sven Uthicke and Michael Wink Received: 20 November 2016; Accepted: 17 January 2017; Published: 22 January 2017 Abstract: Predatory release has long been considered a potential contributor to population outbreaks of crown-of-thorns starfish (CoTS; Acanthaster spp.). This has initiated extensive searches for potentially important predators that can consume large numbers of CoTS at high rates, which are also vulnerable to over-fishing or reef degradation. Herein, we review reported predators of CoTS and assess the potential for these organisms to exert significant mortality, and thereby prevent and/or moderate CoTS outbreaks. In all, 80 species of coral reef organisms (including fishes, and motile and sessile invertebrates) are reported to predate on CoTS gametes (three species), larvae (17 species), juveniles (15 species), adults (18 species) and/or opportunistically feed on injured (10 species) or moribund (42 species) individuals within reef habitats. It is clear however, that predation on early life-history stages has been understudied, and there are likely to be many more species of reef fishes and/or sessile invertebrates that readily consume CoTS gametes and/or larvae. Given the number and diversity of coral reef species that consume Acanthaster spp., most of which (e.g., Arothron pufferfishes) are not explicitly targeted by reef-based fisheries, links between overfishing and CoTS outbreaks remain equivocal. There is also no single species that appears to have a disproportionate role in regulating CoTS populations. Rather, the collective consumption of CoTS by multiple different species and at different life-history stages is likely to suppress the local abundance of CoTS, and thereby mediate the severity of outbreaks. It is possible therefore, that general degradation of reef ecosystems and corresponding declines in biodiversity and productivity, may contribute to increasing incidence or severity of outbreaks of Acanthaster spp. However, it seems unlikely that predatory release in and of itself could account for initial onset of CoTS outbreaks. In conclusion, reducing anthropogenic stressors that reduce the abundance and/or diversity of potential predatory species represents a “no regrets” management strategy, but will need to be used in conjunction with other management strategies to prevent, or reduce the occurrence, of CoTS outbreaks. Keywords: Acanthaster (Acanthasteridae); fisheries closures; marine parks; predation; predator removal hypothesis; chemical defences; saponins; population regulation; top-down control; trophic cascades 1. Introduction Adult crown-of-thorns starfish (CoTS; Acanthaster sp.) have numerous long, very sharp and toxic spines (Figure1). In addition, the dermal tissues of CoTS (and all of their organs) contain high concentrations of chemicals, including saponins [1,2] and plancitoxins [3], which are both Diversity 2017, 9, 7; doi:10.3390/d9010007 www.mdpi.com/journal/diversity Diversity 2017, 9, 7 2 of 19 unpalatable [4] and highly toxic [5–7]. Intuitively therefore, one might expect that these starfish are effectivelyDiversity 2017, protected9, 7 and largely immune from predation (e.g., [8]). In reality, there2 of are 19 few organisms that are completely immune to predation at any or all stages of their life cycle. Rather, well-developedunpalatable [4] anti-predatory and highly toxic defences [5–7]. Intuitively reduce thetherefore, range one of predatorsmight expect to that which these prey starfish species are are effectively protected and largely immune from predation (e.g., [8]). In reality, there are few vulnerable [9], but may or may not affect overall rates of predation and the extent to which prey organisms that are completely immune to predation at any or all stages of their life cycle. Rather, populationswell-developed are controlled anti-predatory by predators. defences Accordingly,reduce the range there of predators is an increasing to which number prey species of coral are reef organismsvulnerable (fishes [9], andbut invertebrates)may or may not reported affect overall to predate rates of on predation CoTS [10 and,11 ],the including extent to somewhich predatorsprey (e.g.,populationsArothron pufferfishes) are controlled that by feedpredators. almost