Encyclopedia of Biophysics

Total Page:16

File Type:pdf, Size:1020Kb

Encyclopedia of Biophysics Encyclopedia of Biophysics Gordon C. K. Roberts Editor Encyclopedia of Biophysics With 1597 Figures and 131 Tables Editor Gordon C. K. Roberts Honorary Professor of Biochemistry Department of Biochemistry University of Leicester Leicester, UK ISBN 978-3-642-16711-9 ISBN 978-3-642-16712-6 (eBook) ISBN 978-3-642-16713-3 (print and electronic bundle) DOI 10.1007/978-3-642-16712-6 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2012949366 First Edition: Copyright European Biophysical Societies’ Association (EBSA). English edition published by Springer-Verlag Berlin Heidelberg 2013. All rights reserved. # European Biophysical Societies’ Association (EBSA) 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher nor EBSA can accept any legal responsibility for any errors or omissions that may be made. The publisher and EBSA make no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) To Hilary Preface Perhaps the first issue in introducing an Encyclopaedia of Biophysics is the question “What is Biophysics?”. The answer to this has varied considerably over time and between different ‘biophysicists’, particularly depending on whether they have come to biophysics from physics or physiology. For the present purposes, we have adopted the definition given by the Nobel Prize-winning physiologist A. V. Hill (Science 124, 1233, 1956): Biophysics is “the study of biological function, organization, and structure by physical and physicochemical ideas and methods.” – to which one would now add methods of mathematical analysis and computer modelling. An important feature of Hill’s definition is that it includes both physical methods and physical ideas. The astonishing developments in physical methods over the last hundred years have made them ubiquitous in biological laboratories – and indeed in hospitals. However, to quote Hill again “the employment of physical instruments in a biological laboratory does not make one a biophysicist - otherwise any user of a microscope, a balance ..... or a pH meter would drop automatically into that class.” Beyond simply the use of physical methods, it is the combination of both physical and biological ideas, intuitions and experience that makes a Biophysicist. The application of physical methods in biology has a very long history. For example, Antonie van Leeuwenhoek (1632 –1723) developed improved microscope lenses which allowed him to be the first to observe and describe single-celled organisms – the beginning of microbiology. The 18th century saw much speculation about ‘animal electricity’, culminating in the 1780s in Luigi Galvani’s famous experiments on the relation of electricity to muscle contraction. The middle of the 19th century saw what was probably the first explicitly biophysical programme of research, in which a group of physiologists (du Bois-Reymond, Ludwig, von Brucke,€ von Helmholtz) proclaimed their intention to ‘reduce physiology to physics and chemistry’. Of course the state of physics at the time was such as to make Biophysics a very premature venture, but this group did make important discoveries, notably in physiological optics and electrophysiology, using physical methods. An associate of this group, Adolf Fick – well-known for his law of diffusion – published what is probably the first biophysics text, Die Medizinische Physik (1856). In the 20th and 21st centuries there has been a dramatic flowering of Biophysics. The early part of 20th century saw the development of physical tools which are now familiar in biology – from X-ray diffraction (von Laue, Bragg) to the ultracentrifuge (Svedberg) and the electron microscope (Knoll & Ruska) – and this methodological development continues apace, notably with single-molecule techniques. The 1920s and 1930s saw the beginnings of physicochemical (Cohn, Edsall, Linderstrøm-Lang) and structural (Astbury, Bernal, Hodgkin, Perutz) studies of proteins. At the same vii viii Preface time, the first Departments or Institutes of Biophysics began to be established. In Germany these were commonly focussed on the study of radiation effects on organisms, while in the USA they concentrated largely on physiology. Many of these later expanded into other areas of Biophysics, and many more Departments of Biophysics – and Biophysical Societies – were established in the USA, Europe and Israel in the 1940s and 1950s. The power of the Biophysical approach was demonstrated unequivocally in the 1950s with the determination of the first three- dimensional structure of a protein, the structure of DNA and the Hodgkin-Huxley model of the action potential in nerves. Over the last 50 years, Biophysics has continued to develop at an astonishing pace. Biophysicists study life at every level, from atoms and molecules to cells, organisms, and environments. Molecular and Cellular Biophysics: This is perhaps the predom- inant