CLASS FIELD THEORY J.S. Milne

Total Page:16

File Type:pdf, Size:1020Kb

CLASS FIELD THEORY J.S. Milne CLASS FIELD THEORY J.S. Milne Preface. These12 are the notes for Math 776, University of Michigan, Winter 1997, slightly revised from those handed out during the course. They have been substantially revised and expanded from an earlier version, based on my notes from 1993 (v2.01). My approach to class field theory in these notes is eclectic. Although it is possible to prove the main theorems in class field theory using neither analysis nor cohomology, there are major theorems that can not even be stated without using one or the other, for example, theorems on densities of primes, or theorems about the cohomology groups associated with number fields. When it sheds additional light, I have not hesitated to include more than one proof of a result. The heart of the course is the odd numbered chapters. Chapter II, which is on the cohomology of groups, is basic for the rest of the course, but Chapters IV, VI, and VIII are not essential for reading Chapters III, V, and VII. Except for its first section, Chapter I can be skipped by those not interested in explicit local class field theory. References of the form Math xxx are to course notes available at http://www.math.lsa.umich.edu/∼jmilne. Please send comments and corrections to me at [email protected]. Books including class field theory Artin, E., Algebraic Numbers and Algebraic Functions, NYU, 1951.(Reprintedby Gordon and Breach, 1967). Artin, E., and Tate, J., Class Field Theory. Notes of a Seminar at Princeton, 1951/52. (Harvard University, Mathematics Department, 1961; Benjamin, 1968; Addison Wesley, 1991). Cassels, J.W.S., and Fr¨ohlich, A., (Eds), Algebraic Number Theory, Academic Press, 1967. Fesenko, I.B., and Vostokov, S.V., Local Fields and their Extensions, AMS, 1993. Goldstein, L.J., Analytic Number Theory, Prentice Hall, 1971. Iwasawa, K., Local Class Field Theory, Oxford, 1986. Iyanaga, S., (ed.), The Theory of Numbers, North-Holland, 1975. Janusz, G.J., Algebraic Number Fields, Academic Press, 1973; Second Edition, AMS, 1996. Koch, H., Number Theory II, Algebraic Number Theory, Springer, 1992.(Ency- clopaedia of Mathematical Sciences, Vol. 62, Parshin, A.N., and Shafarevich, I.R., Eds). Lang, S., Algebraic Number Theory, Addison-Wesley, 1970. Neukirch, J., Class Field Theory, Springer, 1985. Neukirch, J., Algebraische Zahlentheorie, Springer, 1992. Serre, J-P., Corps Locaux, Hermann, 1962. 1May 6, 1997; v3.1 2Copyright 1996, 1997, J.S. Milne. You may make one copy of these notes for your own personal use. ii iii Weil, A., Basic Number Theory, Springer, 1967. The articles of Serre and Tate in Cassels and Fr¨ohlich 1967, and Janusz 1973, have been especially useful in the writing of these notes. Books including an introduction to class field theory Cohn, H., A Classical Invitation to Algebraic Numbers and Class Fields, Springer, 1978. Cox, D.A., Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex Multiplication, Wiley, 1989. Marcus, D. A., Number Fields, Springer 1977. Sources for the history of algebraic number theory and class field theory Edwards, H.M., Fermat’s Last Theorem: A Genetic Introduction to Algebraic Num- ber Theory, Springer, 1977. Ellison, W. and F., Th´eorie des nombres, in Abr´eg´e d’Histoire des Math´ematiques 1700–1900, Vol I, (J. Dieudonn´e, ed.) Hermann, Paris, 1978, pp 165–334. Herbrand, J., Le D´eveloppment Moderne de la Th´eorie des Corps Alg´ebriques Corps deClassesetLoisdeR´eciprocit´e, Gauthier-Villars, Paris, 1936. Smith, H.J.S., Report on the the Theory of Numbers, Reports of the British Associ- ation, 1859/1865. (Reprinted by Chelsea, New York, 1965.) Weil, Number Theory: An Approach Through History, Birkh¨auser, 1984. Also: Hasse’s article in Cassels and Fr¨ohlich 1967. Appendix2 in Iyanaga 