DNA Damage, Repair, and Diseases

Total Page:16

File Type:pdf, Size:1020Kb

DNA Damage, Repair, and Diseases Journal of Biomedicine and Biotechnology DNA Damage, Repair, and Diseases Guest Editors: Lisa Wiesmüller, James M. Ford, and Robert H. Schiestl Journal of Biomedicine and Biotechnology DNA Damage, Repair, and Diseases Journal of Biomedicine and Biotechnology DNA Damage, Repair, and Diseases Guest Editors: Lisa Wiesmüller, James M. Ford, and Robert H. Schiestl Copyright © 2002 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in volume 2002 of “Journal of Biomedicine and Biotechnology.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Founding Managing Editor Abdelali Haoudi, Eastern Virginia Medical School, USA Editors-In-Chief H. N. Ananthaswamy, USA Marc Fellous, France Peter M. Gresshoff, Australia Advisory Board Virander Singh Chauhan, India Francis Galibert, France Pierre Tambourin, France Jean Dausset, France Jean-Claude Kaplan, France Michel Veron, France Koussay Dellagi, Tunisia Mohamed Saghi, Morocco Ahmed Farouki, Morocco Naem Shahrour, USA Associate Editors Francois Amalric, France Vladimir Larionov, USA Annie J. Sasco, France Richard Bartlett, USA David Lightfoot, USA Daniel Scherman, France Shyam K. Dube, USA Khalid Meksem, USA O. John Semmes, USA Pierre Gadal, France Allal Ouhtit, USA Pierre-Marie Sinet, France Denise M. Harmening, USA Steffen B. Petersen, Denmark Hongbin Zhang, USA Dominique Job, France Etienne Roux, France Editorial Board Kamran Abbassi, UK William N. Fishbein, USA James M. Mason, USA Khalid A. Alali, Qatar Francis Galibert, France Majid Mehtali, France Khaled Amiri, UAE Claude Gaillardin, France Emile Miginiac, France Mahmoud M. Amr, Egypt William Gelbart, USA John V. Moran, USA Claude Bagnis, France Mauro Giacca, Italy Ali Ouaissi, France Claude Balny, France Andrea J. Gonzales, USA Pamela M. Pollock, Australia Raj Bathnagar, India Marie T. Greally, Bahrain Kanury V. S. Rao, India Lynn Bird, USA Jau-Shyong Hong, USA Laure Sabatier, France Marìa A. Blasco, Spain James Huff, USA Abdelaziz Sefiani, Morocco Dominique Bonneau, France Mohamed Iqbal, Saudi Arabia James L. Sherley, USA Mohamed Boutjdir, USA Shahid Jameel, India Noel W. Solomons, Guatemala Douglas Bristol, USA Celina Janion, Poland Thomas R. Spitzer, USA Georges Calothy, France Jean-Claude Jardillier, France Michel Tibayrenc, France Ronald E. Cannon, USA Gary M. Kasof, USA M’hamed Tijane, Morocco Anne Cambon-Thomsen, France Michel Lagarde, France Christian Trepo, France Louis Dallaire, Canada Pierre Legrain, France Michel Veron, France Martine Defais, France Nan Liu, USA Jean-Michel H. Vos, USA Luiz De Marco, Brazil Yan Luo, USA LisaWiesmüller, Germany John W. Drake, USA John Macgregor, France Leila Zahed, Lebanon Hatem El Shanti, Jordan Regis Mache, France Steven L. Zeichner, USA Thomas Fanning, USA Mohamed Marrakchi, Tunisia Contents Editorial, Lisa Wiesmüller, James M. Ford, and Robert H. Schiestl Volume 2 (2002), Issue 2, Pages 45-45 Werner Syndrome, Lishan Chen and Junko Oshima Volume 2 (2002), Issue 2, Pages 46-54 Nucleotide Excision Repair, Genome Stability, and Human Disease: New Insight from Model Systems, David J. Garfinkel and Adam M. Bailis Volume 2 (2002), Issue 2, Pages 55-60 Ku and the Stability of the Genome, Anna A. Friedl Volume 2 (2002), Issue 2, Pages 61-65 Answering the Call: Coping with DNA Damage at the Most Inopportune Time, David J. Crowley and Justin Courcelle Volume 2 (2002), Issue 2, Pages 66-74 Homologous Recombination and Its Role in Carcinogenesis, Alexander J. R. Bishop and Robert H. Schiestl Volume 2 (2002), Issue 2, Pages 75-85 Recombinational DNA Repair in Cancer and Normal Cells: The Challenge of Functional Analysis, Henning Willers, Fen Xia, and Simon N. Powell Volume 2 (2002), Issue 2, Pages 86-93 Regulation of Repair by the 26S Proteasome, K. Sweder