strand of modern biophysics. It includes, for example, structural, functional and simulation studies of macromolecules and macromolecular assemblies of ever- increasing complexity and imaging of cells at ever-increasing resolution. Applied Biophysics: The applications of biophysical methods are perhaps most notable in the area of medical imaging - including X-ray CAT scans, magnetic resonance imaging, positron emission tomography and ultrasound scans. Therapeutic applications include radiation therapy of increasing sophistication and cardiac defibrillators. In addition to medical applications, there are now increasing and exciting applications in nanotechnology. Environmental Biophysics: For many years an important area of biophysics has been the study of the effects of ionising - and indeed non-ionising - radiation on organisms. Another key area of considerable current importance is the development of mathematical models of, e.g., heat and mass transfer at the level of organisms and ecosystems. This Encyclopedia is intended to provide a resource both for biophysicists inter- ested in approaches outside their immediate sub-discipline and for people coming to biophysics from either the physical or biological direction. The emphasis is very much on molecular and cellular biophysics, but some discussion of imaging and of nanotechnology is included. Just as there is overlap between chemistry and physics, so there is overlap between biophysics and biochemistry; our focus is of course on the techniques and uses of biophysics, but biochemical context is included where appropriate. The Encyclopedia consists of two kinds of entries, Systems and Techniques. • In the Systems sections, biophysical approaches to particular biological systems or problems – from protein structure to membranes, ion channels and receptors – are described. These sections, which have an emphasis on the integration of the different techniques, therefore provide an entry into Biophysics from the biolog- ical more than from the technique-oriented physics direction. • In the Techniques sections, each of the wide range of methods which fall under the heading of Biophysics are explained in detail, together with their strengths and the limitations of the information each provides. Experimental techniques covered range from diffraction, through a wide range of spectroscopic methods (X-ray, optical, EPR, NMR), kinetics, thermodynamics and hydrodynamics, to imaging (from electron microscopy to live cell imaging and MRI). The important and increasingly powerful computational, modelling and simulation approaches are also included. Each of the Sections includes concise introductions to the major concepts and methods, and outlines of more specific topics, in each case with links to a limited Preface ix number of carefully selected key reviews and/or papers in the scientific literature. Extensive cross-referencing (hyperlinks in the online version) between different articles allows access to related topics in a user-friendly manner. The online version of the Encyclopedia is intended to develop
Recommended publications
  • MOLECULAR BIOPHYSICS and BIOCHEMISTRY* by William C. Summers
    MOLECULAR BIOPHYSICS AND BIOCHEMISTRY* by William C. Summers (Professor of Therapeutic Radiology, Molecular Biophysics and Biochemistry, and History of Medicine, and Lecturer in History) MOLECULAR BIOPHYSICS During World War II many university physicists undertook new research programs aimed at wartime goals. Notable among these goals were the Manhattan Project to investigate and exploit nuclear energy for military purposes and the project, based at the MIT Radiation Laboratory, to develop radar as a military surveillance tool. Yale nuclear physicist Ernest Pollard, a student of Chadwick and Rutherford, was recruited for the Radiation Lab (known informally as the “Rad Lab”) by Ernest Lawrence. Prior to the war, Pollard had been carrying on a modest program of teaching and research in nuclear physics at Yale in the Department of Physics, then chaired by William Watson. In Pollard’s view, wartime physics research fundamentally changed the style and form of physics in America. Nuclear physics had become big science, requiring expensive equipment and teams of scientists, not an activity for a university professor with a small research group and major teaching obligations. In addition, having spent the war years working on microwave research, Pollard and other members of the Rad Lab had lost out on the excitement and new advances, many of them still classified, in nuclear physics coming out of the Manhattan Project. When Pollard and his small group of students, including Franklin Hutchinson, returned to Yale after the war, he considered two new directions for his research, cosmology and biology. In Pollard’s view, he was not temperamentally suited to be a cosmologist, and he thought it might be hard to start up in that field at Yale at that time.