1975. Iwasawa’s appendixto the Collected Papers of Teiji Takagi. Tate’s article “Problem 9: The general reciprocity law” in Mathematical Developments Arising from Hilbert’s Problems, AMS, 1976. Weil’s article, Oeuvres 1974c. N. Schappacher, On the history of Hilbert’s twelfth problem (preprint). P. Stevenhagan and H.W. Lenstra, Chebo- tar¨ev and his density theorem, Math. Intelligencer, 18.2, 1996, 26–37. For an introduction to nonabelian class field theory: Arthur’s article in 1980 Sem- inar on Harmonic Analysis, CMS Conference Proceedings Vol 1, AMS, 1981. Notations: For a ring R (always with 1), R× denotes the group of invertible elements. We use X =df Y to mean “X is defined to be Y ”or“X = Y by definition”, ∼ X ≈ Y to mean that X and Y are isomorphic, and X = Y to mean X and Y are isomorphic with a given (canonical, or unique) isomorphism. iv Contents Introduction 1 Statement of the main problem, 1; Classification of unramified abelian extensions, 2; Classification of ramified abelian extensions, 2; The Artin map, 4; Explicit class field theory, 6; Nonabelian class field theory, 6; Exercises, 7. Chapter I. Local Class Field Theory 9 1. Statements of the Main Theorems 9 Consequences of Theorems 1.1 and 1.2, 11; Outline of the proof of the main theo- rems, 13. 2. Lubin-Tate Formal Group Laws 15 Power series, 15; Formal group laws, 16; Lubin-Tate group laws, 19. 3. Construction of the extension Kπ of K.22 The local Artin map, 26. 4. The Local Kronecker-Weber Theorem 30 The ramification groups of Kπ,n/K, 30; Upper numbering on ramification groups, 31; The local Kronecker-Weber theorem, 33; The global Kronecker-Weber theorem, 35; Where did it all come from?, 36; Notes, 37. 5. Appendix: Infinite Galois Theory and Inverse Limits 37 Galois theory for infinite extensions, 38; Inverse limits, 40; Chapter II. The Cohomology of Groups 41 1. Cohomology 41 The category of G-modules, 41; Induced modules, 42; Injective G-modules, 43; Definition of the cohomology groups, 44; Shapiro’s lemma, 45; Description of the cohomology groups by means of cochains, 47; The cohomology of L and L×, 49; The cohomology of products, 52; Functorial properties of the cohomology groups, 52; The inflation-restriction exact sequence, 55; Cup-products, 56; 2. Homology; the Tate Groups 57 Definition of the homology groups, 57; The group H1(G, Z), 59; The Tate groups, v vi CONTENTS 60; Cup-products, 61; The cohomology of finite cyclic groups, 61; Tate’s Theorem, 64; 3. The Cohomology of Profinite Groups 66 Direct limits, 66; Profinite groups, 67; Notes, 69; 4. Appendix: Some Homological Algebra 69 Some exact sequences, 69; The language of category theory, 70; Injective objects, 71; Right derived functors, 72; Variants, 75; The Ext groups, 75; References, 76; Chapter III. Local Class Field Theory Continued 77 1. Introduction 77 2. The Cohomology of Unramified Extensions 80 The cohomology of the units, 80; The invariant map, 81; Computation of the local Artin map, 83; 3. The Cohomology of Ramified Extensions 85 4. Complements 87 Alternative description of the local Artin map, 87; The Hilbert symbol, 88; Other Topics, 89; Notes, 89; Chapter IV. Brauer Groups 91 1. Simple Algebras; Semisimple Modules 91 Semisimple modules, 91; Simple k-algebras, 93; Modules over simple k-algebras, 95; 2. Definition of the Brauer Group 96 Tensor products of algebras, 96; Centralizers in tensor products, 97; Primordial elements, 97; Simplicity of tensor products, 98; The Noether-Skolem Theorem, 99; Definition of the Brauer group, 100; Extension of the base field, 101; 3. The Brauer Group and Cohomology 101 Maximal subfields, 102; Central simple algebras and 2-cocycles, 104; 4. The Brauer Groups of Special Fields 107 Finite fields, 107; The real numbers, 108; A nonarchimedean local field, 108; 5. Complements 110 Semisimple algebras, 