and K. Madura Volume 2 (2002), Issue 2, Pages 94-105 XRCC2 is Required for the Formation of Rad51 Foci Induced by Ionizing Radiation and DNA Cross-Linking Agent Mitomycin C, Nan Liu Volume 2 (2002), Issue 2, Pages 106-113 Journal of Biomedicine and Biotechnology • 2:2 (2002) 45–45 • PII. S1110724302001985 • http://jbb.hindawi.com EDITORIAL DNA Damage, Repair, and Diseases Lisa Wiesmuller,¨ 1 James M. Ford,2 and Robert H. Schiestl3 1University of Hamburg, Germany 2Stanford University School of Medicine , California, USA 3UCLA Schools of Medicine and Public Health, California, USA DNA is the essential carrier of genetic information in repair include many cancer susceptibility syndromes, such as all living cells. How is the huge amount of DNA in organ- Xeroderma pigmentosum, Ataxia-telangectasia, Bloom’s and isms from bacteria to humans maintained and protected Werner’s syndromes, Hereditary Non-Polyposis Colon Can- from the ravages of noxious agents in the environment? The cer, Li-Fraumeni-syndrome, and breast/ovarian cancer syn- chemical stability of the DNA molecule is not unusually drome. great, DNA undergoes several types of spontaneous modifi- The most ubiquitous and versatile modes of DNA repair cations, and it can also react with many physical and chemi- are those in which the damaged or incorrect part of a DNA cal agents, of which some are endogenous products of the cel- strand is excised and then the resulting gap is filled by re- lular metabolism (eg, reactive oxygen species) while others, pair replication using the complementary strand as template. including ionizing radiation and ultraviolet light, are threats The excision repair pathway that deals with UV-irradiation from the external environment. The resulting alterations of induced pyrimidine dimers and a large variety of cancer- DNA structure are generally incompatible with its essential causing chemical adducts to DNA is known as nucleotide role in preservation and transmission of genetic information. excision repair (NER). Several very interesting new develop- Damage to DNA can cause genetic alterations, and if genes ments in this field will be reviewed. These include DNA dam- that control cell growth are involved, these mutations can age inducible responses in both prokaryotic and eukaryotic lead to the development of cancer. Of course, DNA damage organisms, including both inducible DNA repair genes and may also result in cell death which can have serious conse- genes involved in the proteasomal/ubiquitination pathway quences for the organism of which the cell is a part; for ex- and the detection of such inducible responses using whole- ample, loss of irreplaceable neurons in the brain. Accumula- genome transcriptional profiling techniques. tion of damaged DNA has also been considered to contribute Recombination represents the irreplaceable repair mech- to some of the features of aging. It is not surprising that a anism under circumstances when DSBs appear as a result of complex set of cellular surveillance and repair mechanisms metabolic processes or genotoxic treatment. In mammalian has evolved to reverse the potentially deleterious damage that cells about half of all DSBs are repaired by homologous re- would otherwise destroy the precious blueprint for life. Some combination, half by nonhomologous end joining. The lack of these DNA repair systems are so important that life cannot of central enzyme functions can cause lethal phenotypes of be sustained without them. An increasing number of human knockout mice or result in extreme sensitivities towards ion- hereditary diseases that are characterized by severe develop- izing radiation. Moreover, correct repair of DSBs is central to mental problems and/or a predisposition to cancer have been the maintenance of genomic integrity in mammalian cells, found to be linked