    [Show full text]
  • Department of Biochemistry and Molecular Biophysics (09/25/21)
    Bulletin 2021-22 Department of Biochemistry and Molecular Biophysics (09/25/21) Department of Eric A. Galburt, PhD McDonnell Sciences Building, 2nd Floor Biochemistry and Phone: 314-362-5201 Biophysical studies of transcription initiation in eukaryotes and Molecular Biophysics mycobacterial tuberculosis Website: http://biochem.wustl.edu Roberto Galletto, PhD Research Electives McDonnell Sciences Building, 2nd Floor Phone: 314-362-4368 Biochemistry and Molecular Biophysics Mechanistic studies of DNA motor proteins Research Electives During the fourth year, opportunities exist for many varieties of Michael Greenberg, PhD advanced clinical or research experiences. McDonnell Sciences Building, 2nd Floor Phone: 314-362-8670 Wayne M. Barnes, PhD Our lab is focused on cytoskeletal molecular motors in health McDonnell Sciences Building, 2nd Floor and disease. We are currently studying the effects of mutations Phone: 314-362-3351 that cause heart disease. Inventing a new way to sequence DNA; PCR at one temp; RT- enabled Taq pol Kathleen Hall, PhD South Building, 2nd Floor Phone: 314-362-4196 Greg Bowman, PhD South Building, 2nd Floor We study RNA folding and RNA binding to proteins. Phone: 314-362-7433 The Bowman lab seeks to understand how protein dynamics Alex Holehouse, PhD gives rise to functional processes like allosteric communication McDonnell Sciences Building, 2nd Floor between distant sites and to exploit our insight into this shape- Phone: 314-273-8371 shifting to design new drugs and proteins. Understand how function is encoded into
    [Show full text]
  • Suggested Guidelines for Starting an Undergraduate Biophysics Program
    Suggested Guidelines for Starting an Undergraduate Biophysics Program A biophysics major explores the bridge between biology and physics, applying quantitative methods to solve problems in biology, medicine, and related fields. A biophysics program is interdisciplinary, drawing from coursework in physics, biology, chemistry, mathematics, and statistics. It combines a broad science curriculum with physical and mathematical rigor in prepa- ration for diverse careers. The need for STEM education is well documented. Studies including the influential 2007 National Academies report “Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future” have warned of potential weaknesses existing in the U.S. STEM education system, and how addressing it relates to national prosperity and power [1]. In the succeeding decade, positive efforts have been made over the entire educational spectrum. Still, there may be a need for over one million more college graduates in STEM fields above the current trajectory in the coming decade [2]. Documented trends indicate the need for interdisciplinary STEM options in particular. For example, the U.S. Department of Labor, Bureau of Labor Statistics projects, from 2014-2024, an increase in employment among interdisciplinary fields like bio- medical engineering (23%), environmental science (11%), and biochemistry/biophysics (8%), above the projected increase for fields like microbiology (4%), physics (7%), and chemistry (3%) [3]. As an interdisciplinary STEM option, a biophysics program brings together faculty from across disciplines, encouraging inter- actions, and potentially leading research and funding opportunities. Further, an undergraduate biophysics program may have a relatively easy implementation, as much of the core coursework (physics, chemistry, biology, and mathematics) is already offered at most institutions.
    [Show full text]
  • PHAS0103 – Molecular Biophysics (Term 1)
    PHAS0103 – Molecular Biophysics (Term 1) Prerequisites It is recommended but not mandatory that students have taken PHAS0006 (Thermal Physics). PHAS0024 (Statistical Physics of Matter) would be useful but is not essential. The required concepts in statistical mechanics will be (re-)introduced durinG the course. Aims of the Course The course will provide the students with insiGhts in the physical concepts of some of the most fascinatinG processes that have been discovered in the last decades: those underpinning the molecular machinery of the bioloGical cell. These concepts will be introduced and illustrated by a wide ranGe of phenomena and processes in the cell, includinG bio-molecular structure, DNA packinG in the Genome, mechanics of the cytoskeleton, molecular motors and neural siGnalinG. The aim of the course is therefore to provide students with: • KnowledGe and understandinG of physical concepts which are relevant for understandinG bioloGy at the micro- to nano-scale. • KnowledGe and understandinG of how these concepts are applied to describe various processes in the bioloGical cell. Learning Outcomes After completinG this half-unit course, students should be able to: • Give a General description of the bioloGical cell and its contents. • Explain the concepts of free enerGy, entropy and Boltzmann distribution and discuss protein structure, liGand-receptor bindinG and ATP hydrolysis in terms of these concepts. • Explain the statistical-mechanical two-state model, describe liGand-receptor bindinG and phosphorylation as two-state systems and Give examples of “cooperative” bindinG. • Describe how polymer structure can be viewed as the result of random walk, usinG the concept of persistence lenGth, and discuss DNA and sinGle-molecular mechanics in terms of this model.
