Unparticle Casimir Effect ∗ Antonia M

Total Page:16

File Type:pdf, Size:1020Kb

Unparticle Casimir Effect ∗ Antonia M Physics Letters B 772 (2017) 675–680 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Unparticle Casimir effect ∗ Antonia M. Frassino a,b, Piero Nicolini a,b, , Orlando Panella c a Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt am Main, Germany b Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Straße 1, D-60438 Frankfurt am Main, Germany c Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via A. Pascoli, I-06123 Perugia, Italy a r t i c l e i n f o a b s t r a c t Article history: In this paper we present the un-Casimir effect, namely the study of the Casimir energy in the presence of Received 16 June 2016 an unparticle component in addition to the electromagnetic field contribution. The distinctive feature of Received in revised form 1 June 2017 the un-Casimir effect is a fractalization of metallic plates. This result emerges through a new dependence Accepted 14 July 2017 of the Casimir energy on the plate separation that scales with a continuous power controlled by the Available online 20 July 2017 unparticle dimension. As long as the perfect conductor approximation is valid, we find bounds on the Editor: A. Ringwald unparticle scale that are independent of the effective coupling constant between the scale invariant sector Keywords: and ordinary matter. We find regions of the parameter space such that for plate distances around 5μm Unparticles and larger the un-Casimir bound wins over the other bounds. Scale invariance © 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 3 Casimir effect (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP . Plates fractalization 1. Introduction where the unparticle operator OU has dimension dU and kU = dU + dSM − 4. We note that the resulting interaction term de- Recently, a massive extension to the Standard Model was pro- pends on a dimensionless coupling constant λ = (U /MU )k < 1. posed in which scale invariance is preserved, provided these new Unitarity constraints from conformal field theory (CFT) necessitate particles are weakly interacting and appear in non-integer num- a lower bound on the unparticle dimension dU ≥ 1 [3]. Normally bers [1]. The topic has intersected a huge variety of fields, spanning only operators with dU ≤ 2are considered because for dU ≥ 2the astrophysics neutrino physics, AdS/CFT duality and quantum grav- calculations become sensitive to the ultraviolet sector and there- ity. fore less predictive. For a discussion about a more general form of Scale invariance for massive fields can be described through these operators see for instance the HEIDI models [4–7]. Banks–Zaks (BZ) fields [2]. At some very high energy scale MU , The phenomenology of unparticles and the associated signals at the Standard Model fields interact with a sector exhibiting a non- high energy colliders (LEP, LHC) have received attention in recent BZ L = −kO O trivial infrared fixed point, int (MU ) SM BZ , where the literature [8–13]. = + field operators must have dimensions dSM, dBZ and k dSM On the theoretical side, bounds on the parameter space have dBZ − 4. Since the Banks–Zaks fields are not observed in na- been derived by computing the unparticle contribution to the ture, their suppression requires that the scale MU is somewhere muon anomaly [14]. Unparticles also provide a relevant short scale between current experimentally-accessible scales and the Planck modification to gravitational interactions. Black hole solutions have scale. been derived for the case of scalar [15–17] and vector [18] unpar- BZ At a second energy scale U < MU , the sector develops ticle exchange. A significant characteristic of these solutions is the scale-invariant properties and the particle number is controlled by fractalization of the event horizon, whose dimension is a function = a continuous parameter dU dBZ . This is equivalent to saying that of the unparticle parameter dU . This feature has been confirmed BZ fields undergo a dimensional transmutation to become unpar- by subsequent studies of the spectral dimension, as an indicator ticles via of the short-scale spacetime dimension perceived by an unparti- 1 1 cle probe [19]. In addition, such unparticle modifications to gravity O O −−−→ O O SM BZ λ SM U (1) offer compelling effects that can be observed through short-scale (MU )k ∼U (U )kU deviations to Newton’s law [20] and on the energy