Gödel on Intuition and on Hilbert's Finitism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Finitism, Divisibility, and the Beginning of the Universe: Replies to Loke and Dumsday
This is a preprint of an article whose final and definitive form will be published in the Australasian Journal of Philosophy. The Australasian Journal of Philosophy is available online at: http://www.tandf.co.uk/journals/. FINITISM, DIVISIBILITY, AND THE BEGINNING OF THE UNIVERSE: REPLIES TO LOKE AND DUMSDAY Stephen Puryear North Carolina State University Some philosophers contend that the past must be finite in duration, because otherwise reaching the present would have involved the sequential occurrence of an actual infinity of events, which they regard as impossible. I recently developed a new objection to this finitist argument, to which Andrew Ter Ern Loke and Travis Dumsday have replied. Here I respond to the three main points raised in their replies. Keywords: Space, time, continuity, infinity, creation 1. Introduction Some philosophers argue that the universe must have had a beginning, because otherwise reaching the present would have required something impossible, namely, the occurrence or ‘traversal’ of an actually infinite sequence of events. But this argument faces the objection that actual infinities are traversed all the time: for example, whenever a finite period of time elapses [Morriston 2002: 162; Sinnott-Armstrong 2004: 42–3]. Let us call these the finitist argument and the Zeno objection. In response to the Zeno objection, the most ardent proponent of the finitist argument in our day, William Lane Craig [Craig and Sinclair 2009: 112–13, 119; cf. Craig and Smith 1993: 27–30], has taken the position that ‘time is logically prior to the divisions we make within it’. On this view, time divides into parts only in so far as we divide it, and thus divides into only a finite number of parts. -
Philosophy 405: Knowledge, Truth and Mathematics Hamilton College Spring 2008 Russell Marcus M, W: 1-2:15Pm [email protected]
Philosophy 405: Knowledge, Truth and Mathematics Hamilton College Spring 2008 Russell Marcus M, W: 1-2:15pm [email protected] Class 15: Hilbert and Gödel I. Hilbert’s programme We have seen four different Hilberts: the term formalist (mathematical terms refer to inscriptions), the game formalist (ideal terms are meaningless), the deductivist (mathematics consists of deductions within consistent systems) the finitist (mathematics must proceed on finitary, but not foolishly so, basis). Gödel’s Theorems apply specifically to the deductivist Hilbert. But, Gödel would not have pursued them without the term formalist’s emphasis on terms, which lead to the deductivist’s pursuit of meta-mathematics. We have not talked much about the finitist Hilbert, which is the most accurate label for Hilbert’s programme. Hilbert makes a clear distinction between finite statements, and infinitary statements, which include reference to ideal elements. Ideal elements allow generality in mathematical formulas, and require acknowledgment of infinitary statements. See Hilbert 195-6. When Hilbert mentions ‘a+b=b+a’, he is referring to a universally quantified formula: (x)(y)(x+y=y+x) x and y range over all numbers, and so are not finitary. See Shapiro 159 on bounded and unbounded quantifiers. Hilbert’s blocky notation refers to bounded quantifiers. Note that a universal statement, taken as finitary, is incapable of negation, since it becomes an infinite statement. (x)Px is a perfectly finitary statement -(x)Px is equivalent to (x)-Px, which is infinitary - uh-oh! The admission of ideal elements begs questions of the meanings of terms in ideal statements. To what do the a and the b in ‘a+b=b+a’ refer? See Hilbert 194. -
Aristotelian Finitism