    [Show full text]
  • Teaching Molecular Biophysics at the Graduate Level
    Teaching molecular biophysics at the graduate level Norma Allewell and Victor Bloomfield Department of Biochemistry, University of Minnesota, St. Paul, Minnesota 55108 USA INTRODUCTION Molecular biophysicists use the concepts and tools of were students, in the 1950's and 60's, the idea that one physical chemistry and molecular physics to define and might obtain atomic-level structures ofproteins and nu- analyze the structures, energetics, dynamics, and inter- cleic acids was little more than a dream. A few heroic actions of biological molecules. The recent explosion of scientists struggled for decades to get crystal structures of new knowledge, methods, and needs for biophysical in- a few proteins, succeeding at best in tracing the chain sight has made the development ofgraduate training pro- backbone and observing some ofthe basic structural fea- grams much more challenging than was previously the tures (helices and sheets) predicted by Pauling. The pre- case. 25 years ago, the question was "What to teach?" diction that we would someday accumulate structures at Today, the question is "How can everything that must the rate of one per week, at a level of resolution that be taught be packed into a reasonable amount oftime?" would enable determination of arrangement of catalytic At the same time, the recent influx of relatively large groups in an enzyme, and subtle rearrangements upon cadres of gifted, excited students; increasing resources, binding ofligands, seemed beyond belief. That we would and the gradual shakedown and consolidation of the be getting similar quality of information on small pro- field combine to make the task more rewarding and in teins and oligonucleotides in solution from NMR would some ways more straightforward.
    [Show full text]
  • Protein Structure Prediction and Design in a Biologically-Realistic Implicit Membrane
    bioRxiv preprint doi: https://doi.org/10.1101/630715; this version posted May 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Protein structure prediction and design in a biologically-realistic implicit membrane Rebecca F. Alforda, Patrick J. Flemingb,c, Karen G. Flemingb,c, and Jeffrey J. Graya,c aDepartment of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218; bT.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; cProgram in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218 This manuscript was compiled on May 8, 2019 ABSTRACT. Protein design is a powerful tool for elucidating mecha- MOS (16), and the protein-lipid interactions are scored with nisms of function and engineering new therapeutics and nanotech- a molecular mechanics energy function. All-atom models are nologies. While soluble protein design has advanced, membrane attractive because they can feature hundreds of lipid types to- protein design remains challenging due to difficulties in modeling ward approximating the composition of biological membranes the lipid bilayer. In this work, we developed an implicit approach (17). With current technology, detailed all-atom models can be that captures the anisotropic structure, shape of water-filled pores, used to explore membrane dynamics for hundreds of nanosec- and nanoscale dimensions of membranes with different lipid compo- onds (18): the time scale required to achieve equilibrated sitions. The model improves performance in computational bench- properties on a bilayer with approximately 250 lipids (19). marks against experimental targets including prediction of protein Coarse-grained representations such as MARTINI (20), ELBA orientations in the bilayer, ∆∆G calculations, native structure dis- (21), and SIRAH (22) reduce computation time by mapping crimination, and native sequence recovery.
    [Show full text]
  • Biochemistry 1
    Biochemistry 1 Caruthers, Marvin H. (https://experts.colorado.edu/display/ BIOCHEMISTRY fisid_103328/) Distinguished Professor; PhD, Northwestern University The Department of Biochemistry is internationally recognized for its research and education and offers a world-class interdisciplinary Cech, Thomas R. (https://experts.colorado.edu/display/fisid_103252/) research environment in a beautiful mountain setting. As part of a Distinguished Professor; PhD, University of California, Berkeley commitment to continuing this tradition of excellence, the department Falke, Joseph J. (https://experts.colorado.edu/display/fisid_101970/) provides a graduate program that integrates opportunities for cutting- Professor; PhD, California Institute of Technology edge creative research and study across a wide range of areas including: Goodrich, James (https://experts.colorado.edu/display/fisid_109239/) • Computational Biology Professor; PhD, Carnegie Mellon University • Nucleic acids • Gene expression Kasinath, Vignesh • Cell signaling Assistant Professor; PhD, University of Pennsylvania • Membranes Khanal, Akhil • Proteins and enzymology Instructor; PhD, University of Delaware • Molecular biophysics Kuchta, Robert (https://experts.colorado.edu/display/fisid_100844/) • Structural biology Professor; PhD, Brandeis University • Systems biology Kugel, Jennifer F. (https://experts.colorado.edu/display/fisid_109472/) Graduate students enjoy extensive scientific collaboration with Research Professor; PhD, University of Colorado Boulder biochemistry faculty, with other departments such as Molecular, Cellular and Developmental Biology, Chemistry, and Physics, and with research Liu, Xuedong (https://experts.colorado.edu/display/fisid_118458/) institutes and agencies such as the BioFrontiers Institute, Joint Institutes Professor; PhD, University of Wisconsin–Madison of Laboratory Astrophysics (JILA), the Renewable and Sustainable Energy Institute. Mchenry, Charles Professor Emeritus; PhD, University of California, Santa Barbara Course code for this program is BCHM. Palmer, Amy E.