Accordingly, exclusively there on adultis an increasing CoTS when number they areof coral in abundant reef supplyorganisms (e.g., during (fishes outbreaks). and invertebrates) Such predators reported mayto predate be important on CoTS in[10,11], supressing including the some abundance predators of prey species(e.g., [12 Arothron] as well pufferfishes) as influencing that feed the behaviour,almost exclusively habitat-associations, on adult CoTS when and populationthey are in abundant dynamics of evensupply well-armoured (e.g., during and/or outbreaks). chemically Such predators defended may prey be species important (e.g., in [supressing13]). the abundance of Despiteprey species their [12] physical as well and as chemical influencing defences, the behaviour, post-settlement habitat-associ stagesations, (juvenile and population and adults) of CoTSdynamics often exhibit of even injuries, well-armoured largely manifestedand/or chem asically missing defended arms prey [11 species,14,15]. (e.g., These [13]). injuries are believed Despite their physical and chemical defences, post-settlement stages (juvenile and adults) of to occur when predators are only able to remove one or a few arms before the starfish escapes or CoTS often exhibit injuries, largely manifested as missing arms [11,14,15]. These injuries are believed avoidsto occur further when damage predators by hidingare only within able to theremove reef one matrix or a [few15]. arms If however, before the there starfish are escapes highrates or of partialavoids predation further at damage specific by reef hiding locations within [11 the] then reef it matrix is expected [15]. If at however, least some there CoTS are willhigh alsorates be of killed outrightpartial and/or predation consumed at specific in entirety. reef locations The cryptic [11] then nature it is andexpected nocturnal at least behaviour some CoTS of CoTS,will also especially be whenkilled small outright (<12 cm and/or diameter) consumed or at in low entirety. densities The cryptic [11,16 ]nature further and suggests nocturnal that behaviour they must of CoTS, be highly vulnerableespecially to predators. when small In (<12 controlled cm diameter) experiments, or at low survivorshipdensities [11,16] of further laboratory suggests reared thatAcanthaster they must spp. settledbe tohighly natural vulnerable substrates to predators. is effectively In controlled zero, owing experiments, to very highsurvivorship rates of of predation laboratory by reared naturally occurringAcanthaster predators spp. settled [17–19 to]. Recentnatural researchsubstrates also is effectively demonstrates zero, owing that CoTS to very larvae high arerates highly of predation vulnerable to predationby naturally [20], occurring despite having predators the highest[17–19]. concentrationsRecent research ofalso anti-predator demonstrates chemicals that CoTS (discussed larvae are later). highly vulnerable to predation [20], despite having the highest concentrations of anti-predator Cowan et al. [20] showed that CoTS larvae are readily consumed by many common planktivorous chemicals (discussed later). Cowan et al. [20] showed that CoTS larvae are readily consumed by damselfishes,many common and often planktivorous in preference damsel tofishes, other and asteroid often in larvae. preference to other asteroid larvae. WhileWhile there there is nowis now general general acceptance acceptance thatthat CoTS are are vulnerable vulnerable to topredation predation (e.g., (e.g., [11,21]), [11 ,21]), on-goingon-going controversies controversies relate relate to whetherto whether known known predators predators would would ever ever be be capable capable of of regulating regulating CoTS populations,CoTS populations, and mitigating, and mitigating, if not preventing if not preventi outbreaks.ng outbreaks. More specifically, More specifically, attention attention is focussed is on whetherfocussed anthropogenic on whether impactsanthropogenic (viafishing impacts or (via habitat fishing degradation) or habitat degradation) have supressed have supressed the abundance the of keyabundance predators, of thereby key predators, accounting thereby for the accounting seemingly for recent the seemingly and/or increasing recent and/or occurrence increasing of CoTS outbreaksoccurrence [10]. of CoTS outbreaks [10]. FigureFigure 1. Adult 1. Adult crown-of-thorns crown-of-thorns starfish starfish are are defended defended against against predators predators by by numerous numerous long, long, very very sharp and toxicsharp spines. and toxic Photographic spines. Photographic credit: Scott credit: Ling, Scott Dick’s Ling, Dick’s Reef, SwainsReef, Swains Region, Region, southern southern Great Great