Synthese DOI 10.1007/s11229-015-0827-9 S.I. : INFINITY Aristotelian finitism Tamer Nawar1 Received: 12 January 2014 / Accepted: 25 June 2015 © Springer Science+Business Media Dordrecht 2015 Abstract It is widely known that Aristotle rules out the existence of actual infinities but allows for potential infinities. However, precisely why Aristotle should deny the existence of actual infinities remains somewhat obscure and has received relatively little attention in the secondary literature. In this paper I investigate the motivations of Aristotle’s finitism and offer a careful examination of some of the arguments con- sidered by Aristotle both in favour of and against the existence of actual infinities. I argue that Aristotle has good reason to resist the traditional arguments offered in favour of the existence of the infinite and that, while there is a lacuna in his own ‘logi- cal’ arguments against actual infinities, his arguments against the existence of infinite magnitude and number are valid and more well grounded than commonly supposed. Keywords Aristotle · Aristotelian commentators · Infinity · Mathematics · Metaphysics 1 Introduction It is widely known that Aristotle embraced some sort of finitism and denied the exis- tence of so-called ‘actual infinities’ while allowing for the existence of ‘potential infinities’. It is difficult to overestimate the influence of Aristotle’s views on this score and the denial of the (actual) existence of infinities became a commonplace among philosophers for over two thousand years. However, the precise grounds for Aristo- tle’s finitism have not been discussed in much detail and, insofar as they have received attention, his reasons for ruling out the existence of (actual) infinities have often been B Tamer Nawar [email protected] 1 University of Oxford, 21 Millway Close, Oxford OX2 8BJ, UK 123 Synthese deemed obscure or ad hoc (e.g. -
Arxiv:1906.04871V1 [Math.CO] 12 Jun 2019
Nearly Finitary Matroids By Patrick C. Tam DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in MATHEMATICS in the OFFICE OF GRADUATE STUDIES of the UNIVERSITY OF CALIFORNIA DAVIS Approved: Eric Babson Jes´usDe Loera arXiv:1906.04871v1 [math.CO] 12 Jun 2019 Matthias K¨oppe Committee in Charge 2018 -i- c Patrick C. Tam, 2018. All rights reserved. To... -ii- Contents Abstract iv Acknowledgments v Chapter 1. Introduction 1 Chapter 2. Summary of Main Results 17 Chapter 3. Finitarization Spectrum 20 3.1. Definitions and Motivation 20 3.2. Ladders 22 3.3. More on Spectrum 24 3.4. Nearly Finitary Matroids 27 3.5. Unionable Matroids 33 Chapter 4. Near Finitarization 35 4.1. Near Finitarization 35 4.2. Independence System Example 36 Chapter 5. Ψ-Matroids and Related Constructions 39 5.1. Ψ-Matroids 39 5.2. P (Ψ)-Matroids 42 5.3. Matroids and Axiom Systems 44 Chapter 6. Thin Sum Matroids 47 6.1. Nearly-Thin Families 47 6.2. Topological Matroids 48 Bibliography 51 -iii- Patrick C. Tam March 2018 Mathematics Nearly Finitary Matroids Abstract In this thesis, we study nearly finitary matroids by introducing new definitions and prove various properties of nearly finitary matroids. In 2010, an axiom system for infinite matroids was proposed by Bruhn et al. We use this axiom system for this thesis. In Chapter 2, we summarize our main results after reviewing historical background and motivation. In Chapter 3, we define a notion of spectrum for matroids. Moreover, we show that the spectrum of a nearly finitary matroid can be larger than any fixed finite size. -
Gödel on Finitism, Constructivity and Hilbert's Program
Lieber Herr Bernays!, Lieber Herr Gödel! Gödel on finitism, constructivity and Hilbert’s program Solomon Feferman 1. Gödel, Bernays, and Hilbert. The correspondence between Paul Bernays and Kurt Gödel is one of the most extensive in the two volumes of Gödel’s collected works devoted to his letters of (primarily) scientific, philosophical and historical interest. It ranges from 1930 to 1975 and deals with a rich body of logical and philosophical issues, including the incompleteness theorems, finitism, constructivity, set theory, the philosophy of mathematics, and post- Kantian philosophy, and contains Gödel’s thoughts on many topics that are not expressed elsewhere. In addition, it testifies to their life-long warm personal relationship. I have given a detailed synopsis of the Bernays Gödel correspondence, with explanatory background, in my introductory note to it in Vol. IV of Gödel’s Collected Works, pp. 41- 79.1 My purpose here is to focus on only one group of interrelated topics from these exchanges, namely the light that ittogether with assorted published and unpublished articles and lectures by Gödelthrows on his perennial preoccupations with the limits of finitism, its relations to constructivity, and the significance of his incompleteness theorems for Hilbert’s program.2 In that connection, this piece has an important subtext, namely the shadow of Hilbert that loomed over Gödel from the beginning to the end of his career. 