Monogenea: Capsalidae) from Seriola Rivoliana (Almaco Jack) in Bahía De La Paz, BCS Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Monogenea: Capsalidae) from Seriola Rivoliana (Almaco Jack) in Bahía De La Paz, BCS Mexico Parasitology Research (2019) 118:3267–3277 https://doi.org/10.1007/s00436-019-06460-1 FISH PARASITOLOGY - ORIGINAL PAPER Effects of temperature on the life cycle of Neobenedenia sp. (Monogenea: Capsalidae) from Seriola rivoliana (Almaco jack) in Bahía de La Paz, BCS Mexico Isabel Valles-Vega1 & Felipe Ascencio1 & Teresa Sicard-González1 & Carlos Angulo1 & Emma J. Fajer-Avila2 & Roxana Bertha Inohuye-Rivera1 & Juan Carlos Pérez-Urbiola1 Received: 12 December 2018 /Accepted: 11 September 2019 /Published online: 31 October 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Seriola rivoliana cultivated in Mexico are infected by Neobenedenia sp. (Monogenea: Capsalidae), resulting in dermal ulceration and subsequent bacterial invasion that can cause fish death. This study assesses the effects of temperature over hatching success, oncomiracidia longevity, and infection success. The experimental design consisted of culturing the parasite at temperatures ranging between 16 and 32 °C. The oncomiracidia infection success, time to sexual maturity, and size at sexual maturity of Neobenedenia sp. were examined only at three temperatures (20 °C, 24 °C, and 30 °C). Experiments were conducted under controlled conditions in the laboratory. The oncomiracidia development was found to be faster at warmer temperatures (4–5days between 24 and 30 °C) than in colder treatments (7–11 days between 18 and 20 °C). Hatching success and oncomiracidia longevity were higher at 24 °C and 26 °C. At 20 °C, 24 °C, and 30 °C, infection success was greater than 90%. Additionally, the laid eggs were observed at 9, 12, and 15 days at 30 °C, 24 °C, and 30 °C, respectively. The results of this study will allow for improving the temporal schedule of applications of treatments against Neobenedenia sp. by the function of temperatures. In conclusion, it is recommended to treat fish more frequently if the temperature in cultures is higher than 24 °C, because Neobenedenia sp. development is faster. As an alternative, the fish could be moved to deeper and cooler waters. Keywords Capsalidae . Neobenedenia . Early development . Sexual maturity . Water temperature . Seriola rivoliana Introduction been recorded to be infected by Neobenedenia species, (Rubio-Godoy et al. 2011;Brazenoretal.2018), including Monogeneans Capsalidae are marine parasites (Ogawa 1996; S. rivoliana (Valenciennes, 1833) which is a recently Whittington et al. 2001; Tubbs et al. 2005). Within these spe- exploited species of Mexican aquaculture farms (Avilés- cies, the genus Neobenedenia hasbeenrecognizedasanec- Quevedo and Castello-Orvay 2004). toparasite of farmed fish around the world (Ogawa et al. 1995; Infection of Seriola spp. by capsalids like N. girellae Hirazawa et al. 2010; Trasviña-Moreno et al. 2017). Along the (Hargis 1955) can cause hemorrhage, inflammation, and mu- Pacific and Atlantic coast of Mexico, several fish species have cus hyperproduction (Paperna 1991). Heavily infected fish may also stop feeding and in some cases, the fish may rub Section Editor: Guillermo Salgado-Maldonado against the sea-cage nets resulting in dermal ulceration and subsequent bacterial invasion (Leong and Colorni 2002). * Juan Carlos Pérez-Urbiola Hence, Neobenedenia spp. can cause serious health problems [email protected] in farmed fish. Neobenedenia spp., as well as other monogenean, have a 1 Centro de Investigaciones Biológicas del Noroeste (CIBNOR) S.C., Km. 1, Carretera a San Juan de La Costa BEl Comitán^, 23097 La direct life cycle that does not require an intermediate host in Paz, Baja California Sur, Mexico order to complete their biological cycle (Rohde 1993). They 2 Centro de Investigación en Alimentación y Desarrollo, A. C., Unidad are able to reproduce rapidly, and produce eggs that often Mazatlán en Acuicultura y Manejo Ambiental, Av. Sábalo Cerritos become entangled in the sea-cage netting, leading, in many s/n, C.P., 82010 Mazatlán, Sinaloa, Mexico cases, to re-infection of the farmed fish (Ernst et al. 2002). 