Recommended publications
  • Biodiversity of Shallow Reef Fish Assemblages in Western Australia Using a Rapid Censusing Technique
    Records of the Western Australian Museum 20: 247-270 (2001). Biodiversity of shallow reef fish assemblages in Western Australia using a rapid censusing technique J. Harry Hutchins Department of Aquatic Zoology, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia email: [email protected] Abstract -A rapid assessment methodology was used to provide relative abundance data on selected families of Western Australian fishes. Twenty shallow water reef sites were surveyed covering the coastline between the Recherche Archipelago in the south east and the Kimberley in the north. Three groups of atolls located off the Kimberley coast were also included. Eighteen families that best represent the State's nearshore reef fish fauna were targeted. They are: Serranidae, Caesionidae, Lu~anidae, Haemulidae, Lethrinidae, Mullidae, Pempherididae, Kyphosidae, Girellidae, Scorpididae, Chaetodontidae, Pomacanthidae, Pomacentridae, Cheilodactylidae, Labridae, Odacidae, Acanthuridae, and Monacanthidae. Analysis of the dataset using a hierarchical classification technique indicates that four groups of reef fishes are present: a southwest assemblage, a northwest assemblage, an offshore atolls assemblage, and a Kimberley assemblage. The first assemblage is comprised mainly of temperate species, while the latter three are mostly tropical fishes; these two broader groupings narrowly overlap on the west coast between Kalbarri and the Houtman Abrolhos. Evidence of a wide zone of temperate/tropical overlap-as proposed by some previous studies-is not supported by this analysis, nor is the presence of a prominent subtropical fauna on the west coast. Ecological differences of the four assemblages are explored, as well as the impact by the Leeuwin Current on this arrangement. INTRODUCTION western and southern coasts of the State, but could Western Australia occupies about 23 degrees of only provide a brief comparison with other more latitude (12-35°5) covering a large and varied northern areas.
    [Show full text]
  • Endangered Species Research 38:135
    Vol. 38: 135–145, 2019 ENDANGERED SPECIES RESEARCH Published March 14 https://doi.org/10.3354/esr00942 Endang Species Res OPENPEN ACCESSCCESS Substantial impacts of subsistence fishing on the population status of an Endangered reef predator at a remote coral atoll Robert J. Lennox1,2,*, Alexander Filous2,3,4, Steven J. Cooke1, Andy J. Danylchuk2,3 1Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada 2Indifly, PO Box 4460, St Paul, Minnesota 55104, USA 3Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, Massachusetts 01003, USA 4The Island Initiative, Papeete, French Polynesia ABSTRACT: Napoleon wrasse Cheilinus undulatus has declined drastically throughout most of its range, owing, in large part, to overexploitation. In Anaa, French Polynesia, the species is har- vested as part of the subsistence catch by fishers using rockpile traps, spearguns, handmade har- poons, and baited handlines. We sampled 70 Napoleon wrasse captured by artisanal fishers of Anaa between 2015 and 2018 to assess the status of this population, and we applied data-poor fisheries models to assess the stock status of this iconic reef predator. The species was determined to be overexploited at a rate of 0.82 based on values of natural (0.14; Hoenig method) and fishing (0.58; difference of total and natural mortality) mortality as components of total mortality (0.72; Beverton-Holt estimation). The left-skewed length distribution (mean = 36 ± 13 cm SL) suggested an under-representation of large adults in the population, which would predominantly be terminal males in this sequentially hermaphroditic protogynous fish.