to deficiencies in DNA repair. since errors give rise to translocations, deletions, duplica- The many types of DNA repair include excision repair tions, expansions, and transposon integration, which accel- mechanisms targeted to the removal of bulky DNA adducts erate the multistep process of tumor progression. Therefore, and UV-induced photoproducts, base-pair alterations and recombination processes are subject to surveillance by a hier- purine loss, and DNA mismatches, and single- and double- archy of genome stabilizing factors, such as p53 and the PI3 strand DNA breaks. In addition, DNA replication, recombi- kinase ATM. nation and transcription are all involved in DNA repair path- ways. A complex interplay between intrinsic hereditary fac- Lisa Wiesmuller¨ tors and persisting DNA damage determines the susceptibil- James M. Ford ity of humans to cancer. Inherited human diseases of DNA Robert H. Schiestl © 2002 Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology • 2:2 (2002) 46–54 • PII. S1110724302201011 • http://jbb.hindawi.com REVIEW ARTICLE Werner Syndrome Lishan Chen and Junko Oshima∗ Department of Pathology, Box 357470, HSB K-543, University of Washington, Seattle, WA 98195-7470, USA Received 19 December 2001; accepted 4 January 2002 Werner syndrome is a premature aging disease caused by the mutation in the WRN gene. The cloning and characterization of the WRN gene and its product allows investigators to study the disease and the human aging process at molecular level. This review summarizes the recent progresses on various aspects of the WRN research including functional analysis of the protein, interactive cloning, complexes formation, mouse models, and SNPs (single nucleotide polymorphisms). These in depth investigations have greatly advanced
Recommended publications
  • Characterization of the Interplay Between DNA Repair and CRISPR/Cas9-Induced DNA Lesions
    Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions Anne Bothmer, Tanushree Phadke, Luis Barrera, Carrie Margulies, Hari Jayaram, Vic Myer, Cecilia Cotta-Ramusino Editas Medicine • 11 Hurley Street • Cambridge, MA 02141 Background Mechanism of generation of insertions differs between D10A and N863A Conclusions 1. WT-Cas9 and Cas9 paired nickases led to the activation of double-strand The CRISPR/Cas9 system provides a break (DSB) response pathways at similar rates and the presence and versatile toolkit for genome engineering that polarity of the overhang structure is a determinant of DSB-repair pathway can introduce a variety of DNA lesions at choice. specific genomic locations. However, a better understanding of the exact nature of these lesions and the repair pathways engaged as a consequence thereof is critical to realizing the basic research and therapeutic potential of this technology.. Here we characterize the DNA structures arising from the use of Cas9 variants directed to the endogenous human beta-globin locus. The different lesions arising from each Cas9 variant resulted in Blunt ends generated by Wt 5’ protruding ends generated 3’ protruding ends generated by the engagement of different endogenous Microhomology Microhomology Cas9 are repaired mostly by by D10A paired nickases are N863A pair nickases are canonical Non Homologous predominantly repaired by predominantly repaired by repair pathways. End Joining (c-NHEJ) Homology Directed Repair alternative Non Homologous (HDR) End Joining (a-NHEJ) Schematic of Cas9 variants Different donors engage different repair pathways 2. The nature of the donor is an important determinant in repair pathway engagement regardless of the lesion generated: ssDNA Donor engages Single dsDNA Donors engage Stranded Template Repair Homologous Recombination (Homologous Recombination- repair Gene Conversion Gene Gene Correction Gene Gene Conversion Gene independent) Neg.