110; Algebras, cohomology, and group extensions, 110; Brauer groups and K-theory, 111; Notes, 112; Chapter V. Global Class Field Theory: Statements 113 1. Ray Class Groups 113 Ideals prime to S, 113; Moduli, 114; The ray class group, 115; The Frobenius element, 117; CONTENTS vii 2. Dirichlet L-Series and the Density of Primes in Arithmetic Pro- gressions 119 3. The Main Theorems in Terms of Ideals 121 The Artin map, 121; The main theorems of global class field theory, 123; The norm limitation theorem, 125; The principal ideal theorem, 126; The Chebotarev Density Theorem, 128; The conductor-discriminant formula, 129; The reciprocity law and power reciprocity, 130; An elementary unsolved problem, 130; Explicit global class field theory: Kronecker’s Jugentraum and Hilbert’s twelfth problem, 131; Notes, 132; 4. Id`eles 132 Topological groups, 133; Id`eles, 133; Realizing ray class groups as quotients of I, 135; Characters of ideals and of id`eles, 137; Norms of id`eles, 139; 5. The Main Theorms in Terms of Id`eles 140 Example, 143; 6. Appendix: Review of some Algebraic Number Theory 144 The weak approximation theorem, 144; The decomposition of primes, 145; Chapter VI. L-Series and the Density of Primes 147 1. Dirichlet series and Euler products 147 2. Convergence Results 149 Dirichlet series, 149; Euler products, 152; Partial zeta functions; the residue for- mula, 153; 3. Density of the Prime Ideals Splitting in an Extension 155 4. Density of the Prime Ideals in an Arithmetic Progression 157 The Second Inequality, 162; Chapter VII. Global Class Field Theory: Proofs 163 1. Outline 163 2. The Cohomology of the Id`eles 164 The norm map on id´eles, 168; 3. The Cohomology of the Units 169 4. Cohomology of the Id`ele Classes I: the First Inequality 171 5. Cohomology of the Id`ele Classes II: The Second Inequality 174 6. The Algebraic Proof of the Second Inequality 175 7. Application to the Brauer Group 180 8. Completion of the Proof of the Reciprocity Law 182 9. The Existence Theorem 184 viii CONTENTS 10.
Recommended publications
  • The Geometry of Syzygies
    The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points .
    [Show full text]
  • Determining Large Groups and Varieties from Small Subgroups and Subvarieties
    Determining large groups and varieties from small subgroups and subvarieties This course will consist of two parts with the common theme of analyzing a geometric object via geometric sub-objects which are `small' in an appropriate sense. In the first half of the course, we will begin by describing the work on H. W. Lenstra, Jr., on finding generators for the unit groups of subrings of number fields. Lenstra discovered that from the point of view of computational complexity, it is advantageous to first consider the units of the ring of S-integers of L for some moderately large finite set of places S. This amounts to allowing denominators which only involve a prescribed finite set of primes. We will de- velop a generalization of Lenstra's method which applies to find generators of small height for the S-integral points of certain algebraic groups G defined over number fields. We will focus on G which are compact forms of GLd for d ≥ 1. In the second half of the course, we will turn to smooth projective surfaces defined by arithmetic lattices. These are Shimura varieties of complex dimension 2. We will try to generate subgroups of finite index in the fundamental groups of these surfaces by the fundamental groups of finite unions of totally geodesic projective curves on them, that is, via immersed Shimura curves. In both settings, the groups we will study are S-arithmetic lattices in a prod- uct of Lie groups over local fields. We will use the structure of our generating sets to consider several open problems about the geometry, group theory, and arithmetic of these lattices.