3268 Parasitol Res (2019) 118:3267–3277 It is well-known that eggs are more resistant than other Neobenedenia sp. in aquaculture systems. Hence, the present developmental stages to anti-helmintic agents such as study describes temperature effects on the life cycle of praziquantel or other cleaning treatments including baths of Neobenedenia sp. from S. rivoliana. freshwater, hydrogen peroxide, and formalin (Thoney and Hargis 1991; Morales-Serna et al. 2018). Due to this high resistance of eggs, fish are at risk of being re-infected and it Material and methods is difficult to control species of Neobenedenia in aquaculture systems (Diggles et al. 1993; Yoshinaga et al. 2000). Initial experimental settings Neobenedenia spp. infections commonly occur with the onset of summer when higher temperatures reduce the time Adults of capsalids were collected from Almaco jack of hatching and age of maturity (Bondad-Reantaso et al. 1995; (S. rivoliana) juvenile fish maintained in ponds at the Kinami et al. 2005; Hirazawa et al. 2010). In this regard, Northwest Biological Research Centre (CIBNOR). The fish Brazenor and Hutson (2015) have shown that hatching time were anesthetized with a solution of eugenol (3 ml × 100 l−1) for Neobenedenia sp. from Lates calcarifer varied between 6– as recommended by Boijink et al. (2016). Living parasites 8daysat22°Cand4–6 days at 24 °C and 30 °C. In addition, were carefully removed from the fish skin and some selected N. girellae eggs hatched in a temperature range between 18 specimens were fixed with formaldehyde and changed to 70% and 30 °C, but did not hatch at 15 °C (Bondad-Reantaso et al. ethanol and stained with Gomori’s trichrome, cleared with 1995). Thus, temperature has an effect on the development of salicylate and mounted in permanent preparations with the early stages of N. girellae (based on Brazenor et al. 2018) synthetic resins, for identification purposes. Adults of collected in Japan and Australia. capsalids were identified as Neobenedenia sp. based on the N. girellae can infect a wide variety of hosts (i.e., Lates description of Whittington and Horton (1996) and some of calcarifer (Bloch, 1790), Paralichthys olivaceus (Temminck them were deposited in the Parasitological Collection of the & Schlegel, 1846), S. lalandi (Valenciennes, 1833), Natural History Museum at Universidad Autónoma de Baja S. quinqueradiata (Temminck & Schlegel, 184), California Sur (CPMHN-UABCS) with the accession number Rachycentron canadum (Linnaeus, 1766), and other species), 725 (Fig. 1). within tropical regions of the Pacific and Atlantic Oceans To collect enough parasites for the experiments, we first (Brazenor et al. 2018). This is unusual because ~ 80% of all transferred 35 adults of Neobenedenia sp., from the skin of monogeneans infect a single species and they are usually dis- Almaco jack to a six-well flat-bottom culture vessel where tributed in one ocean basin (Rohde 1979; Byrnes and Rohde 1992; Whittington 1998). A recent study based on genetic analysis showed that spe- cies other than N. girellae have infected cultured S. lalandi and wild fish off the Northern coast of Chile (Sepúlveda and González 2019). This allows for the possibility that Neobenedenia form a complex of cryptic species that may adapt to their local conditions (Whittington 2004). This is relevant because a misunderstanding of the true delineation of parasitic species may affect diagnostic, control, and eradi- cation programs. Thus, an accurate knowledge of the life cycle of Neobenedenia sp. and the influence of temperature will help to design specific temporal schedules of treatments by the function of temperature to better combat this parasite (Tubbs et al. 2005; Nadler and Perez-Ponce De León 2011). The carangid Seriola rivoliana (Almaco jack) is currently being cultured in Bahía de