    [Show full text]
  • Animal Spot Animal Spot Uses Intriguing Specimens from Cincinnati Museum Center’S Collections to Teach Children How Each Animal Is Unique to Its Environment
    Animal Spot Animal Spot uses intriguing specimens from Cincinnati Museum Center’s collections to teach children how each animal is unique to its environment. Touch a cast of an elephant’s skull, feel a real dinosaur fossil, finish a three-layer fish puzzle, observe live fish and use interactives to explore how animals move, “dress” and eat. Case 1: Modes of Balance and Movement (Case design: horse legs in boots) Animals walk, run, jump, fly, and/or slither to their destination. Animals use many different parts of their bodies to help them move. The animals in this case are: • Blue Jay (Cyanocitta cristata) • Grasshopper (Shistocerca americana) • Locust (Dissosteira carolina) • Broad-wing damselfly (Family: Calopterygidae) • King Rail (Rallus elegans) • Eastern Mole (Scalopus aquaticus) • Brown trout (Salmo trutta) • Gila monster (Heloderma suspectum) • Damselfly (Agriocnemis pygmaea) • Pufferfish (Family: Tetraodontidae) • Bullfrog (Rona catesbrana) • Cicada (Family: Cicadidae) • Moths and Butterflies (Order: Lepidoptera) • Sea slugs (Order: Chepalaspidea) • Koala (Phascolarctos cinereus) • Fox Squirrel (Sciurus niger) • Giant Millipede (Subspecies: Lules) Case 2: Endo/Exoskeleton (Case design: Surrounded by bones) There are many different kinds of skeletons; some inside the body and others outside. The animals with skeletons on the inside have endoskeletons. Those animals that have skeletons on the outside have exoskeletons. Endoskeletons • Hellbender salamander (Genus: Cryptobranchus) • Python (Family: Boidae) • Perch (Genus: Perca)
    [Show full text]
  • The Dietary Preferences, Depth Range and Size of the Crown of Thorns Starfish (Acanthaster Spp.) on the Coral Reefs of Koh Tao, Thailand by Leon B
    The dietary preferences, depth range and size of the Crown of Thorns Starfish (Acanthaster spp.) on the coral reefs of Koh Tao, Thailand By Leon B. Haines Author: Leon Haines 940205001 Supervisors: New Heaven Reef Conservation Program: Chad Scott Van Hall Larenstein University of Applied Sciences: Peter Hofman 29/09/2015 The dietary preferences, depth range and size of the Crown of Thorns Starfish (Acanthaster spp.) on the coral reefs of Koh Tao, Thailand Author: Leon Haines 940205001 Supervisors: New Heaven Reef Conservation Program: Chad Scott Van Hall Larenstein University of Applied Sciences: Peter Hofman 29/09/2015 Cover image:(NHRCP, 2015) 2 Preface This paper is written in light of my 3rd year project based internship of Integrated Coastal Zone management major marine biology at the Van Hall Larenstein University of applied science. My internship took place at the New Heaven Reef Conservation Program on the island of Koh Tao, Thailand. During my internship I performed a study on the corallivorous Crown of Thorns starfish, which is threatening the coral reefs of Koh Tao due to high density ‘outbreaks’. Understanding the biology of this threat is vital for developing effective conservation strategies to protect the vulnerable reefs on which the islands environment, community and economy rely. Very special thanks to Chad Scott, program director of the New Heaven Reef Conservation program, for supervising and helping me make this possible. Thanks to Devrim Zahir. Thanks to the New Heaven Reef Conservation team; Ploy, Pau, Rahul and Spencer. Thanks to my supervisor at Van Hall Larenstein; Peter Hofman. 3 Abstract Acanthaster is a specialized coral-feeder and feeds nearly solely, 90-95%, on sleractinia (reef building corals), preferably Acroporidae and Pocilloporidae families.