    [Show full text]
  • Chapter 9 Quadratic Residues
    Chapter 9 Quadratic Residues 9.1 Introduction Definition 9.1. We say that a 2 Z is a quadratic residue mod n if there exists b 2 Z such that a ≡ b2 mod n: If there is no such b we say that a is a quadratic non-residue mod n. Example: Suppose n = 10. We can determine the quadratic residues mod n by computing b2 mod n for 0 ≤ b < n. In fact, since (−b)2 ≡ b2 mod n; we need only consider 0 ≤ b ≤ [n=2]. Thus the quadratic residues mod 10 are 0; 1; 4; 9; 6; 5; while 3; 7; 8 are quadratic non-residues mod 10. Proposition 9.1. If a; b are quadratic residues mod n then so is ab. Proof. Suppose a ≡ r2; b ≡ s2 mod p: Then ab ≡ (rs)2 mod p: 9.2 Prime moduli Proposition 9.2. Suppose p is an odd prime. Then the quadratic residues coprime to p form a subgroup of (Z=p)× of index 2. Proof. Let Q denote the set of quadratic residues in (Z=p)×. If θ :(Z=p)× ! (Z=p)× denotes the homomorphism under which r 7! r2 mod p 9–1 then ker θ = {±1g; im θ = Q: By the first isomorphism theorem of group theory, × jkerθj · j im θj = j(Z=p) j: Thus Q is a subgroup of index 2: p − 1 jQj = : 2 Corollary 9.1. Suppose p is an odd prime; and suppose a; b are coprime to p. Then 1. 1=a is a quadratic residue if and only if a is a quadratic residue.
    [Show full text]
  • Local Class Field Theory Via Lubin-Tate Theory and Applications
    Local Class Field Theory via Lubin-Tate Theory and Applications Misja F.A. Steinmetz Supervisor: Prof. Fred Diamond June 2016 Abstract In this project we will introduce the study of local class field theory via Lubin-Tate theory following Yoshida [Yos08]. We explain how to construct the Artin map for Lubin-Tate extensions and we will show this map gives an isomorphism onto the Weil group of the maximal Lubin-Tate extension of our local field K: We will, furthermore, state (without proof) the other results needed to complete a proof of local class field theory in the classical sense. At the end of the project, we will look at a result from a recent preprint of Demb´el´e,Diamond and Roberts which gives an 1 explicit description of a filtration on H (GK ; Fp(χ)) for K a finite unramified extension of Qp and × χ : GK ! Fp a character. Using local class field theory, we will prove an analogue of this result for K a totally tamely ramified extension of Qp: 1 Contents 1 Introduction 3 2 Local Class Field Theory5 2.1 Formal Groups..........................................5 2.2 Lubin-Tate series.........................................6 2.3 Lubin-Tate Modules.......................................7 2.4 Lubin-Tate Extensions for OK ..................................8 2.5 Lubin-Tate Groups........................................9 2.6 Generalised Lubin-Tate Extensions............................... 10 2.7 The Artin Map.......................................... 11 2.8 Local Class Field Theory.................................... 13 1 3 Applications: Filtration on H (GK ; Fp(χ)) 14 3.1 Definition of the filtration.................................... 14 3.2 Computation of the jumps in the filtration..........................