La Paz, BCS, Mexico, where the surface water temperature varies during the annual cycle from 20.5 °C in the winter to 31 °C in the summer (Obeso-Nieblas et al. 2008; Guevara-Guillén et al. 2015). However, the influ- ence of water temperature on oncomiracidia development, Fig. 1 Ventral view of an adult Neobenedenia sp., stained with Gomori’s hatching success, oncomiracidia longevity, and infection suc- trichrome. aa, anterior attachment organ; ah, anterior hamulus; as, cess and time to sexual maturity of Neobenedenia sp. from accessory sclerite; e, egg; g, germarium; h, haptor; m, marginal valve; ic, internal fertilization chamber; oo, ootype; p, pharynx; pe, penis; ph, S. rivoliana has not been previously investigated. This infor- posterior hamulus; t, testis; te, tendon; u, uterus; vd, vas deferens; vf, mation is useful for developing strategies to better control vitelline follicle; vr, vitelline reservoir. Scale bars represent 200 μm Parasitol Res (2019) 118:3267–3277 3269 they deposited eggs. In the culture vessels, the eggs developed determined when the eggs appeared empty and were charac- into oncomiracidia larvae and, then they were used for infect- terized by a clear color and an open operculum (see Fig. 2). ing Almaco jack juveniles (average weight 150 ± 50 g) in the laboratory. The infections were carried out in two tanks of Hatching success and times 600 l. In each tank, three fish were placed and conditions were kept constant (salinity 36 ± 1 ppt, dissolved oxygen 5.5 ± Hatching success was evaluated in another set of tubes with 0.5 mg O2/l, temperature 25 ± 1 °C, and natural photoperiod). the nylon threads with 35 eggs, which were incubated at Fish were fed twice a day with a commercial diet (EWOS® 16 °C, 18 °C, 20 °C, 22 °C, 24 °C, 26 °C, 28 °C, 30 °C, and Canada Ltd., Vancouver, British Columbia, Canada) and at 32 °C (three replicates per temperature) in SITMA. Tubes daily feeding rate of 3% of the body weight. were monitored every 24 h under a stereomicroscope with All experiments were made in a water bath system and both incident and transmitted light and a third of the water thermal control was by the thermic simulator called SITMA was replaced daily. (from the Spanish BMarine Thermic Simulator^), which was When a stage 3 egg was detected, we looked for the developed at CIBNOR (Sicard-Gonzalez 2006).
Recommended publications
  • Seasonal Distribution and Ecology of Some Dactylogyrus Species
    African Journal of Biotechnology Vol. 10(7), pp. 1154-1159, 14 February, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.2022 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Seasonal distribution and ecology of some Dactylogyrus species infecting Alburnus alburnus and Carassius carassius (Osteichthyes: Cyprinidae) from Porsuk River, Turkey Mustafa Koyun Department of Biology and Zoology, Faculty of Science, University of Bingol, Turkey. E-mail: mustafakoyun16@ yahoo.com. Tel: +90 (0) 426 2132550. Accepted 7 January, 2011 In this research, gill parasites of two Cyprinid fish ( Alburnus alburnus and Carassius carassius ) from the upper basin of Porsuk river were studied. Fish samples were obtained monthly at intervals during 2003 to 2004. The intensity of infection was investigated depending on the parasite species, the years and seasons, and host fish species. Four Dactylogyrus species were identified in the gills of host fishes Dactylogyrus fraternus (Wegener, 1909), Dactylogyrus alatus (Linstow, 1878) and Dactylogyrus minutus (Kulwiec, 1927) on A. alburnus and D. minutus and Dactylogyrus anchoratus (Dujardin, 1845) on C. carassius. The prevalence, abundance and mean intensity of Dactylogyrus infection for each parasite species was determined as follow: D. fraternus (49.6%, 2.58 and 5.20), D. alatus (28.1%, 0.61 and 2.18) and D. minutus (35.1%, 1.61 and 4.61) in A. alburnus and D. minutus (40.5%, 1.00 and 2.49), D. anchoratus (37.6%, 0.38 and 4.63) in C. carassius. The highest intensity was recorded for D. fraternus while the lowest was recorded in D.