    [Show full text]
  • Adec Preview Generated PDF File
    Rec. West. Aust. Mus., 1977,6 (1) FIVE PROBABLE HYBRID BUTTERFLYFISHES OF THE GENUS CHAETODON FROM THE CENTRAL AND WESTERN PACIFIC JOHN E. RANDALL* GERALD R. ALLENt and ROGERC. STEENEf [Received 19 September 1976. Accepted 5 May 1977. Published 30 December 1977.] ABSTRACT The following five cases of probable hybridisation in marine butterflyfishes (genus Chaetodon) are reported: C. auriga x C. ephippium (Tuamotu Archipelago), C. ephippium x C. semeion (Marshall Islands), C. kleini x C. unimaculatus (Marshall Islands), C. miliaris x C. tinkeri (Hawaiian Islands), and C. aureofasciatus x C. rainfordi (Great Barrier Reef). Comparisons between the presumed hybrids and their respective parent species are presented, and each trio is illustrated. In addition, a discussion of possible conditions responsible for hybridisation in chaetodontids is included. INTRODUCTION Relatively few marine fishes have been reported as hybrids; of 212 fish hybrids listed by Slastenenko (1957), only 30 were inhabitants of the sea. The same preponderance of freshwater hybrids over marine is apparent in the review by Schwartz (1972) of the hybrid fishes of the world. In the present paper data are given for five presumed hybrids of the marine butterflyfish genus Chaetodon (family Chaetodontidae). In addition, the junior authors have observed (but not collected) probable hybrid crosses between C. ornatissimus - C. meyeri and C. pelewensis - C. punctatofasciatus at Palau, New Britain, and the northern Great Barrier Reef. *Bernice P. Bishop Museum, P.O. Box 6037, Honolulu, Hawaii 96818, D.S.A. tWestern Australian Museum, Francis Street, Perth, Australia 6000. fp.o. Box 188, Cairns, Queensland, Australia 4870. 3 Chaetodontids have not been reported previou~ly as hybrids, although this phenomenon has been documented in the closely related angelfishes (Pomacanthidae).
    [Show full text]
  • (Asteroidea: Acanthaster): a Review of Names and Comparison to Recent Molecular Data
    Zootaxa 3841 (2): 271–284 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3841.2.6 http://zoobank.org/urn:lsid:zoobank.org:pub:750B7776-4BFD-4EF2-AE1A-2671658A0985 An integrative approach to the taxonomy of the crown-of-thorns starfish species group (Asteroidea: Acanthaster): A review of names and comparison to recent molecular data GERHARD HASZPRUNAR1,2 & MARTIN SPIES1 1SNSB - Zoologische Staatssammlung München, Münchhausenstr. 21, D-81247 München, Germany. E-mail: [email protected] 2Dept. Biology II and GeoBio-Center of LMU Munich, Germany Abstract The scientific names published for species and subspecies in the genus Acanthaster Gervais (Asteroidea: Valvatida: Acan- thasteridae) are reviewed, with particular attention to the A. planci species group (crown-of-thorn starfish, COTS). Several problems with earlier nomenclatural and bibliographic data are resolved. The available name for the type species of Acan- thaster in the original combination is Asterias echinites Ellis & Solander in Watt, 1786; the often-cited "Asterias echinus" and "Acanthaster echinus" are incorrect subsequent spellings, therefore unavailable. The scientific names and taxonomic concepts for species and subspecies in Acanthaster are compared to recently published, robust COI-barcoding clades. Two of four clades in the A. planci group can be named unequivocally, a third requires a neotype designation to decide which of two available names will be valid, and the fourth clade necessitates a new species description and name. The References section includes annotations explaining bibliographical data important to the nomenclatural evaluations. Many hyperlinks interspersed with the paper's texts offer quick access to digital versions of the respective references.
    [Show full text]
  • Trait Decoupling Promotes Evolutionary Diversification of The
    Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes rspb.royalsocietypublishing.org Bruno Fre´de´rich1, Damien Olivier1, Glenn Litsios2,3, Michael E. Alfaro4 and Eric Parmentier1 1Laboratoire de Morphologie Fonctionnelle et Evolutive, Applied and Fundamental Fish Research Center, Universite´ de Lie`ge, 4000 Lie`ge, Belgium 2Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland Research 3Swiss Institute of Bioinformatics, Ge´nopode, Quartier Sorge, 1015 Lausanne, Switzerland 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Cite this article: Fre´de´rich B, Olivier D, Litsios G, Alfaro ME, Parmentier E. 2014 Trait decou- Trait decoupling, wherein evolutionary release of constraints permits special- pling promotes evolutionary diversification of ization of formerly integrated structures, represents a major conceptual the trophic and acoustic system of damsel- framework for interpreting patterns of organismal diversity. However, few fishes. Proc. R. Soc. B 281: 20141047. empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase http://dx.doi.org/10.1098/rspb.2014.1047 following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis Received: 2 May 2014 by examining the evolutionary consequences of the loss of the ceratomandib- Accepted: 9 June 2014 ular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament.
