Unsupervised Feature Learning and Deep Learning: a Review and New Perspectives

Total Page:16

File Type:pdf, Size:1020Kb

Unsupervised Feature Learning and Deep Learning: a Review and New Perspectives 1 Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives Yoshua Bengio, Aaron Courville, and Pascal Vincent Department of computer science and operations research, U. Montreal F Abstract— The success of machine learning algorithms generally depends on Among the various ways of learning representations, this data representation, and we hypothesize that this is because differ- paper also focuses on those that can yield more non-linear, ent representations can entangle and hide more or less the different more abstract representations, i.e. deep learning.A deep explanatory factors of variation behind the data. Although domain architecture is formed by the composition of multiple levels of knowledge can be used to help design representations, learning can representation, where the number of levels is a free parameter also be used, and the quest for AI is motivating the design of more which can be selected depending on the demands of the given powerful representation-learning algorithms. This paper reviews recent work in the area of unsupervised feature learning and deep learning, task. This paper is meant to be a follow-up and a complement covering advances in probabilistic models, manifold learning, and deep to an earlier survey (Bengio, 2009) (but see also Arel et al. learning. This motivates longer-term unanswered questions about the (2010)). Here we survey recent progress in the area, with an appropriate objectives for learning good representations, for computing emphasis on the longer-term unanswered questions raised by representations (i.e., inference), and the geometrical connections be- this research, in particular about the appropriate objectives for tween representation learning, density estimation and manifold learning. learning good representations, for computing representations Index Terms—Deep learning, feature learning, unsupervised learning, Boltzmann Machine, RBM, auto-encoder, neural network (i.e., inference), and the geometrical connections between rep- resentation learning, density estimation and manifold learning. In Bengio and LeCun (2007), we introduce the notion of 1 INTRODUCTION AI-tasks, which are challenging for current machine learning Data representation is empirically found to be a core determi- algorithms, and involve complex but highly structured depen- nant of the performance of most machine learning algorithms. dencies. For substantial progress on tasks such as computer For that reason, much of the actual effort in deploying machine vision and natural language understanding, it seems hopeless learning algorithms goes into the design of feature extraction, to rely only on simple parametric models (such as linear preprocessing and data transformations. Feature engineering models) because they cannot capture enough of the complexity is important but labor-intensive and highlights the weakness of interest. On the other hand, machine learning researchers of current learning algorithms, their inability to extract all have sought flexibility in local1 non-parametric learners such of the juice from the data. Feature engineering is a way to as kernel machines with a fixed generic local-response kernel take advantage of human intelligence and prior knowledge to (such as the Gaussian kernel). Unfortunately, as argued at compensate for that weakness. In order to expand the scope length previously (Bengio and Monperrus, 2005; Bengio et al., and ease of applicability of machine learning, it would be 2006a; Bengio and LeCun, 2007; Bengio, 2009; Bengio et al., highly desirable to make learning algorithms less dependent 2010), most of these algorithms only exploit the principle arXiv:1206.5538v1 [cs.LG] 24 Jun 2012 on feature engineering, so that novel applications could be of local generalization, i.e., the assumption that the target constructed faster, and more importantly, to make progress function (to be learned) is smooth enough, so they rely on towards Artificial Intelligence (AI). An AI must fundamentally examples to explicitly map out the wrinkles of the target understand the world around us, and this can be achieved if a function. Although smoothness can be a useful assumption, it learner can identify and disentangle the underlying explanatory is insufficient to deal with the curse of dimensionality, because factors hidden in the observed milieu of low-level sensory data. the number of such wrinkles (ups and downs of the target When it comes time to achieve state-of-the-art results on function) may grow exponentially with the number of relevant practical real-world problems, feature engineering can be interacting factors or input dimensions. What we advocate are combined with feature learning, and the simplest way is to learning algorithms that are flexible and non-parametric2 but learn higher-level features on top of handcrafted ones. This do not rely merely on the smoothness assumption. However, paper is about feature learning, or representation learning, i.e., it is useful to apply a linear model or kernel machine on top learning representations and transformations of the data that somehow make it easier to extract useful information out of it, 1. local in the sense that the value of the learned function at x depends e.g., when building classifiers or other predictors. In the case of mostly on training examples x(t)’s close to x probabilistic models, a good representation is often one that 2. We understand non-parametric as including all learning algorithms whose capacity can be increased appropriately as the amount of data and its captures the posterior distribution of underlying explanatory complexity demands it, e.g. including mixture models and neural networks factors for the observed input. where the number of parameters is a data-selected hyper-parameter. 