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • The Helminthological Society O Washington
    VOLUME 9 JULY, 1942 NUMBER 2 PROCEEDINGS of The Helminthological Society o Washington Supported in part by the Brayton H . Ransom Memorial Trust Fund EDITORIAL COMMITTEE JESSE R. CHRISTIE, Editor U . S . Bureau of Plant Industry EMMETT W . PRICE U. S. Bureau of Animal Industry GILBERT F. OTTO Johns Hopkins University HENRY E. EWING U. S . Bureau of Entomology DOYS A. SHORB U. S. Bureau of Animal Industry Subscription $1 .00 a Volume; Foreign, $1 .25 Published by THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON VOLUME 9 JULY, 1942 NUMBER 2 PROCEEDINGS OF THE HELMINTHOLOGICAL SOCIETY OF WASHINGTON The Proceedings of the Helminthological Society of Washington is a medium for the publication of notes and papers in helminthology and related subjects . Each volume consists of 2 numbers, issued in January and July . Volume 1, num- ber 1, was issued in April, 1934 . The Proceedings are intended primarily for the publication of contributions by members of the Society but papers by persons who are not members will be accepted provided the author will contribute toward the cost of publication . Manuscripts may be sent to any member of the editorial committee . Manu- scripts must be typewritten (double spaced) and submitted in finished form for transmission to the printer . Authors should not confine themselves to merely a statement of conclusions but should present a clear indication of the methods and procedures by which the conclusions were derived . Except in the case of manu- scripts specifically designated as preliminary papers to be published in extenso later, a manuscript is accepted with the understanding that it is not to be pub- lished, with essentially the same material, elsewhere .
    [Show full text]
  • Sequencing, Characterization and Phylogenomics of the Complete Mitochondrial Genome of Dactylogyrus
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/318023185 Sequencing, characterization and phylogenomics of the complete mitochondrial genome of Dactylogyrus... Article in Journal of Helminthology · June 2017 DOI: 10.1017/S0022149X17000578 CITATIONS READS 0 6 9 authors, including: Ivan Jakovlić WenX Li Wuhan Institute of Biotechnology Institute of Hydrobiolgy, Chinese Academy of… 85 PUBLICATIONS 61 CITATIONS 39 PUBLICATIONS 293 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Mitochondrial DNA View project All content following this page was uploaded by WenX Li on 03 July 2017. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Journal of Helminthology, Page 1 of 12 doi:10.1017/S0022149X17000578 © Cambridge University Press 2017 Sequencing, characterization and phylogenomics of the complete mitochondrial genome of Dactylogyrus lamellatus (Monogenea: Dactylogyridae) D. Zhang1,2, H. Zou1, S.G. Wu1,M.Li1, I. Jakovlić3, J. Zhang3, R. Chen3,G.T.Wang1 and W.X. Li1* 1Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China: 2University of Chinese Academy of Sciences, Beijing 100049, P.R. China: 3Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan 430075, P.R. China (Received 26 April 2017; Accepted 2 June 2017) Abstract Despite the worldwide distribution and pathogenicity of monogenean parasites belonging to the largest helminth genus, Dactylogyrus, there are no complete Dactylogyrinae (subfamily) mitogenomes published to date.