    [Show full text]
  • Research Article
    z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 9, Issue, 08, pp.55487-55491, August, 2017 ISSN: 0975-833X RESEARCH ARTICLE STUDIES ON RESOURCE POTENTIAL AND DIVERSITY OF PUFFER FISHES ALONG DIGHA COAST, WEST BENGAL, INDIA *Rudra Prasad Nath and Jayanta Kumar Kundu Department of Zoology, Vidyasagar University, Midnapore -721102, West Bengal, India ARTICLE INFO ABSTRACT Article History: The present study describes the distribution of puffer fishes from the coastal belt of Digha (between Received 22nd May, 2017 21°32´N to 21°45´N latitude and 87°32´E to 87°50´E longitude) in West Bengal along the east coast Received in revised form of India. The puffer fishes were collected by trawling from three different stations (Digha mohona, 09th June, 2017 Sankarpur, Soula). During this survey, 7 different species from 5 genera under the order Accepted 27th July, 2017 Tetraodontiformes belonging to the family Tetraodontidae was identified viz, Arothron stellatus, Published online 31st August, 2017 Arothron immaculatus, Chelonodon patoca, Lagocephalus inermis, Lagocephalus lunaris, Takifugu oblongus, Tetraodon fluviatilis. The present study revealed that three puffer fishes were distributed Key words: mostly viz, Lagocephalus lunaris (51.49%), Takifugu oblongus (27.02%), Tetraodon fluviatilis (13.55%) and rest of the puffers are very few viz, Arothron stellatus (2.09%), Arothron immaculatus Puffer fish, Tetraodontidae, (0.28%), Chelonodon patoca (1.50%), Lagocephalus inermis (4.07%). Lagocephalus lunaris was Tetraodontiformes, Seasonal abundance, recorded maximum from this coastal region. This study also summarized the distribution as well as Puffer diversity, Digha coast.
    [Show full text]
  • Crown-Of-Thorns Sea Star, Acanthaster Cf. Solaris, Have Tissue-Characteristic Microbiomes With
    AEM Accepted Manuscript Posted Online 4 May 2018 Appl. Environ. Microbiol. doi:10.1128/AEM.00181-18 © Crown copyright 2018. The government of Australia, Canada, or the UK ("the Crown") owns the copyright interests of authors who are government employees. The Crown Copyright is not transferable. 1 Crown-of-thorns sea star, Acanthaster cf. solaris, have tissue-characteristic microbiomes with 2 potential roles in health and reproduction 3 4 Lone Høj,a#,b Natalie Levy,a,b,c* Brett K. Baillie,a Peta L. Clode,d,e,f Raphael C. Strohmaier,a 5 Nachshon Siboni,a,** Nicole S. Webster,a,b,g Sven Uthicke,a,b David G. Bournea,b,c 6 Downloaded from 7 aAustralian Institute of Marine Science, Townsville, Queensland, Australia. 8 bAIMS@JCU, Division of Research & Innovation, James Cook University, Townsville, 9 Queensland, Australia 10 cCollege of Science and Engineering, James Cook University, Townsville, Queensland, http://aem.asm.org/ 11 Australia. 12 dCentre for Microscopy, Characterisation and Analysis, The University of Western Australia, 13 Perth, Western Australia, Australia 14 eSchool of Biological Sciences, The University of Western Australia, Perth, Western on May 10, 2018 by UQ Library 15 Australia, Australia 16 fThe Oceans Institute, The University of Western Australia, Perth, Western Australia, 17 Australia 18 gAustralian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, 19 Australia 20 21 Running head: Microbiome of crown-of-thorns sea stars 22 23 #Address correspondence to Lone Høj, [email protected]. 24 *Present address: Natalie Levy, School of Zoology, Tel Aviv University, Tel Aviv, Israel. 1 25 **Present address: Nachshon Siboni, Climate Change Cluster, University of Technology 26 Sydney, Sydney, New South Wales, Australia.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Draft Genome of an Iconic Red Sea Reef Fish, the Blacktail Butterflyfish