2 of a learned representation: this is equivalent to learning the neuron model (such as a monotone non-linearity on top of an kernel, i.e., the feature space. Kernel machines are useful, but affine transformation), computation of a kernel, or logic gates. they depend on a prior definition of a suitable similarity metric, Theoretical results clearly show families of functions where a or a feature space in which naive similarity metrics suffice; we deep representation can be exponentially more efficient than would like to also use the data to discover good features. one that is insufficiently deep (Hastad,˚ 1986; Hastad˚ and This brings us to representation-learning as a core ele- Goldmann, 1991; Bengio et al., 2006a; Bengio and LeCun, ment that can be incorporated in many learning frameworks. 2007; Bengio and Delalleau, 2011). If the same family of Interesting representations are expressive, meaning that a functions can be represented with fewer parameters (or more reasonably-sized learned representation can capture a huge precisely with a smaller VC-dimension3), learning theory number of possible input configurations: that excludes one- would suggest that it can be learned with fewer examples, hot representations, such as the result of traditional cluster- yielding improvements in both computational efficiency and ing algorithms, but could include multi-clustering algorithms statistical efficiency. where either several clusterings take place in parallel or the Another important motivation for feature learning and deep same clustering is applied on different parts of the input, learning is that they can be done with unlabeled examples, such as in the very popular hierarchical feature extraction for so long as the factors relevant to the questions we will ask object recognition based on a histogram of cluster categories later (e.g. classes to be predicted) are somehow salient in detected in different patches of an image (Lazebnik et al., the input distribution itself. This is true under the manifold 2006; Coates and Ng, 2011a). Distributed representations and hypothesis, which states that natural classes and other high- sparse representations are the typical ways to achieve such level concepts in which humans are interested are associated expressiveness, and both can provide exponential gains over with low-dimensional regions in input space (manifolds) near more local approaches, as argued in section 3.2 (and Figure which the distribution concentrates, and that different class 3.2) of Bengio (2009). This is because each parameter (e.g. manifolds are well-separated by regions of very low density. the parameters of one of the units in a sparse code, or one As a consequence, feature learning and deep learning are of the units in a Restricted Boltzmann Machine) can be re- intimately related to principles of unsupervised learning, and used in many examples that are not simply near neighbors they can be exploited in the semi-supervised setting (where of each other, whereas with local generalization, different only a few examples are labeled), as well as the transfer regions in input space are basically associated with their own learning and multi-task settings (where we aim to generalize private set of parameters, e.g. as in decision trees, nearest- to new classes or tasks). The underlying hypothesis is that neighbors, Gaussian SVMs, etc. In a distributed representation, many of the underlying factors are shared across classes or an exponentially large number of possible subsets of features tasks. Since representation learning aims to extract and isolate or hidden units can be activated in response to a given input. these factors, representations can be shared across classes and In a single-layer model, each feature is typically associated
Recommended publications
  • Automatic Feature Learning Using Recurrent Neural Networks
    Predicting purchasing intent: Automatic Feature Learning using Recurrent Neural Networks Humphrey Sheil Omer Rana Ronan Reilly Cardiff University Cardiff University Maynooth University Cardiff, Wales Cardiff, Wales Maynooth, Ireland [email protected] [email protected] [email protected] ABSTRACT influence three out of four major variables that affect profit. Inaddi- We present a neural network for predicting purchasing intent in an tion, merchants increasingly rely on (and pay advertising to) much Ecommerce setting. Our main contribution is to address the signifi- larger third-party portals (for example eBay, Google, Bing, Taobao, cant investment in feature engineering that is usually associated Amazon) to achieve their distribution, so any direct measures the with state-of-the-art methods such as Gradient Boosted Machines. merchant group can use to increase their profit is sorely needed. We use trainable vector spaces to model varied, semi-structured input data comprising categoricals, quantities and unique instances. McKinsey A.T. Kearney Affected by Multi-layer recurrent neural networks capture both session-local shopping intent and dataset-global event dependencies and relationships for user Price management 11.1% 8.2% Yes sessions of any length. An exploration of model design decisions Variable cost 7.8% 5.1% Yes including parameter sharing and skip connections further increase Sales volume 3.3% 3.0% Yes model accuracy. Results on benchmark datasets deliver classifica- Fixed cost 2.3% 2.0% No tion accuracy within 98% of state-of-the-art on one and exceed state-of-the-art on the second without the need for any domain / Table 1: Effect of improving different variables on operating dataset-specific feature engineering on both short and long event profit, from [22].