levels of the hydrogen atom [21]. * Corresponding author. In this paper, we will analyze the Casimir effect in the presence E-mail address: nicolini@fias.uni-frankfurt.de (P. Nicolini). of a weakly-coupled unparticle sector, which we will refer to as the http://dx.doi.org/10.1016/j.physletb.2017.07.029 0370-2693/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 676 A.M. Frassino et al. / Physics Letters B 772 (2017) 675–680 ∞ un-Casimir effect. The Casimir effect has been discussed within var- AdU 2 2 d −2 2 DU (x, x ) = dm (m ) U D(x, x ;m ) ious scenarios beyond the Standard Model including compactified 2 dU −1 2π(U ) extra dimensions [22] and minimal length theories [23,24]. Using 0 the un-Casimir effect, we present a privileged testbed for setting 5/2 + [ ] = 16 π (dU 1/2) bounds on relevant regions of the parameter space U , dU gov- AdU (5) 2dU U − U erning unparticle physics. The un-Casimir effect also offers an in- (2π) (d 1) (2d ) triguing phenomenon of plate fractalization in agreement with the i.e. it is a linear continuous superposition of Feynman propagators above discussion. of fixed mass m. When the conformal dimension tends to unity (dU → 1) the unparticle propagator reduces to that of an ordinary 2 2 2. Unparticle contribution to the Casimir effect massless field DU (p ) → 1/p [25]. The above propagator can be expressed in terms of the unparticle generating functional ZU [ J] In line with (1) we assume the existence of an unparticle vector [33,34]. The net result is U field A of scaling dimension d which couples with the standard μ U = ˆ −1 2 μ ¯ μ DU x, x FU ( ) D x, x (6) model electron Dirac current J = ψγ ψ via the interaction: where D x, x is the Green’s function for massless scalars and λ L = AU ¯ μ ˆ −1 2 int − μ ψγ ψ. (2) FU ( ) is a non-local operator defined as [33,34] dU 1 U − −2 1 dU ˆ 2sin( π dU ) Interactions of the form given in (2) have been extensively used FU (2) ≡ . (7) 2 in the literature in order to study the phenomenology of unparti- AdU U cles [25–27]. In the presence of perfectly conducting parallel plates Eq. (6) shows that the unparticle propagator actually solves the at a distance a, the interaction in (2) will be responsible for a ˆ U massless Green function equation, since [ 2, FU (2) ] = 0. This fact Casimir effect for the field A in much the same way the interac- μ allows us to assume L = A ¯ μ ⎡ ⎛ ⎞ ⎤ tion int e μ ψγ ψ implies the Casimir effect in QED. For ease of presentation, in the following section we discuss the Casimir 3 | U | ≡⎣− i ⎝ ⎠ ⎦ effect mediated by a scalar unparticle field using the scalar field 0 T00 0 ∂μ∂μ DU (x, x ) . (8) 1 2 =0 analogy. This is routinely done in QED, where the actual result μ x=x is just twice that of a scalar field due to the two physical photon The above assumption turns out to be in complete agreement with polarisations. For the case of un-particles such a working hypothe- previous results for the non-local quantum stress tensor in a vari- sis remains valid, since the energy of longitudinal modes related to ˆ ety of contexts (e.g. for a generic operator FU (2)). See for instance superposition of massive fields (see (5) below) do not exceed 1% of [17] for the scalar un-particle mediated gravity and [35–37] for that of the transverse polarizations. Afull treatment of the Casimir other non-local deformations where it is found: effect mediated by a vector unparticle field will be presented in | U | = ˆ −1 2 | | [28]. 0 T00 0 FU ( ) 0 T00 0 , (9) The Casimir energy [29] is often described by the shift in the with 0|T00|0 referring to a massless scalar field. Indeed by using sum of the zero point energies of the normal modes of the electro- (6) in (9) one obtains (8). magnetic field induced by geometrical boundary conditions. Such By inserting (5) in (8) one has that the unparticle Casimir en- a Casimir energy can be written by means of the density of states C ergy EU reads: dN/dω which in quantum field theory (QFT) is related to the imag- ∞ inary part of the trace (over both space and spinor degrees of C AdU 2dU −3 C freedom of the field under consideration) of the Feynman prop- EU = dm m E (m). (10) 2 dU −1 agator [30,31]. It has been shown in [32, p. 47] that for a generic π(U ) 0 massive, scalar field the vacuum energy can be written as Here we used the fact that the derivatives ∂ ∂ and the integra- μ μ E = 3 2 ; 2 tion on m commute. To derive the above result for the Casimir vac(m) i d x ∂0 D(x, x m ) .