    [Show full text]
  • SETD2 Haploinsufficiency for Microtubule Methylation Is an Early Driver of Genomic Instability in Renal Cell Carcinoma
    Published OnlineFirst May 3, 2018; DOI: 10.1158/0008-5472.CAN-17-3460 Cancer Genome and Epigenome Research SETD2 Haploinsufficiency for Microtubule Methylation Is an Early Driver of Genomic Instability in Renal Cell Carcinoma Yun-Chen Chiang1, In-Young Park2, Esteban A. Terzo3, Durga Nand Tripathi2, Frank M. Mason3, Catherine C. Fahey1, Menuka Karki2,4, Charles B. Shuster4, Bo-Hwa Sohn2, Pratim Chowdhury2, Reid T. Powell5, Ryoma Ohi6, Yihsuan S. Tsai1, Aguirre A. de Cubas3, Abid Khan1,7, Ian J. Davis1, Brian D. Strahl1,7, Joel S. Parker1, Ruhee Dere2, Cheryl L. Walker2, and W. Kimryn Rathmell3 Abstract Loss of the short arm of chromosome 3 (3p) occurs early in human kidney cells, rescue with a pathogenic SETD2 mutant >95% of clear cell renal cell carcinoma (ccRCC). Nearly ubiqui- deficient for microtubule (aTubK40me3), but not histone tous 3p loss in ccRCC suggests haploinsufficiency for 3p tumor (H3K36me3) methylation, replicated this phenotype. Genomic suppressors as early drivers of tumorigenesis. We previously instability (micronuclei) was also a hallmark of patient-derived reported methyltransferase SETD2, which trimethylates H3 his- cells from ccRCC. These data show that the SETD2 tumor sup- tones on lysine 36 (H3K36me3) and is located in the 3p deletion, pressor displays a haploinsufficiency phenotype disproportion- to also trimethylate microtubules on lysine 40 (aTubK40me3) ately impacting microtubule methylation and serves as an early during mitosis, with aTubK40me3 required for genomic sta- driver of genomic instability. bility. We now show that monoallelic, Setd2-deficient cells retain- Significance: Loss of a single allele of a chromatin modifier ing H3K36me3, but not aTubK40me3, exhibit a dramatic plays a role in promoting oncogenesis, underscoring the grow- increase in mitotic defects and micronuclei count, with increased ing relevance of tumor suppressor haploinsufficiency in tumor- viability compared with biallelic loss.
    [Show full text]
  • Large XPF-Dependent Deletions Following Misrepair of a DNA Double Strand Break Are Prevented by the RNA:DNA Helicase Senataxin
    www.nature.com/scientificreports OPEN Large XPF-dependent deletions following misrepair of a DNA double strand break are prevented Received: 26 October 2017 Accepted: 9 February 2018 by the RNA:DNA helicase Published: xx xx xxxx Senataxin Julien Brustel1, Zuzanna Kozik1, Natalia Gromak2, Velibor Savic3,4 & Steve M. M. Sweet1,5 Deletions and chromosome re-arrangements are common features of cancer cells. We have established a new two-component system reporting on epigenetic silencing or deletion of an actively transcribed gene adjacent to a double-strand break (DSB). Unexpectedly, we fnd that a targeted DSB results in a minority (<10%) misrepair event of kilobase deletions encompassing the DSB site and transcribed gene. Deletions are reduced upon RNaseH1 over-expression and increased after knockdown of the DNA:RNA helicase Senataxin, implicating a role for DNA:RNA hybrids. We further demonstrate that the majority of these large deletions are dependent on the 3′ fap endonuclease XPF. DNA:RNA hybrids were detected by DNA:RNA immunoprecipitation in our system after DSB generation. These hybrids were reduced by RNaseH1 over-expression and increased by Senataxin knock-down, consistent with a role in deletions. Overall, these data are consistent with DNA:RNA hybrid generation at the site of a DSB, mis-processing of which results in genome instability in the form of large deletions. DNA is the target of numerous genotoxic attacks that result in diferent types of damage. DNA double-strand breaks (DSBs) occur at low frequency, compared with single-strand breaks and other forms of DNA damage1, however DSBs pose the risk of translocations and deletions and their repair is therefore essential to cell integrity.