    [Show full text]
  • Self-Discriminative Learning for Unsupervised Document Embedding
    Self-Discriminative Learning for Unsupervised Document Embedding Hong-You Chen∗1, Chin-Hua Hu∗1, Leila Wehbe2, Shou-De Lin1 1Department of Computer Science and Information Engineering, National Taiwan University 2Machine Learning Department, Carnegie Mellon University fb03902128, [email protected], [email protected], [email protected] Abstract ingful a document embedding as they do not con- sider inter-document relationships. Unsupervised document representation learn- Traditional document representation models ing is an important task providing pre-trained such as Bag-of-words (BoW) and TF-IDF show features for NLP applications. Unlike most competitive performance in some tasks (Wang and previous work which learn the embedding based on self-prediction of the surface of text, Manning, 2012). However, these models treat we explicitly exploit the inter-document infor- words as flat tokens which may neglect other use- mation and directly model the relations of doc- ful information such as word order and semantic uments in embedding space with a discrimi- distance. This in turn can limit the models effec- native network and a novel objective. Exten- tiveness on more complex tasks that require deeper sive experiments on both small and large pub- level of understanding. Further, BoW models suf- lic datasets show the competitiveness of the fer from high dimensionality and sparsity. This is proposed method. In evaluations on standard document classification, our model has errors likely to prevent them from being used as input that are relatively 5 to 13% lower than state-of- features for downstream NLP tasks. the-art unsupervised embedding models. The Continuous vector representations for docu- reduction in error is even more pronounced in ments are being developed.
    [Show full text]
  • Exploring the Potential of Sparse Coding for Machine Learning
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 10-19-2020 Exploring the Potential of Sparse Coding for Machine Learning Sheng Yang Lundquist Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Applied Mathematics Commons, and the Computer Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Lundquist, Sheng Yang, "Exploring the Potential of Sparse Coding for Machine Learning" (2020). Dissertations and Theses. Paper 5612. https://doi.org/10.15760/etd.7484 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Exploring the Potential of Sparse Coding for Machine Learning by Sheng Y. Lundquist A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science Dissertation Committee: Melanie Mitchell, Chair Feng Liu Bart Massey Garrett Kenyon Bruno Jedynak Portland State University 2020 © 2020 Sheng Y. Lundquist Abstract While deep learning has proven to be successful for various tasks in the field of computer vision, there are several limitations of deep-learning models when com- pared to human performance. Specifically, human vision is largely robust to noise and distortions, whereas deep learning performance tends to be brittle to modifi- cations of test images, including being susceptible to adversarial examples. Addi- tionally, deep-learning methods typically require very large collections of training examples for good performance on a task, whereas humans can learn to perform the same task with a much smaller number of training examples.
    [Show full text]
  • Q-Learning in Continuous State and Action Spaces
    -Learning in Continuous Q State and Action Spaces Chris Gaskett, David Wettergreen, and Alexander Zelinsky Robotic Systems Laboratory Department of Systems Engineering Research School of Information Sciences and Engineering The Australian National University Canberra, ACT 0200 Australia [cg dsw alex]@syseng.anu.edu.au j j Abstract. -learning can be used to learn a control policy that max- imises a scalarQ reward through interaction with the environment. - learning is commonly applied to problems with discrete states and ac-Q tions. We describe a method suitable for control tasks which require con- tinuous actions, in response to continuous states. The system consists of a neural network coupled with a novel interpolator. Simulation results are presented for a non-holonomic control task. Advantage Learning, a variation of -learning, is shown enhance learning speed and reliability for this task.Q 1 Introduction Reinforcement learning systems learn by trial-and-error which actions are most valuable in which situations (states) [1]. Feedback is provided in the form of a scalar reward signal which may be delayed. The reward signal is defined in relation to the task to be achieved; reward is given when the system is successfully achieving the task. The value is updated incrementally with experience and is defined as a discounted sum of expected future reward. The learning systems choice of actions in response to states is called its policy. Reinforcement learning lies between the extremes of supervised learning, where the policy is taught by an expert, and unsupervised learning, where no feedback is given and the task is to find structure in data.