1 The five volumes of Gödel’s Collected Works (1986-2003) are referred to below, respectively, as CW I, II, III, IV and V. CW I consists of the publications 1929-1936, CW II of the publications 1938-1974, CW III of unpublished essays and letters, CW IV of correspondence A-G, and CW V of correspondence H-Z. -
THE LOOICAL ATOMISM J. D. MACKENZIE Date Submitted Thesis
THE LOOICAL ATOMISM OF F. P. RAMSEY J. D. MACKENZIE Date submitted Thesis submitted for the Degree of Master of Arts in the School of Philosophy University of New South Wales (i) SYNOPSIS The first Chapter sets Ramsey in histor:iealperspective as a Logical Atomist. Chapter Two is concerned with the impasse in which Russell found himself ,d.th general propositions, Wittgenstein's putative solution in terms of his Doctrine of Showing, and Ramsey's "Wittgensteinian" solution, which is not satisfactory. An attempt is then ma.de to describe a Ramseian solution on the basis of what he says about the Axiom of Infi- nity, and to criticize this solution. In Chapter Three Ramsay's objections to the Pl4 definition of identity are considered, and consequences of his rejection of that definition for the Theory of Classes and the Axiom of Choice are drawn. In Chapter Four, Ramsey•s modifications to Russell's Theory of Types are discussed. His division of the Paradoxes into two groups is defended, but his redefinition of 'predicative' is rejected. Chapter Five deals with Ra.msey's analysis of propositional attitudes and negative propositions, and Chapter Six considers the dispute between Russell and Ramsey over the nature and status of universals. In Chapter Seven, the conclusions are summarized, and Ramsay's contribution to Logical Atom.ism are assessed. His main fail ing is found to be his lack of understanding of impossibility, especially with regard to the concept of infinity. (ii) PREFACE The thesis is divided into chapters, which are in turn divided into sections. -
Formalism II Gödel’S Incompleteness Theorems Hilbert's Programme and Its Collapse Curry
Outline Hilbert’s programme Formalism II Gödel’s incompleteness theorems Hilbert's Programme and its collapse Curry 13 April 2005 Joost Cassee Gustavo Lacerda Martijn Pennings 1 2 Previously on PhilMath… Foundations of Mathematics Axiomatic methods Logicism: Principia Mathematica Logicism Foundational crisis Formalism Russell’s paradox Term Formalism Cantor’s ‘inconsistent multitudes’ Game Formalism Law of excluded middle: P or not-P Intuitionism Deductivism = Game Formalism + preservation of truth Consistency paramount Quiet period for Hilbert: 1905 ~ 1920 No intuition needed Rejection of logicism 3 4 1 Birth of Finitism Finitary arithmetic Hermann Weyl: “The new foundational crisis in Basic arithmetic: 2+3=5, 7+7≠10, … mathematics” (1921) Intuitionistic restrictions – crippled mathematics Bounded quantifiers Bounded: 100 < p < 200 and p is prime Hilbert’s defense: finitism Unbounded: p > 100 and p and p+2 are prime ‘Basing the if of if-then-ism’ Core: finitary arithmetic All sentences effectively decidable Construction of all mathematics from core Finite algorithm Epistemologically satisfying 5 6 Finitary arithmetic – ontology Ideal mathematics – the rest Meaningful, independent of logic – Kantian Game-Formalistic rules Correspondance to finitary arithmetic Concrete symbols themselves: |, ||, |||, … … but not too concrete – not physical Restriction: consistency with finitary arithmetic Essential to human thought – not reducible Formal systems described in finitary arithmetic Finitary proof of -
Jean Paul Van Bendegem NON-REALISM, NOMINALISM AND