    [Show full text]
  • Possible Hazards of Cell Phones and Towers, Wi-Fi, Smart Meters, and Wireless Computers, Printers, Laptops, Mice, Keyboards, and Routers Book Four
    Possible Hazards of Cell Phones and Towers, Wi-Fi, Smart Meters, and Wireless Computers, Printers, Laptops, Mice, Keyboards, and Routers Book Four Since 2013 I have been emailed several dozen reports of possible medical and other hazards from intense electromagnetic radiation from cell phones and towers, Wi-Fi, smart meters, and wireless computer accessories including wireless computers, keyboards, mice, routers, printers, and laptops. I have previously compiled a total of 600 pages of these reports in chronological order in three separate books with the same title as this “Book Four”. All four ‘EMF Hazards’ books are linked at www.commutefaster.com/vesperman.html and www.padrak.com/vesperman. Approximately 35 authoritative wireless radiation hazards-related reports are also linked at these two websites. This report begins with “Disclaimers”, a table of contents, “Items of Outstanding Interest”, and a new supplementary set of potentially useful “Recommendations for Actions”. Gary Vesperman 588 Lake Huron Lane Boulder City, NV 89005-1018 702-435-7947 [email protected] Hazards of Cell Phones, Wireless Devices, Etc – Book Four 1 December 14, 2016 Disclaimers Inclusion of any invention or technology in this “Possible Hazards of Cell Phones and Towers, Wi-Fi, Smart Meters, and Wireless Computers, Printers, Laptops, Mice, Keyboards, and Routers – Book Four” does not in any way imply its suitability for investments of any kind. Nor does inclusion of any invention or technology described or mentioned herein conclusively implies safety or hazards. Gary C. Vesperman, Boulder City, Nevada and the numerous contributors to this compilation do not warrant that any of the information presented is accurate, complete, and not misleading.
    [Show full text]
  • Functional Connection Between Rad51 and PML in Homology-Directed Repair
    Functional Connection between Rad51 and PML in Homology-Directed Repair Sergei Boichuk1, Liang Hu1¤a, Kathleen Makielski1, Pier Paolo Pandolfi2, Ole V. Gjoerup1*¤b 1 Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America, 2 Department of Medicine, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, Massachusetts, United States of America Abstract The promyelocytic leukemia protein (PML) is a tumor suppressor critical for formation of nuclear bodies (NBs) performing important functions in transcription, apoptosis, DNA repair and antiviral responses. Earlier studies demonstrated that simian virus 40 (SV40) initiates replication near PML NBs. Here we show that PML knockdown inhibits viral replication in vivo, thus indicating a positive role of PML early in infection. SV40 large T antigen (LT) induces DNA damage and, consequently, nuclear foci of the key homologous recombination repair protein Rad51 that colocalize with PML. PML depletion abrogates LT-induced Rad51 foci. LT may target PML NBs to gain access to DNA repair factors like Rad51 that are required for viral replication. We have used the SV40 model to gain insight to DNA repair events involving PML. Strikingly, even in normal cells devoid of viral oncoproteins, PML is found to be instrumental for foci of Rad51, Mre11 and BRCA1, as well as homology- directed repair after double-strand break (DSB) induction. Following LT expression or external DNA damage, PML associates with Rad51. PML depletion also causes a loss of RPA foci following c-irradiation, suggesting that PML is required for processing of DSBs. Immunofluorescent detection of incorporated BrdU without prior denaturation indicates a failure to generate ssDNA foci in PML knockdown cells upon c-irradiation.