    [Show full text]
  • Text-To-Speech Synthesis
    Generative Model-Based Text-to-Speech Synthesis Heiga Zen (Google London) February rd, @MIT Outline Generative TTS Generative acoustic models for parametric TTS Hidden Markov models (HMMs) Neural networks Beyond parametric TTS Learned features WaveNet End-to-end Conclusion & future topics Outline Generative TTS Generative acoustic models for parametric TTS Hidden Markov models (HMMs) Neural networks Beyond parametric TTS Learned features WaveNet End-to-end Conclusion & future topics Text-to-speech as sequence-to-sequence mapping Automatic speech recognition (ASR) “Hello my name is Heiga Zen” ! Machine translation (MT) “Hello my name is Heiga Zen” “Ich heiße Heiga Zen” ! Text-to-speech synthesis (TTS) “Hello my name is Heiga Zen” ! Heiga Zen Generative Model-Based Text-to-Speech Synthesis February rd, of Speech production process text (concept) fundamental freq voiced/unvoiced char freq transfer frequency speech transfer characteristics magnitude start--end Sound source fundamental voiced: pulse frequency unvoiced: noise modulation of carrier wave by speech information air flow Heiga Zen Generative Model-Based Text-to-Speech Synthesis February rd, of Typical ow of TTS system TEXT Sentence segmentation Word segmentation Text normalization Text analysis Part-of-speech tagging Pronunciation Speech synthesis Prosody prediction discrete discrete Waveform generation ) NLP Frontend discrete continuous SYNTHESIZED ) SEECH Speech Backend Heiga Zen Generative Model-Based Text-to-Speech Synthesis February rd, of Rule-based, formant synthesis []
    [Show full text]
  • Reinforcement Learning Data Science Africa 2018 Abuja, Nigeria (12 Nov - 16 Nov 2018)
    Reinforcement Learning Data Science Africa 2018 Abuja, Nigeria (12 Nov - 16 Nov 2018) Chika Yinka-Banjo, PhD Ayorkor Korsah, PhD University of Lagos Ashesi University Nigeria Ghana Outline • Introduction to Machine learning • Reinforcement learning definitions • Example reinforcement learning problems • The Markov decision process • The optimal policy • Value function & Q-value function • Bellman Equation • Q-learning • Building a simple Q-learning agent (coding) • Recap • Where to go from here? Introduction to Machine learning • Artificial Intelligence (AI) is the study and design of Intelligent agents. • An Intelligent agent can perceive its environment through sensors and it can act on its environment through actuators. • E.g. Agent: Humanoid robot • Environment: Earth? • Sensors: Camera, tactile sensor etc. • Actuators: Motors, grippers etc. • Machine learning is a subfield of Artificial Intelligence Branches of AI Introduction to Machine learning • Machine learning techniques learn from data without being explicitly programmed to do so. • Machine learning models enable the agent to learn from its own experience by extracting useful information from feedback from its environment. • Three types of learning feedback: • Supervised learning • Unsupervised learning • Reinforcement learning Branches of Machine learning Supervised learning • Supervised learning: the machine learning model is trained on many labelled examples of input-output pairs. • Such that when presented with a novel input, the model can estimate accurately what the correct output should be. • Data(x, y): x is input data, y is label Supervised learning task in the form of classification • Goal: learn a function to map x -> y • Examples include; Classification, regression object detection, image captioning etc. Unsupervised learning • Unsupervised learning: here the model extract useful information from unlabeled and unstructured data.
    [Show full text]
  • Unsupervised Speech Representation Learning Using Wavenet Autoencoders Jan Chorowski, Ron J
    1 Unsupervised speech representation learning using WaveNet autoencoders Jan Chorowski, Ron J. Weiss, Samy Bengio, Aaron¨ van den Oord Abstract—We consider the task of unsupervised extraction speaker gender and identity, from phonetic content, properties of meaningful latent representations of speech by applying which are consistent with internal representations learned autoencoding neural networks to speech waveforms. The goal by speech recognizers [13], [14]. Such representations are is to learn a representation able to capture high level semantic content from the signal, e.g. phoneme identities, while being desired in several tasks, such as low resource automatic speech invariant to confounding low level details in the signal such as recognition (ASR), where only a small amount of labeled the underlying pitch contour or background noise. Since the training data is available. In such scenario, limited amounts learned representation is tuned to contain only phonetic content, of data may be sufficient to learn an acoustic model on the we resort to using a high capacity WaveNet decoder to infer representation discovered without supervision, but insufficient information discarded by the encoder from previous samples. Moreover, the behavior of autoencoder models depends on the to learn the acoustic model and a data representation in a fully kind of constraint that is applied to the latent representation. supervised manner [15], [16]. We compare three variants: a simple dimensionality reduction We focus on representations learned with autoencoders bottleneck, a Gaussian Variational Autoencoder (VAE), and a applied to raw waveforms and spectrogram features and discrete Vector Quantized VAE (VQ-VAE). We analyze the quality investigate the quality of learned representations on LibriSpeech of learned representations in terms of speaker independence, the ability to predict phonetic content, and the ability to accurately re- [17].