Jean Paul Van Bendegem NON-REALISM, NOMINALISM AND STRICT FINITISM THE SHEER COMPLEXITY OF IT ALL 1. Introduction The contributions to this volume are meant to be critical appraisals of the book by Philip Hugly and Charles Sayward. This does not exclude, however, to say a few things first about those points where I fully agree with the authors: (a) “What makes for the sense of a serious issue is, then, some kind of thinking which takes place outside of mathematics – some non- mathematical [the authors’s emphasis] thinking. What makes for the sense of a serious issue is philosophical (idem) thinking” (p. 134). It produces a rather good feeling to see two philosophers, well acquainted with logical and mathematical thinking, to claim so resolutely that mathematics on its own, what we are used to call ‘pure’ mathematics, is not capable on its own to resolve deep philosophical issues, such as whether or not numbers exist; in their own words, “whether numerical expressions are terms of reference is a key question (perhaps the key question) in the philosophy of mathematics” (p. 282). As I will emphasize further on in this paper, I share this view that I prefer to formulate in these words: it requires arguments and/or proofs to show that mathematics on its own can decide a philosophical issue or, to put it otherwise, the burden of proof is on those thinkers that claim that pure mathematics is ontologically committal.1 (b) One of my basic philosophical beliefs or attitudes is the dictum: “the weaker your ontology, the better your worldview.” I like to consider myself as an ontological minimalist – just put into the world the stuff you 1 I have to add straight away that the question of the burden of proof is a very difficult and tricky problem. -
Hilbert's Program Then And
Hilbert’s Program Then and Now Richard Zach Abstract Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic sys- tems. Although G¨odel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial suc- cesses, and generated important advances in logical theory and meta- theory, both at the time and since. The article discusses the historical background and development of Hilbert’s program, its philosophical un- derpinnings and consequences, and its subsequent development and influ- ences since the 1930s. Keywords: Hilbert’s program, philosophy of mathematics, formal- ism, finitism, proof theory, meta-mathematics, foundations of mathemat- ics, consistency proofs, axiomatic method, instrumentalism. 1 Introduction Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of G¨ottingen and elsewhere in the 1920s and 1930s. Briefly, Hilbert’s proposal called for a new foundation of mathematics based on two pillars: the axiomatic method, and finitary proof theory. Hilbert thought that by formalizing mathematics in axiomatic systems, and subsequently proving by finitary methods that these systems are consistent (i.e., do not prove contradictions), he could provide a philosophically satisfactory grounding of classical, infinitary mathematics (analysis and set theory). -
True History of Strict Finitism
A True(r) History of Strict Finitism Jean Paul Van Bendegem Vrije Universiteit Brussel Center for Logic and Philosophy of Science Universiteit Gent Confusion about what strict finitism is ° Both historical roots ° As what its meaning is Different names: ° Strict finitism ° Ultrafinitism ° Ultra-intuitionism Aim: to clarify matters (a bit) The “founding father” (usually mentioned as such) Alexander Yessenin-Volpin (sometimes Essenine-Volpin of Ésenine-Volpine) • ultra-intuitionism • articles quite cryptic • no direct interest in finitism • different aim (finitary consistency proof) YESSENIN-VOLPIN, A. S. : "Le programme ultra- intuitioniste des fondements des mathématiques". In: Infinitistic Methods, Proceedings Symposium on Foundations of Mathematics, Pergamon Press, Oxford, 1961, pp. 201-223. YESSENIN-VOLPIN, A. S. : "The ultra-intuitionistic criticism and the antitraditional program for foundations of mathematics". In: KINO, MYHILL & VESLEY (eds.), Intuitionism & proof theory. North-Holland, Amsterdam, 