    [Show full text]
  • Monopisthocotylean Monogeneans) Inferred from 28S Rdna Sequences
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2002 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences Jean-Lou Justine Richard Jovelin Lassâd Neifar Isabelle Mollaret L.H. Susan Lim See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Jean-Lou Justine, Richard Jovelin, Lassâd Neifar, Isabelle Mollaret, L.H. Susan Lim, Sherman S. Hendrix, and Louis Euzet Comp. Parasitol. 69(1), 2002, pp. 20–25 Phylogenetic Positions of the Bothitrematidae and Neocalceostomatidae (Monopisthocotylean Monogeneans) Inferred from 28S rDNA Sequences JEAN-LOU JUSTINE,1,8 RICHARD JOVELIN,1,2 LASSAˆ D NEIFAR,3 ISABELLE MOLLARET,1,4 L. H. SUSAN LIM,5 SHERMAN S. HENDRIX,6 AND LOUIS EUZET7 1 Laboratoire de Biologie Parasitaire, Protistologie, Helminthologie, Muse´um National d’Histoire Naturelle, 61 rue Buffon, F-75231 Paris Cedex 05, France (e-mail: [email protected]), 2 Service
    [Show full text]
  • First Record of the Monogenean Parasite of Menziesia Sebastodis (Capsalidae) in Korea
    Korean J. Syst. Zool. Vol. 25, No. 1: 129-132, March 2009 First Record of the Monogenean Parasite of Menziesia sebastodis (Capsalidae) in Korea Jeong-Ho Kim* Faculty of Marine Bioscience and Technology, Kangnung National University, Gangneung 210-702, Korea ABSTRACT Menziesia sebastodis (Capsalidae: Monogenea) is found and described from the gill filaments and the gill rakers of the black rockfish, Sebastes inermis, caught at Dolsan Island, off the south coast of Yeosu, Jeollanam-do, Korea. The genus Menziesia is distinguished from other related genera Benedenia, Megalobenedenia and Tro- chopus, by septate haptors and the morphology of copulatory organs. M. sebastodis can be differentiated from other Menziesia species by the longer and slenderer posterior anchor, and the location of accessory gland reser- voir. This is the first record of the genus Menziesia in Korea. Key words: Menziesia sebastodis, Monogenea, Capsalidae, Sebastes inermis INTRODUCTION examination. Gills were excised and examined in filtered seawater under a dissecting microscope. If monogeneans The class monogenea belongs to the phylum Platyhelminthes were found, they were individually picked and immediately and mostly parasitize on skins and gills of freshwater and fixed with AFA (mixture of 70% ethanol 20 parts, formalde- marine fishes (Ogawa, 2005). They are equipped with a large hyde (40% w/v) 1 part and glacial acetic acid 1 part), after attachment organ called ‘haptor’ at the posterior end. These flattening with cover glass. Monogenean specimens were groups are hermaphrodites and have direct life cycles. Gen- stained with Heidenhein’s hematoxylin, dehydrated through erally they are not considered to cause serious pathological an alcohol series, and mounted in Canada balsam prior to effects in wild fishes.
    [Show full text]
  • 240 Justine Et Al
    The Monogenean Which Lost Its Clamps Jean-Lou Justine, Chahrazed Rahmouni, Delphine Gey, Charlotte Schoelinck, Eric Hoberg To cite this version: Jean-Lou Justine, Chahrazed Rahmouni, Delphine Gey, Charlotte Schoelinck, Eric Hoberg. The Monogenean Which Lost Its Clamps. PLoS ONE, Public Library of Science, 2013, 8 (11), pp.e79155. 10.1371/journal.pone.0079155. hal-00930013 HAL Id: hal-00930013 https://hal.archives-ouvertes.fr/hal-00930013 Submitted on 16 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Monogenean Which Lost Its Clamps Jean-Lou Justine1*, Chahrazed Rahmouni1, Delphine Gey2, Charlotte Schoelinck1,3, Eric P. Hoberg4 1 UMR 7138 ‘‘Syste´matique, Adaptation, E´volution’’, Muse´um National d’Histoire Naturelle, CP 51, Paris, France, 2 UMS 2700 Service de Syste´matique mole´culaire, Muse´um National d’Histoire Naturelle, Paris, France, 3 Molecular Biology, Aquatic Animal Health, Fisheries and Oceans Canada, Moncton, Canada, 4 United States National Parasite Collection, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America Abstract Ectoparasites face a daily challenge: to remain attached to their hosts. Polyopisthocotylean monogeneans usually attach to the surface of fish gills using highly specialized structures, the sclerotized clamps.