    [Show full text]
  • Sparse Feature Learning for Deep Belief Networks
    Sparse Feature Learning for Deep Belief Networks Marc'Aurelio Ranzato1 Y-Lan Boureau2,1 Yann LeCun1 1 Courant Institute of Mathematical Sciences, New York University 2 INRIA Rocquencourt {ranzato,ylan,[email protected]} Abstract Unsupervised learning algorithms aim to discover the structure hidden in the data, and to learn representations that are more suitable as input to a supervised machine than the raw input. Many unsupervised methods are based on reconstructing the input from the representation, while constraining the representation to have cer- tain desirable properties (e.g. low dimension, sparsity, etc). Others are based on approximating density by stochastically reconstructing the input from the repre- sentation. We describe a novel and efficient algorithm to learn sparse represen- tations, and compare it theoretically and experimentally with a similar machine trained probabilistically, namely a Restricted Boltzmann Machine. We propose a simple criterion to compare and select different unsupervised machines based on the trade-off between the reconstruction error and the information content of the representation. We demonstrate this method by extracting features from a dataset of handwritten numerals, and from a dataset of natural image patches. We show that by stacking multiple levels of such machines and by training sequentially, high-order dependencies between the input observed variables can be captured. 1 Introduction One of the main purposes of unsupervised learning is to produce good representations for data, that can be used for detection, recognition, prediction, or visualization. Good representations eliminate irrelevant variabilities of the input data, while preserving the information that is useful for the ul- timate task. One cause for the recent resurgence of interest in unsupervised learning is the ability to produce deep feature hierarchies by stacking unsupervised modules on top of each other, as pro- posed by Hinton et al.
    [Show full text]
  • A Review of Unsupervised Artificial Neural Networks with Applications
    A REVIEW OF UNSUPERVISED ARTIFICIAL NEURAL NETWORKS WITH APPLICATIONS Samson Damilola Fabiyi Department of Electronic and Electrical Engineering, University of Strathclyde 204 George Street, G1 1XW, Glasgow, United Kingdom [email protected] ABSTRACT designer) who uses his or her knowledge of the environment to Artificial Neural Networks (ANNs) are models formulated to train the network with labelled data sets [7]. Hence, the mimic the learning capability of human brains. Learning in artificial neural networks learn by receiving input and target ANNs can be categorized into supervised, reinforcement and pairs of several observations from the labelled data sets, unsupervised learning. Application of supervised ANNs is processing the input, comparing the output with the target, limited to when the supervisor’s knowledge of the environment computing the error between the output and target, and using is sufficient to supply the networks with labelled datasets. the error signal and the concept of backward propagation to Application of unsupervised ANNs becomes imperative in adjust the weights interconnecting the network’s neurons with situations where it is very difficult to get labelled datasets. This the aim of minimising the error and optimising performance [6, paper presents the various methods, and applications of 7]. Fine-tuning of the network continues until the set of weights unsupervised ANNs. In order to achieve this, several secondary that minimise the discrepancy between the output and the sources of information, including academic journals and desired output is obtained. Figure 1 shows the block diagram conference proceedings, were selected. Autoencoders, self- which conceptualizes supervised learning in ANNs.