    [Show full text]
  • Functions of BRCA1, 53BP1 and SUMO Isoforms in DNA Double-Strand Break Repair in Mammalian Cells
    Functions of BRCA1, 53BP1 and SUMO isoforms in DNA double-strand break repair in mammalian cells DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yiheng Hu Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2014 Dissertation Committee: Dr. Jeffrey Parvin, Advisor Dr. Altaf Wani Dr. Qianben Wang Dr. Robin Wharton Copyright by Yiheng Hu 2014 Abstract In this dissertation study, we have investigated the protein functions in DNA double-strand break (DSB) repair of three important factors, BRCA1, 53BP1 and SUMO isoforms, at levels of biochemical activity, protein dynamics and chromosomal DNA repair. Our work reveals novel mechanisms of these proteins functioning in response to DSB damage, hence providing insights of where and how they are actively involved in each subpathway of DSB repair. In the first part of our work, we studied BRCA1, a tumor suppressor important for the maintenance of genomic stability including centrosome control and DSB repair, and found that a putative enzymatic mutant of BRCA1— BRCA1(I26A), which had been thought to disrupt its E3 ligase activity, was still functional in the cellular processes of regulating centrosome number and homologous recombination-dependent DSB repair, thereby raising a question of whether I26A mutant is indeed inert. Reevaluation of the ubiquitination activity of this BRCA1(I26A) mutant revealed that it is an active E3 ubiquitin ligase when associated with the appropriate E2 factor. We then think that conclusions about the dispensability of the BRCA1-dependent enzymatic activity in various cellular processes should be reconsidered.
    [Show full text]
  • Comparative Analysis of NHEJ and HDR Repair Pathways for Genomic Editing Using CRISPR/Cas9 Technology in ES Cells
    Comparative analysis of NHEJ and HDR repair pathways for genomic editing using CRISPR/Cas9 technology in ES cells Astrid Jensen1, Jeroen DeGroot1, Uma Saha2, Steve Festin2, Anne-Marie Zuurmond1 1Charles River Leiden, Darwinweg 24, 2333 CR Leiden, Netherlands; 2Charles River Wilmington, 251 Ballardvale Street, Wilmington MA 01887, USA 1 Introduction 2 Double-strand break repair pathways Cas9 Cut A * The error-prone non-homology end joining (NHEJ) repair pathway is often the pathway of choice when utilizing 5’ Insertion site 3’ Cut CRISPR/Cas9 to generate a genetic knockout. Despite the high efficiency of creating indel mutations, the pathway has its * drawbacks. Deletions are often in-frame, which might result in semi-functional proteins. Indels can easily span from 1-200 gRNA bp, without any control on their exact length or location (upstream/downstream) which can make indel identification and 5’ validation an expensive and time consuming task. Double 5’ stranded break (DSB) B C The homology driven repair (HDR) pathway allows for precise editing of the genome by including a repair template in the NHEJ HDR 5’ process. Using a single-stranded template ensures that this template is not randomly inserted elsewhere in the genome or 5’ SNP 5’ 5’ is targeted by the Cas9 enzyme. The introduced sequence also gives the opportunity for fast and efficient PCR validation of * edited clones prior to sequencing. Here we performed a comparative analysis of the two repair mechanisms to investigate Indel SNP whether the HDR pathway is a good alternative to the NHEJ pathway for high frequency generation of genetic knockouts in 5’ 5’ 5’ * 5’ mouse C57BL/6NCrl embryonic stem cells (ESC), but with the concomitant advantage of precise genome editing.