    [Show full text]
  • Biophysics Graduate Student Handbook
    The Ohio State University Interdisciplinary Graduate Program in Biophysics Graduate Student Handbook 2016 Edition i 2016 OSU Interdisciplinary Biophysics Graduate Program Handbook Table of Contents I. Mission Statement .................................................................................................................................... 1 II. Introduction to the Program ................................................................................................................... 1 III. Information for Prospective and New Students ................................................................................... 2 A. General Admission Requirements ....................................................................................................................... 2 B. Curriculum and timeline ...................................................................................................................................... 3 IV. Coursework Requirements for 1st and 2nd Year Students ................................................................ 3 A. Curriculum Planning ............................................................................................................................................ 3 B. First Year Course Load ......................................................................................................................................... 4 C. Second Year Course Load ...................................................................................................................................
    [Show full text]
  • Biochemistry & Molecular Biophysics GRADUATE STUDENT
    Graduate Option in Biochemistry & Molecular Biophysics Divisions of Biology and Chemistry GRADUATE STUDENT INFORMATION 2019-20 INTRODUCTION This short handbook is a compilation of information about various aspects of the graduate program for the Ph.D. in Biochemistry & Molecular Biophysics (BMB) at Caltech, providing more detail than the Institute Catalog. It is intended as a reference source that can be used whenever questions arise about policies and practices relevant to the program. Please note, though, that the official policies and requirements are as specified in the Catalog. Should you have any questions, check with the BMB administration. ADMINISTRATION OF THE GRADUATE PROGRAM The following persons share responsibility for administering the BMB Option: Executive Officer for the BMB Option: Shu-ou Shan Responsible for the general oversight of our program. BMB Option Representative: Bil Clemons The Dean of Graduate Studies considers the BMB Option Representative responsible for the BMB option, and who is therefore authorized to sign petitions, candidacy forms, etc. The Option Representative is also responsible for planning the financial support arrangements for each student, and is the person to seek out if you have unusual problems that are not resolved through discussions with your advisor, advisory committee, or other colleagues. BMB Admissions Committee: André Hoelz, Bil Clemons, Mitch Guttman, Rebecca Voorhees, Rob Phillips, and Shu-ou Shan Responsible for organizing student recruitment and coordinating the admission processes. BMB Graduate Option Manager: Courtney Cechini Handles the administrative aspects of the BMB Option including: payroll, admissions, publications, website maintenance, and records for BMB graduate students. Program Director NIH training grant in Cellular and Molecular Biology: Paul Sternberg Responsible for monitoring the progress of graduates who are receiving support from the NIH training grant and ensures graduates are making normal progress towards completion of the Ph.D.
    [Show full text]
  • 16 Super Brain
    Engineering and Physical Sciences Research Council SPECIAL EDITION: SCIENCE FOR 16 A CONNECTED NATION Super brain Professor Steve Furber – building a computer to think like a human Greener trucking Cooler ice cream Safer water Smarter energy networks Faster supercomputers CONTENTS 4-5: News Recent EPSRC research and training investments 12 6-9: What we’ve learned Snapshots of EPSRC research and training from the world of engineering and physical sciences 10-15: People Movers, shakers and science in action – from slower melting ice cream, to pioneering technology to 34 help in the global fight against water pollution and water-borne parasites 16-23: Science for a connected nation EPSRC’s portfolio of investments spans the UK economy and society. Chief Executive Professor 26 Philip Nelson describes how it is more than the sum of its parts 24-25: Joined-up thinking New technologies for a smarter, safer, more connected world 26-27: Quantum ballet Doctoral student Merritt Moore describes her dual careers – quantum physics and professional ballet 28-33: Super brain Professor Steve Furber’s remarkable career reaches new heights 34-35: Driving ambition New research cuts road freight emissions and fuel bills by seven per cent 36-39: Only connect Professors Goran Strbac and Tim Green rewrite the 28 energy grid rulebook 40-41: Connected for success Young entrepreneurs’ brilliant businesses span the digital economy 42-43: Swinging wings Bat flight 44 inspires a new generation of micro air vehicles 44-49: EPSRC Science Photo Editor: Mark Mallett ([email protected]) EPSRC works alongside other Research Councils which have responsibility in other research areas.