    [Show full text]
  • On the Class Group and the Local Class Group of a Pullback
    JOURNAL OF ALGEBRA 181, 803]835Ž. 1996 ARTICLE NO. 0147 On the Class Group and the Local Class Group of a Pullback Marco FontanaU Dipartimento di Matematica, Uni¨ersitaÁ degli Studi di Roma Tre, Rome, Italy View metadata, citation and similar papers at core.ac.ukand brought to you by CORE provided by Elsevier - Publisher Connector Stefania GabelliU Dipartimento di Matematica, Uni¨ersitaÁ di Roma ``La Sapienza'', Rome, Italy Communicated by Richard G. Swan Received October 3, 1994 0. INTRODUCTION AND PRELIMINARY RESULTS Let M be a nonzero maximal ideal of an integral domain T, k the residue field TrM, w: T ª k the natural homomorphism, and D a proper subring of k. In this paper, we are interested in deepening the study of the Ž.fractional ideals and of the class group of the integral domain R arising from the following pullback of canonical homomorphisms: R [ wy1 Ž.DD6 6 6 Ž.I w6 TksTrM More precisely, we compare the Picard group, the class group, and the local class group of R with those of the integral domains D and T.We recall that as inwx Bo2 the class group of an integral domain A, CŽ.A ,is the group of t-invertibleŽ. fractional t-ideals of A modulo the principal ideals. The class group contains the Picard group, PicŽ.A , and, as inwx Bo1 , U Partially supported by the research funds of Ministero dell'Uni¨ersitaÁ e della Ricerca Scientifica e Tecnologica and by Grant 9300856.CT01 of Consiglio Nazionale delle Ricerche. 803 0021-8693r96 $18.00 Copyright Q 1996 by Academic Press, Inc.
    [Show full text]
  • Number Theory
    Number Theory Alexander Paulin October 25, 2010 Lecture 1 What is Number Theory Number Theory is one of the oldest and deepest Mathematical disciplines. In the broadest possible sense Number Theory is the study of the arithmetic properties of Z, the integers. Z is the canonical ring. It structure as a group under addition is very simple: it is the infinite cyclic group. The mystery of Z is its structure as a monoid under multiplication and the way these two structure coalesce. As a monoid we can reduce the study of Z to that of understanding prime numbers via the following 2000 year old theorem. Theorem. Every positive integer can be written as a product of prime numbers. Moreover this product is unique up to ordering. This is 2000 year old theorem is the Fundamental Theorem of Arithmetic. In modern language this is the statement that Z is a unique factorization domain (UFD). Another deep fact, due to Euclid, is that there are infinitely many primes. As a monoid therefore Z is fairly easy to understand - the free commutative monoid with countably infinitely many generators cross the cyclic group of order 2. The point is that in isolation addition and multiplication are easy, but together when have vast hidden depth. At this point we are faced with two potential avenues of study: analytic versus algebraic. By analytic I questions like trying to understand the distribution of the primes throughout Z. By algebraic I mean understanding the structure of Z as a monoid and as an abelian group and how they interact.
    [Show full text]
  • Class Field Theory & Complex Multiplication
    Class Field Theory & Complex Multiplication S´eminairede Math´ematiquesSup´erieures,CRM, Montr´eal June 23-July 4, 2014 Eknath Ghate 1 Introduction An elliptic curve has complex multiplication (or CM for short) if it has endo- morphisms other than the obvious ones given by multiplication by integers. The main purpose of these notes is to show that the j-invariant of an elliptic curve with CM along with its torsion points can be used to explicitly generate the maximal abelian extension of an imaginary quadratic field. This result is analogous to the Kronecker-Weber theorem which states that the maximal abelian extension of Q is generated by the values of the exponential function e2πix at the torsion points Q=Z of the group C=Z. The CM theory of elliptic curves is due to many authors, including Kro- necker, Weber, Hasse, Deuring, Shimura. Our exposition is based on Chap- ters 4 and 5 of Shimura [1], and Chapter 2 of Silverman [3]. For standard facts about elliptic curves we sometimes refer the reader to Silverman [2]. 2 What is complex multiplication? Let E and E0 be elliptic curves defined over an algebraically closed field k. A homomorphism λ : E ! E0 is a rational map that is also a group homomorphism. An isogeny λ : E ! E0 is a homomorphism with finite kernel. Denote the ring of all endomorphisms of E by End(E), and set EndQ(E) = End(E) ⊗ Q. If E is an elliptic curve defined over C, then E is isomorphic to C=L for a lattice L ⊂ C.