    [Show full text]
  • A Hybrid Model Consisting of Supervised and Unsupervised Learning for Landslide Susceptibility Mapping
    remote sensing Article A Hybrid Model Consisting of Supervised and Unsupervised Learning for Landslide Susceptibility Mapping Zhu Liang 1, Changming Wang 1,* , Zhijie Duan 2, Hailiang Liu 1, Xiaoyang Liu 1 and Kaleem Ullah Jan Khan 1 1 College of Construction Engineering, Jilin University, Changchun 130012, China; [email protected] (Z.L.); [email protected] (H.L.); [email protected] (X.L.); [email protected] (K.U.J.K.) 2 State Key Laboratory of Hydroscience and Engineering Tsinghua University, Beijing 100084, China; [email protected] * Correspondence: [email protected]; Tel.: +86-135-0441-8751 Abstract: Landslides cause huge damage to social economy and human beings every year. Landslide susceptibility mapping (LSM) occupies an important position in land use and risk management. This study is to investigate a hybrid model which makes full use of the advantage of supervised learning model (SLM) and unsupervised learning model (ULM). Firstly, ten continuous variables were used to develop a ULM which consisted of factor analysis (FA) and k-means cluster for a preliminary landslide susceptibility map. Secondly, 351 landslides with “1” label were collected and the same number of non-landslide samples with “0” label were selected from the very low susceptibility area in the preliminary map, constituting a new priori condition for a SLM, and thirteen factors were used for the modeling of gradient boosting decision tree (GBDT) which represented for SLM. Finally, the performance of different models was verified using related indexes. The results showed that the performance of the pretreated GBDT model was improved with sensitivity, specificity, accuracy Citation: Liang, Z.; Wang, C.; Duan, and the area under the curve (AUC) values of 88.60%, 92.59%, 90.60% and 0.976, respectively.
    [Show full text]
  • 4 Perceptron Learning
    4 Perceptron Learning 4.1 Learning algorithms for neural networks In the two preceding chapters we discussed two closely related models, McCulloch–Pitts units and perceptrons, but the question of how to find the parameters adequate for a given task was left open. If two sets of points have to be separated linearly with a perceptron, adequate weights for the comput- ing unit must be found. The operators that we used in the preceding chapter, for example for edge detection, used hand customized weights. Now we would like to find those parameters automatically. The perceptron learning algorithm deals with this problem. A learning algorithm is an adaptive method by which a network of com- puting units self-organizes to implement the desired behavior. This is done in some learning algorithms by presenting some examples of the desired input- output mapping to the network. A correction step is executed iteratively until the network learns to produce the desired response. The learning algorithm is a closed loop of presentation of examples and of corrections to the network parameters, as shown in Figure 4.1. network test input-output compute the examples error fix network parameters Fig. 4.1. Learning process in a parametric system R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996 78 4 Perceptron Learning In some simple cases the weights for the computing units can be found through a sequential test of stochastically generated numerical combinations. However, such algorithms which look blindly for a solution do not qualify as “learning”. A learning algorithm must adapt the network parameters accord- ing to previous experience until a solution is found, if it exists.
    [Show full text]
  • Unsupervised Pre-Training of a Deep LSTM-Based Stacked Autoencoder for Multivariate Time Series Forecasting Problems Alaa Sagheer 1,2,3* & Mostafa Kotb2,3
    www.nature.com/scientificreports OPEN Unsupervised Pre-training of a Deep LSTM-based Stacked Autoencoder for Multivariate Time Series Forecasting Problems Alaa Sagheer 1,2,3* & Mostafa Kotb2,3 Currently, most real-world time series datasets are multivariate and are rich in dynamical information of the underlying system. Such datasets are attracting much attention; therefore, the need for accurate modelling of such high-dimensional datasets is increasing. Recently, the deep architecture of the recurrent neural network (RNN) and its variant long short-term memory (LSTM) have been proven to be more accurate than traditional statistical methods in modelling time series data. Despite the reported advantages of the deep LSTM model, its performance in modelling multivariate time series (MTS) data has not been satisfactory, particularly when attempting to process highly non-linear and long-interval MTS datasets. The reason is that the supervised learning approach initializes the neurons randomly in such recurrent networks, disabling the neurons that ultimately must properly learn the latent features of the correlated variables included in the MTS dataset. In this paper, we propose a pre-trained LSTM- based stacked autoencoder (LSTM-SAE) approach in an unsupervised learning fashion to replace the random weight initialization strategy adopted in deep LSTM recurrent networks. For evaluation purposes, two diferent case studies that include real-world datasets are investigated, where the performance of the proposed approach compares favourably with the deep LSTM approach. In addition, the proposed approach outperforms several reference models investigating the same case studies. Overall, the experimental results clearly show that the unsupervised pre-training approach improves the performance of deep LSTM and leads to better and faster convergence than other models.
    [Show full text]