    [Show full text]
  • Methods in Molecular Biophysics: Structure, Dynamics, Function
    Methods in Molecular Biophysics: Structure, Dynamics, Function BME, Tuesdays, 5PM Instructors: David Case & Babis Kalodimos Methods in Molecular Biophysics: Structure, Dynamics, Function Date Subject Chapter Jan 20 Introduction to Biophysics and macromolecular structure A Jan 27 Thermodynamics, calorimetry and surface plasmon resonance C Feb 3 Hydrodynamics: diffusion, electrophoresis, centrifugation, D Feb 10 fluorescence anisotropy and dynamic light scattering Feb 17 Midterm exam (1/3 of final grade) Introduction to NMR: spin Hamiltonians, chemical shielding, spin-spin Feb 24 J1 coupling, dipolar interactions Mar 3 Experimental NMR: multi-dimensional spectroscopy & pulse sequences J2 Mar 10 Protein NMR: assignment strategies, protein structure determination J2 Mar 17 Spring break Mar 24 NMR studies of dynamics: spin relaxation, chemical exchange and H/D J3 Mar 31 IR and Raman spectroscopy E Apr 7 Molecular dynamics simulations. Theory and practice of force-field based I Apr 14 studies of macromolecules Apr 21 Optimal microscopy: light, fluorescence and atomic force microscopy, F Apr 28 single molecule studies May 12? Final exam (1/3 of final grade) Biophysics: An integrated approach Why? The ideal biophysical method would have the capability of observing atomic level structures and dynamics of biological molecules in their physiological environment, i.e. in vivo would also permit visualization of the structures that form throughout the course of conformational changes or chemical reactions, regardless of the time scale involved From in vivo
    [Show full text]
  • Biochemistry & Molecular Biophysics (BMB)
    Biochemistry & Molecular Biophysics (BMB) 1 BMB 518 Protein Conformation Diseases BIOCHEMISTRY & Protein misfolding and aggregation has been associated with over 40 human diseases, including Alzheimer's disease, Parkinsons disease, MOLECULAR BIOPHYSICS amytrophic lateral sclerosis, prion diseases, alpha (1)-antitrypsin deficiency, inclusion body myopathy, and systemic amyloidoses. This (BMB) course will include lectures, directed readings and student presentations to cover seminal and current papers on the cell biology of protein BMB 508 Macromolecular Biophysics: Principles and Methods conformational diseases including topics such as protein folding and This course introduces students to the physical and chemical properties misfolding, protein degradation pathways, effects of protein aggregation of biological macromolecules, including proteins and nucleic acids. on cell function, model systems to study protein aggregation and novel It surveys the biophysical techniques used to study the structure approaches to prevent protein aggregation. Target audience is primarily and thermodynamics of macromolecules. It is intended to be a first 1st year CAMB, other BGS graduate students, or students interested course for graduate students with an undergraduate background in in acquiring a cell biological perspective on the topic. MD/PhDs and either physics, chemistry or biology,and no necessary background Postdoc are welcome. MS and undergraduate students must obtain in biochemistry.Prerequisite: Senior undergraduate or graduate level permission from course directors. Class size is limited to 14 students. biochemistry of biophysics. Taught by: Yair Argon Taught by: Sharp Course usually offered in fall term Course usually offered in fall term Also Offered As: CAMB 615, NGG 615 Activity: Lecture Prerequisite: BIOM 600 1.0 Course Unit Activity: Lecture 1.0 Course Unit BMB 509 Structural and Mechanistic Biochemistry The course will focus on the key biochemical task areas of living cells.
    [Show full text]