    [Show full text]
  • Recruitment of Mismatch Repair Proteins to the Site of DNA Damage in Human Cells
    3146 Research Article Recruitment of mismatch repair proteins to the site of DNA damage in human cells Zehui Hong, Jie Jiang, Kazunari Hashiguchi, Mikiko Hoshi, Li Lan and Akira Yasui* Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi 4-1, Aobaku, Sendai 980-8575, Japan *Author for correspondence (e-mail: [email protected]) Accepted 8 July 2008 Journal of Cell Science 121, 3146-3154 Published by The Company of Biologists 2008 doi:10.1242/jcs.026393 Summary Mismatch repair (MMR) proteins contribute to genome stability the PCNA-binding domain of MSH6. MSH2 is recruited to the by excising DNA mismatches introduced by DNA polymerase. DNA damage site through interactions with either MSH3 or Although MMR proteins are also known to influence cellular MSH6, and is required for recruitment of MLH1 to the damage responses to DNA damage, how MMR proteins respond to DNA site. We found, furthermore, that MutSβ is also recruited to damage within the cell remains unknown. Here, we show that UV-irradiated sites in nucleotide-excision-repair- and PCNA- MMR proteins are recruited immediately to the sites of various dependent manners. Thus, MMR and its proteins function not types of DNA damage in human cells. MMR proteins are only in replication but also in DNA repair. recruited to single-strand breaks in a poly(ADP-ribose)- dependent manner as well as to double-strand breaks. Using Supplementary material available online at mutant cells, RNA interference and expression of fluorescence- http://jcs.biologists.org/cgi/content/full/121/19/3146/DC1
    [Show full text]
  • The Role of Sgs1 and Exo1 in the Maintenance of Genome Stability. Lillian Campos-Doerfler University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 The Role of Sgs1 and Exo1 in the Maintenance of Genome Stability. Lillian Campos-Doerfler University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Cell Biology Commons, and the Molecular Biology Commons Scholar Commons Citation Campos-Doerfler, Lillian, "The Role of Sgs1 and Exo1 in the Maintenance of Genome Stability." (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/7006 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Role of Sgs1 and Exo1 in the Maintenance of Genome Stability By Lillian Campos-Doerfler A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy With a concentration in Cell and Molecular Biology Department of Cell Biology, Microbiology and Molecular Biology College of Arts and Sciences University of South Florida Major Professor: Kristina Schmidt, Ph.D. Meera Nanjundan, Ph.D. Stanley Stevens, Ph.D. Sandy Westerheide, Ph.D. Date of Approval: November 17, 2017 Keywords: Genome Instability, DNA repair, RecQ Helicases, Sgs1, Exo1 Copyright 2017, Lillian Campos-Doerfler Dedication I would like to dedicate this dissertation to my amazing and supportive family. To my husband Eric for his constant encouragement and patience, my sister Connie for her motivational phone calls and guidance, and my parents Wanda and Jaime for everything they have done that allowed for me to pursue my dream.
    [Show full text]
  • RPN530 DNA Repair Slides with Notes 2014.Pptx
    DNA$Repair$and$Cancer$ RPN$530$Oncology$for$Scien4sts$ Lecture$ Thomas$Melendy,$PhD$ Depts:$Microbiology$&$Immunology,$ and$Biochemistry,$UB$SOM$ Office:$213$BRB,$UB$SOM$ TMelendy@buffalo.edu$ DNA$Repair$and$Cancer$ Suggested$addi4onal$resources:$ Weinberg$RA$(2007)$The$Biology$of$Cancer.$ Garland$Science,$New$York,$(Chapter$12).$$ Friedberg$EC,$Walker$GC,$Siede$W,$Wood$ RD,$Shultz$RA,$Ellenberger$T$(2006)$DNA$ Repair$and$Mutagenesis,$ASM$Press,$ Washington,$DC.$$ DNA$Repair$and$Cancer$ RNA$and$proteins$can$be$totally$degraded$when$ damaged,$and$re\synthesiZed$when$needed$ DNA$is$not$totally$degraded$when$damaged$ $ \$repaired$at$a$nucleo4de$level$or$in$small$patches$ DNA$repair$maintains$integrity$of$the$gene4c$ informa4on$ $ $\$DNA$\>$RNA$\>$protein$ Importance$of$DNA$Repair$ All$organisms,$from$bacteria$to$yeast$to$humans,$have$ mul4ple$DNA$repair$mechanisms$and$pathways$ Many$of$the$genes,$proteins$and$repair$pathways$are$ evolu4onarily$conserved$ ~$150$human$genes$encode$DNA$repair$proteins,$and$ many$more$involved$in$DNA$damage$response$(DDR)$ Defects$in$DNA$Repair$can$cause$Cancer$ DNA$Repair$ Types$of$DNA$damage$ Types$of$DNA$repair$pathways$ DNA$damage,$repair,$and$cancer$ DNA$Repair$ Types$of$DNA$damage$ Errors$in$DNA$synthesis$ Spontaneous/endogenous$sources$ Exogenous$sources$ Replica4on$Errors$in$the$Genome$ DNA$polymerase$delta$(δ)$copies$DNA$with$ high$fidelity$(proofreading$mutant$D400A)$ \$Low$error$rate$in$copying:$~1$error/105$bp$ Human$genome$has$~6x109$bp$ \$6x109$/$1x105$=$~60,000$errors!$ How$does$the$cell$prevent/correct$these$