    [Show full text]
  • Gsm073-Endmatter.Pdf
    http://dx.doi.org/10.1090/gsm/073 Graduat e Algebra : Commutativ e Vie w This page intentionally left blank Graduat e Algebra : Commutativ e View Louis Halle Rowen Graduate Studies in Mathematics Volum e 73 KHSS^ K l|y|^| America n Mathematica l Societ y iSyiiU ^ Providence , Rhod e Islan d Contents Introduction xi List of symbols xv Chapter 0. Introduction and Prerequisites 1 Groups 2 Rings 6 Polynomials 9 Structure theories 12 Vector spaces and linear algebra 13 Bilinear forms and inner products 15 Appendix 0A: Quadratic Forms 18 Appendix OB: Ordered Monoids 23 Exercises - Chapter 0 25 Appendix 0A 28 Appendix OB 31 Part I. Modules Chapter 1. Introduction to Modules and their Structure Theory 35 Maps of modules 38 The lattice of submodules of a module 42 Appendix 1A: Categories 44 VI Contents Chapter 2. Finitely Generated Modules 51 Cyclic modules 51 Generating sets 52 Direct sums of two modules 53 The direct sum of any set of modules 54 Bases and free modules 56 Matrices over commutative rings 58 Torsion 61 The structure of finitely generated modules over a PID 62 The theory of a single linear transformation 71 Application to Abelian groups 77 Appendix 2A: Arithmetic Lattices 77 Chapter 3. Simple Modules and Composition Series 81 Simple modules 81 Composition series 82 A group-theoretic version of composition series 87 Exercises — Part I 89 Chapter 1 89 Appendix 1A 90 Chapter 2 94 Chapter 3 96 Part II. AfRne Algebras and Noetherian Rings Introduction to Part II 99 Chapter 4. Galois Theory of Fields 101 Field extensions 102 Adjoining
    [Show full text]
  • Nonvanishing of Hecke L-Functions and Bloch-Kato P
    NONVANISHING OF HECKE L{FUNCTIONS AND BLOCH-KATO p-SELMER GROUPS ARIANNA IANNUZZI, BYOUNG DU KIM, RIAD MASRI, ALEXANDER MATHERS, MARIA ROSS, AND WEI-LUN TSAI Abstract. The canonical Hecke characters in the sense of Rohrlich form a set of algebraic Hecke characters with important arithmetic properties. In this paper, we prove that for an asymptotic density of 100% of imaginary quadratic fields K within certain general families, the number of canonical Hecke characters of K whose L{function has a nonvanishing central value is jdisc(K)jδ for some absolute constant δ > 0. We then prove an analogous density result for the number of canonical Hecke characters of K whose associated Bloch-Kato p-Selmer group is finite. Among other things, our proofs rely on recent work of Ellenberg, Pierce, and Wood on bounds for torsion in class groups, and a careful study of the main conjecture of Iwasawa theory for imaginary quadratic fields. 1. Introduction and statement of results p Let K = Q( −D) be an imaginary quadratic field of discriminant −D with D > 3 and D ≡ 3 mod 4. Let OK be the ring of integers and letp "(n) = (−D=n) = (n=D) be the Kronecker symbol. × We view " as a quadratic character of (OK = −DOK ) via the isomorphism p ∼ Z=DZ = OK = −DOK : p A canonical Hecke character of K is a Hecke character k of conductor −DOK satisfying p 2k−1 + k(αOK ) = "(α)α for (αOK ; −DOK ) = 1; k 2 Z (1.1) (see [R2]). The number of such characters equals the class number h(−D) of K.