    [Show full text]
  • Toxicity of Formalin for Fingerlings of Cyprinus Carpio Var. Koi and in Vitro
    J Parasit Dis (Jan-Mar 2019) 43(1):46–53 https://doi.org/10.1007/s12639-018-1056-1 ORIGINAL ARTICLE Toxicity of formalin for fingerlings of Cyprinus carpio var. koi and in vitro efficacy against Dactylogyrus minutus Kulwie`c, 1927 (Monogenea: Dactylogyridae) 1 2 1 Karen Roberta Tancredo • Nata´lia da Costa Marchiori • Scheila Anelise Pereira • Maurı´cio Laterc¸a Martins1 Received: 24 August 2018 / Accepted: 12 November 2018 / Published online: 14 December 2018 Ó Indian Society for Parasitology 2018 Abstract The toxicity of formalin on Cyprinus carpio var. Introduction koi and its anti-parasite effects against Dactylogyrus min- utus (Monogenea) in in vitro tests is analyzed. Specimens The koi carp Cyprinus carpio (Linnaeus, 1758) is an of D. minutus were submitted to eight concentrations of ornamental fish with high market demand due to its ease in formalin: 50, 75, 100, 125, 150, 175, 200, 250 mg L-1,in breeding and to its great variation in color patterns (Hus- triplicate. Concentrations of formalin 100, 150 and sain et al. 2014, 2015). It is a fast-growing species (Hashem 200 mg L-1 were then tested to determine the median et al. 1997) and very tolerant to variations in water quality lethal concentration of 50% of the fish per immersion bath. parameters and stocking density (Carneiro et al. 2015). Fish behavior was also observed during the first 6 h of However, its cultivation has been affected by ectoparasite exposure. The 200 mg L-1 concentration was the most Monogenea Dactylogyrus Diesing 1850, featuring 900 rapid efficacy for D. minutus, killing all parasites in species (Gibson et al.
    [Show full text]
  • Zootaxa, Three New Species of Benedenia Diesing, 1858 from The
    Zootaxa 2348: 1–22 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Three new species of Benedenia Diesing, 1858 from the Great Barrier Reef, Australia with a key to species of the genus MARTY R. DEVENEY1 & IAN D. WHITTINGTON2,3,4 1SARDI Aquatic Sciences, South Australian Research and Development Institute, PO Box 120, Henley Beach, South Australia 5022, Australia. E-mail: [email protected] 2Monogenean Research Laboratory, Parasitology Section, The South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia. E-mail: [email protected] 3Marine Parasitology Laboratory, School of Earth and Environmental Sciences (DX 650 418), The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia 4Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia Abstract Three new species of Benedenia are described from the Great Barrier Reef: B. ernsti n. sp., B. fieldsi n. sp. and B. haywardi n. sp. Allobenedenia ishikawae (Goto, 1894) Yamaguti, 1963 does not fit the diagnosis of Allobenedenia Yamaguti, 1963 as amended by Yang, Kritsky & Sun, 2004 and we return it to Benedenia as B. ishikawae (Goto, 1894) Monticelli, 1902. We consider Benedenia sargocentron Zhang, Yang & Liu, 2001 a synonym of B. hawaiiensis. Benedenia now consists of 25 species with a broad range of morphological variations, host relationships and microhabitats. A key to species of Benedenia is presented. Benedenia fieldsi may pose a significant risk to sea cage aquaculture of its serranid hosts. Key words: Platyhelminthes, Monogenea, Capsalidae, Benedeniinae, Benedenia, Benedenia ernsti n.
    [Show full text]
  • Study of Parasitic Effect of Dactylogyrus Sp. on Indian Major Carps
    © 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162) Study of parasitic effect of Dactylogyrus sp. on Indian Major Carps Dr. Pratibha Pathak P.G. Department of Zoology, LNMU, Darbhanga, Bihar, India. Abstract The current study examines the parasitic effects of Dactylogyrus sp. on Indian major carps. Only symptomatic and moribund samples of diseased fishes comprised of fry/fingerlings and adults of IMC were collected and were brought to the laboratory for patho-morphological and patho-anatomical examinations. Photomicrographs of the most characteristic regions of histopathological lesions in the stained tissues of diseased fish samples were taken. In severe infestations the fishes showed growth retardation. Partial suffocation, lethargic swimming behaviour and their gills were very pale in colour and had haemorrhagic and inflamed areas at the sites of parasite attachments. The main histopathological lesions and changes were seen in the gills where the parasites were found attached to the lamellar tissues causing local erosions of the epithelium. Hyperplasia of the secondary lamellar epithelium and fusion of adjacent secondary lamellae were the significant tissue level reactions caused by the parasites. No changes were noticed in other organs of the affected fishes. We suggest that histopathological analysis for parasites in fish is useful tool for fish health monitoring. Key words: Dactylogyrus, histopathology, parasitic, secondary lamellar epithelium. INTRODUCTION: The three Indian major carps, namely Catla (Catla catla), Rohu (Labeo rohita) and Mrigal (Cirrhinus mrigala) contribute 87% of total fresh water aquaculture production (Annual Report , 2016-2017). Dactylogyrosis is a disease caused by the monogenetic trematode, Dactylogyrus sp. was found to cause severe damage in the gills of the highly affected fishes.