    [Show full text]
  • Silencing of End-Joining Repair for Efficient Site-Specific Gene Insertion After TALEN/CRISPR Mutagenesis in Aedes Aegypti
    Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti Sanjay Basua,1, Azadeh Aryana,1, Justin M. Overcasha, Glady Hazitha Samuela, Michelle A. E. Andersona, Timothy J. Dahlemb, Kevin M. Mylesa,2, and Zach N. Adelmana,2 aFralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061; and bMutation Generation and Detection Core, Health Science Center Core Research Facility, University of Utah, Salt Lake City, UT 84132 Edited by Anthony A. James, University of California, Irvine, CA, and approved February 24, 2015 (received for review February 6, 2015) Conventional control strategies for mosquito-borne pathogens range of potential target sequences, already leading to the pro- such as malaria and dengue are now being complemented by the posal of alternative gene drive designs and regulatory structure development of transgenic mosquito strains reprogrammed to based on these more facile genetic tools (5, 6). Identified in type generate beneficial phenotypes such as conditional sterility II Streptococcus pyogenes as a heritable immune defense mech- or pathogen resistance. The widespread success of site-specific anism against viruses and plasmids (7), endogenous CRISPR loci nucleases such as transcription activator-like effector nucleases are comprised of 30–40 nucleotide (nt) variable sequences sep- (TALENs) and clustered regularly interspaced short palindromic arated by short direct repeats. CRISPR locus transcripts are used repeats (CRISPR)/Cas9 in model organisms also suggests that re- to generate short CRISPR RNAs (crRNAs) that act in con- programmable gene drive systems based on these nucleases may junction with a common transactivating-RNA (trRNA) to guide be capable of spreading such beneficial phenotypes in wild mos- Cas9 endonuclease to the complementary double-stranded DNA quito populations.
    [Show full text]
  • The Highly Parallel Homology Directed Repair Assay and the Analysis of BRCA1 Variants
    The Highly Parallel Homology Directed Repair Assay and the Analysis of BRCA1 Variants Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Muhtadi Muhammad Islam, B.E. Biomedical Sciences Graduate Program The Ohio State University 2016 Dissertation Committee: Jeffrey Parvin, MD, PhD, Advisor Michael Freitas, PhD Kun Huang, PhD Amanda Toland, PhD Copyrighted by Muhtadi Muhammad Islam 2016 Abstract DNA damage and repair are processes that have been linked to cancer, both in carcinogenesis and in the treatment of cancer. We explore two different DNA repair factors, BRCA1 and HDAC10, in two distinct studies. BRCA1 is a highly penetrant gene in both breast and ovarian cancer and with several functions. We analyze BRCA1 in a novel assay that scores the homologous recombination repair function of several thousand BRCA1 variants in parallel. Our goal is to create a structure function map of BRCA1 at the amino acid resolution to not only prove the novel highly parallel functional assay, but also to provide clinically relevant data of BRCA1 variants with respect to homologous recombination repair. HDAC10 is a histone deacetylase with only one known function, stimulating homologous recombination repair of double strand breaks. Utilizing genome databases, we found that HDAC10 is deleted in up to 10% of ovarian tumors. We also found that low HDAC10 expression correlated with platinum therapy sensitivity. We demonstrated general HDAC inhibition enhanced cisplatin therapy in primary ovarian carcinomas. Additionally, HDAC10 specific inhibition sensitized a BRCA1 deficient ovarian cancer cell line to both DNA damage and cisplatin therapy.
    [Show full text]