    [Show full text]
  • 22 Ring Class Fields and the CM Method
    18.783 Elliptic Curves Spring 2015 Lecture #22 04/30/2015 22 Ring class fields and the CM method p Let O be an imaginary quadratic order of discriminant D, let K = Q( D), and let L be the splitting field of the Hilbert class polynomial HD(X) over K. In the previous lecture we showed that there is an injective group homomorphism Ψ: Gal(L=K) ,! cl(O) that commutes with the group actions of Gal(L=K) and cl(O) on the set EllO(C) = EllO(L) of roots of HD(X) (the j-invariants of elliptic curves with CM by O). To complete the proof of the the First Main Theorem of Complex Multiplication, which asserts that Ψ is an isomorphism, we need to show that Ψ is surjective; this is equivalent to showing the HD(X) is irreducible over K. At the end of the last lecture we introduced the Artin map p 7! σp, which sends each unramified prime p of K to the unique automorphism σp 2 Gal(L=K) for which Np σp(x) ≡ x mod q; (1) for all x 2 OL and primes q of L dividing pOL (recall that σp is independent of q because Gal(L=K) ,! cl(O) is abelian). Equivalently, σp is the unique element of Gal(L=K) that Np fixes q and induces the Frobenius automorphism x 7! x of Fq := OL=q, which is a generator for Gal(Fq=Fp), where Fp := OK =p. Note that if E=C has CM by O then j(E) 2 L, and this implies that E can be defined 2 3 by a Weierstrass equation y = x + Ax + B with A; B 2 OL.
    [Show full text]
  • Introduction. There Are at Least Three Different Problems with Which One Is Confronted in the Study of L-Functions: the Analytic
    L-Functions and Automorphic Representations∗ R. P. Langlands Introduction. There are at least three different problems with which one is confronted in the study of L•functions: the analytic continuation and functional equation; the location of the zeroes; and in some cases, the determination of the values at special points. The first may be the easiest. It is certainly the only one with which I have been closely involved. There are two kinds of L•functions, and they will be described below: motivic L•functions which generalize the Artin L•functions and are defined purely arithmetically, and automorphic L•functions, defined by data which are largely transcendental. Within the automorphic L• functions a special class can be singled out, the class of standard L•functions, which generalize the Hecke L•functions and for which the analytic continuation and functional equation can be proved directly. For the other L•functions the analytic continuation is not so easily effected. However all evidence indicates that there are fewer L•functions than the definitions suggest, and that every L•function, motivic or automorphic, is equal to a standard L•function. Such equalities are often deep, and are called reciprocity laws, for historical reasons. Once a reciprocity law can be proved for an L•function, analytic continuation follows, and so, for those who believe in the validity of the reciprocity laws, they and not analytic continuation are the focus of attention, but very few such laws have been established. The automorphic L•functions are defined representation•theoretically, and it should be no surprise that harmonic analysis can be applied to some effect in the study of reciprocity laws.
    [Show full text]
  • Modular Forms and the Hilbert Class Field
    Modular forms and the Hilbert class field Vladislav Vladilenov Petkov VIGRE 2009, Department of Mathematics University of Chicago Abstract The current article studies the relation between the j−invariant function of elliptic curves with complex multiplication and the Maximal unramified abelian extensions of imaginary quadratic fields related to these curves. In the second section we prove that the j−invariant is a modular form of weight 0 and takes algebraic values at special points in the upper halfplane related to the curves we study. In the third section we use this function to construct the Hilbert class field of an imaginary quadratic number field and we prove that the Ga- lois group of that extension is isomorphic to the Class group of the base field, giving the particular isomorphism, which is closely related to the j−invariant. Finally we give an unexpected application of those results to construct a curious approximation of π. 1 Introduction We say that an elliptic curve E has complex multiplication by an order O of a finite imaginary extension K/Q, if there exists an isomorphism between O and the ring of endomorphisms of E, which we denote by End(E). In such case E has other endomorphisms beside the ordinary ”multiplication by n”- [n], n ∈ Z. Although the theory of modular functions, which we will define in the next section, is related to general elliptic curves over C, throughout the current paper we will be interested solely in elliptic curves with complex multiplication. Further, if E is an elliptic curve over an imaginary field K we would usually assume that E has complex multiplication by the ring of integers in K.
    [Show full text]