    This is the peer reviewed version of the following article: Di Battista, J. and Wang, X. and Saenz-Agudelo, P. and Piatek, M. and Aranda, M. and Berumen, M. 2016. Draft genome of an iconic Red Sea reef fish, the blacktail butterflyfish (Chaetodon austriacus): Current status and its characteristics. Molecular Ecology Resources, which has been published in final form at http://doi.org/10.1111/1755-0998.12588. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving at http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms Received Date : 22-Nov-2015 Revised Date : 05-Jul-2016 Accepted Date : 19-Jul-2016 Article type : From the Cover Molecular Ecology Resources 'From the Cover' submission Draft genome of an iconic Red Sea reef fish, the blacktail butterflyfish (Chaetodon austriacus): current status and its characteristics Running title: Draft genome of the blacktail butterflyfish Article Joseph D. DiBattista1,2*, Xin Wang1, Pablo Saenz-Agudelo1,3, Marek J. Piatek4, Manuel 1 1 Aranda , and Michael L Berumen 1Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia, 2Department of Environment and Agriculture, Curtin University, PO Box U1987, Perth, WA 6845, Australia, 3Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia 5090000, Chile, 4Computational Bioscience Research Center, King Abdullah University of Science and Technology,
    [Show full text]
  • Mediterranean Triton Charonia Lampas Lampas (Gastropoda: Caenogastropoda): Report on Captive Breeding
    ISSN: 0001-5113 ACTA ADRIAT., ORIGINAL SCIENTIFIC PAPER AADRAY 57(2): 263 - 272, 2016 Mediterranean triton Charonia lampas lampas (Gastropoda: Caenogastropoda): report on captive breeding Mauro CAVALLARO*1, Enrico NAVARRA2, Annalisa DANZÉ2, Giuseppa DANZÈ2, Daniele MUSCOLINO1 and Filippo GIARRATANA1 1Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy 2Associazione KURMA, via Andria 8, c/o Acquario Comunale di Messina-CESPOM, 98123 Messina, Italy *Corresponding author: [email protected] Two females and a male triton of Charonia lampas lampas (Linnaeus, 1758) were collected from March 2010 to September 2012 in S. Raineri peninsula in Messina, (Sicily, Italy). They were reared in a tank at the Aquarium of Messina. Mussels, starfish, and holothurians were provided as feed for the tritons. Spawning occurred in November 2012, lasted for 15 days, yielding a total number of 500 egg capsules, with approximately 2.0-3.0 x 103 eggs/capsule. The snail did not eat during the month, in which spawned. Spawning behaviour and larval development of the triton was described. Key words: Charonia lampas lampas, Gastropod, triton, veliger, reproduction INTRODUCTION in the Western in the Eastern Mediterranean with probable co-occurrence in Malta (BEU, 1985, The triton Charonia seguenzae (ARADAS & 1987, 2010). BENOIT, 1870), in the past reported as Charonia The Gastropod Charonia lampas lampas variegata (CLENCH AND TURNER, 1957) or Cha- (Linnaeus, 1758) is a large Mediterranean Sea ronia tritonis variegata (BEU, 1970), was recently and Eastern Atlantic carnivorous mollusk from classified as a separate species present only in the Ranellidae family, Tonnoidea superfamily, the Eastern Mediterranean Sea (BEU, 2010).
    [Show full text]