    [Show full text]
  • DEEPFISHMAN Document 5 : Review of Parasites, Pathogens
    DEEPFISHMAN Management And Monitoring Of Deep-sea Fisheries And Stocks Project number: 227390 Small or medium scale focused research action Topic: FP7-KBBE-2008-1-4-02 (Deepsea fisheries management) DEEPFISHMAN Document 5 Title: Review of parasites, pathogens and contaminants of deep sea fish with a focus on their role in population health and structure Due date: none Actual submission date: 10 June 2010 Start date of the project: April 1st, 2009 Duration : 36 months Organization Name of lead coordinator: Ifremer Dissemination Level: PU (Public) Date: 10 June 2010 Review of parasites, pathogens and contaminants of deep sea fish with a focus on their role in population health and structure. Matt Longshaw & Stephen Feist Cefas Weymouth Laboratory Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB 1. Introduction This review provides a summary of the parasites, pathogens and contaminant related impacts on deep sea fish normally found at depths greater than about 200m There is a clear focus on worldwide commercial species but has an emphasis on records and reports from the north east Atlantic. In particular, the focus of species following discussion were as follows: deep-water squalid sharks (e.g. Centrophorus squamosus and Centroscymnus coelolepis), black scabbardfish (Aphanopus carbo) (except in ICES area IX – fielded by Portuguese), roundnose grenadier (Coryphaenoides rupestris), orange roughy (Hoplostethus atlanticus), blue ling (Molva dypterygia), torsk (Brosme brosme), greater silver smelt (Argentina silus), Greenland halibut (Reinhardtius hippoglossoides), deep-sea redfish (Sebastes mentella), alfonsino (Beryx spp.), red blackspot seabream (Pagellus bogaraveo). However, it should be noted that in some cases no disease or contaminant data exists for these species.
    [Show full text]
  • Monogenea: Capsalidae Baird, 1853: Trochopodinae) Parasite of Platax Teira, from Iraqi Marine Water, Arab Gulf Majid Abdul Aziz Bannai and Essa T
    quac d A ul n tu a r e s e J i o r u e r h Bannai and Muhammad, Fish Aquac J 2015, 6:2 n s i a F l Fisheries and Aquaculture Journal DOI: 10.4172/2150-3508.1000127 ISSN: 2150-3508 ResearchResearch Article Article OpenOpen Access Access Sprostoniella teria Sp. Nov. (Monogenea: Capsalidae Baird, 1853: Trochopodinae) Parasite of Platax teira, from Iraqi Marine Water, Arab Gulf Majid Abdul Aziz Bannai and Essa T. Muhammad Aquaculture and Marine Fisheries, Marine Science Center, University of Basra, Iraq Abstract During the investigation of five species of Platax teira where collecting from Arabian Gulf. One parasite was detected Sprostoniella sp. Capsalidae Baird, 1853 from gill filaments. Results give an indication that the parasite are consider as new species in Iraqi marine and Platax teira fishes as anew host in words and new geographical distribution. Keywords: Monogenea; Sprostoniella teria; Monogenea; Capsalidae spp. (Capsalidae) including Capsala naffari n. sp. infecting mackerel Baird; Trochopodinae; Platax teira tuna Euthynnus affinis from coasts of Emirates. Three species of the genus Capsala including Capsala naffari n. sp., C. neothunni [2] and Introduction C. nozawae (Goto, 1894) are recorded and described from the buccal The Monogenea is a class of Platyhelminthes parasitic mostly cavity of mackerel tuna Euthynnus affinis caught from Emirate coasts. Capsala naffari can be differentiated by its lateral spiniform teeth, on external surfaces and gills of freshwater and marine fishes. The which extend posteriorly, small measurements compared with the Capsalidae are monogeneans parasitizing ‘skin’, fins and gills of closely resembled C. gotoi and relatively large testes.
    [Show full text]