1970, pp. 3-45. YESSENIN-VOLPIN, A. S. : "About infinity, finiteness and finitization". In RICHMAN, F. (ed.), 1981, pp. 274-313. “Zenonian” sets Z: • if n belongs to Z, so does n+1 • Z is nevertheless finite in its entirety example : the collection of heartbeats in your youth But see: James R. Geiser: “A Formalization of Essenin-Volpin's Proof Theoretical Studies by Means of Nonstandard Analysis” (JSL, Vol. 39, No. 1, 1974, pp. 81-87) for an attempt at rigorous reconstruction “Take, for example, the unusual answer proposed by Alexander Yessenin-Volpin (Aleksandr Esenin-Volpin), a Russian logician of the ultra-finitist school who was imprisoned in a mental institution in Soviet Russia. Yessenin-Volpin was once asked how far one can take the geometric series of powers of 2, say (2 1, 2 2, 2 3, …, 2100 ). -
Ramsey and Wittgenstein on the Infinite
bs_bs_banner DOI: 10.1111/ejop.12089 Whistling in 1929: Ramsey and Wittgenstein on the Infinite S. J. Methven Abstract: Cora Diamond has recently criticised as mere legend the interpretation of a quip of Ramsey’s, contained in the epigraph below, which takes him to be objecting to or rejecting Wittgenstein’s Tractarian distinction between saying and showing. Whilst I agree with Diamond’s discussion of the legend, I argue that her interpretation of the quip has little evidential support, and runs foul of a criticism sometimes made against intuitionism. Rather than seeing Ramsey as making a claim about the nature of propositions, as Diamond does, we should understand him as making a claim about the grammar of the logical connectives. Such a view coheres with the extant evidence of the nature of Wittgenstein’s and Ramsey’s 1929 philosophical encounters. It is also compatible with attributing to Ramsey a recognition of Wittgenstein’s distinction and with denying that criti- cising it is the lesson of the quip. But what we can’t say we can’t say, and we can’t whistle it either (Ramsey 1929a: 146). It is widely believed that Ramsey’s quip, the one quoted above, is, in some or other sense, a criticism of Wittgenstein’s Tractarian distinction between saying and showing.1 Cora Diamond has recently argued that this ‘legend’ is wrong (2011: 340). On her view, the quip expresses a criticism of the fact that the Tractarian account of quantification fails if the world contains infinitely many things. In the Tractatus, a universal generalisation is a logical product—a conjunction—of propositions. -
Formal Semantics and Logic.Pdf
Formal Semantics and Logic Bas C. van Fraassen Copyright c 1971, Bas C. van Fraassen Originally published by The Macmillan Company, New York This eBook was published by Nousoul Digital Publishers. Its formatting is optimized for eReaders and other electronic reading devices. For information, the publisher may be con- tacted by email at: [email protected] 2 To my parents 3 Preface to the .PDF Edition With a view to the increasing academic importance of digital media this electronic edition was created by Nousoul Digital Publishers. Thanks to the diligent work and expertise of Brandon P. Hopkins this edition has fea- tures that no book could have in the year of its original publication: searchable text and hyperlinked notes. The text itself remains essentially unchanged, but in addition to typographical corrections there are also some substantive corrections. Apart from the change in the solution to exercise 5.4 of Chapter 3, none comprise more than a few words or symbols. However, as different as digital media are from print media, so too is digital for- matting different from print formatting. Thus there are significant formatting differences from the earlier edition. The font and page dimensions differ, as well as the page numbering, which is made to accord with the pagina- tion automatically assigned to multi-paged documents by most standard document-readers. Bas van Fraassen 2016 4 Contents Preface (1971)9 Introduction: Aim and Structure of Logical Theory 12 1 Mathematical Preliminaries 19 1.1 Intuitive Logic and Set Theory....... 19 1.2 Mathematical Structures.......... 23 1.3 Partial Order and Trees.........