Recommended publications
  • Bounds on Unparticles from the Higgs Sector
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNT Digital Library Preprint typeset in JHEP style - HYPER VERSION Bounds on Unparticles from the Higgs Sector Patrick J. Foxa, Arvind Rajaramanb and Yuri Shirmanb a Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 b Department of Physics, University of California, Irvine, CA92697 Abstract: We study supersymmetric QCD in the conformal window as a laboratory for unparticle physics, and analyze couplings between the unparticle sector and the Higgs sector. These couplings can lead to the unparticle sector being pushed away from its scale invariant fixed point. We show that this implies that low energy experiments will not be able to see unparticle physics, and the best hope of seeing unparticles is in high energy collider experiments such as the Tevatron and the LHC. We also demonstrate how the breaking of scale invariance could be observed at these experiments. Contents 1. Introduction and Conclusions 1 2. Supersymmetric QCD as a model of unparticle physics 2 3. Operator analysis and experimental constraints 3 4. New effects in non-unparticle physics 5 1. Introduction and Conclusions Recently there has been a lot of interest [1–8] in unparticle theories [9, 10] in which the Standard Model (SM) is coupled to a conformal sector (called the unparticle sector). As shown in [9, 10], the conformal sector can have interesting and unexpected consequences. In this note, we shall investigate the effects on the conformal sector from the Higgs sector, and we will show that this leads to surprising new bounds on unparticle physics.
    [Show full text]
  • When the Disorder Is Just Right
    VIEWPOINT When the Disorder is Just Right A new model suggests that disorder can be a crucial ingredient for producing non-Fermi-liquid behavior in a system of interacting fermions. By Philip W. Phillips n 1956, physicist Lev Landau developed a theory describing devilishly difficult. Only a handful of solvable non-Fermi-liquid the low-temperature properties of helium-3 as those of a models exist for simplified cases. Building on one of these Iliquid of interacting fermions. Landau’s Fermi-liquid theory models, called the Sachdev–Ye–Kitaev (SYK) model [1], a team turned out to be widely applicable. It successfully describes, for led by Subir Sachdev of Harvard University has developed a new instance, the low-temperature properties of most metals. There theory that addresses an important, unresolved question: how are, however, numerous fermionic systems that aren’t Fermi does non-Fermi-liquid behavior arise in a condensed-matter liquids, including one-dimensional “Luttinger” liquids, Mott system—for instance, one where fermions (such as electrons) insulators, and heavy fermion materials. Understanding these are coupled to massless bosons (such as phonons)? The team’s exotic systems is an important research direction in modern results show that in a 2D system, non-Fermi liquid behavior can condensed-matter physics, but their theoretical description is emerge if there is a sufficient degree of disorder in the coupling between the bosons and the fermions [2]. To understand what might destroy Fermi-liquid behavior, it is helpful to recall an important property of Fermi liquids—they admit a purely local description in momentum space.
    [Show full text]
  • Search for Dark Matter and Unparticles Produced in Association with a Z Boson in Proton-Proton Collisions at √S = 8 ￿Tev
    Search for dark matter and unparticles produced in association with a Z boson in proton-proton collisions at √s = 8 TeV The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Khachatryan, V. et al. “Search for dark matter and unparticles produced in association with a Z boson in proton-proton collisions at √s = 8 TeV.” Physical Review D 93, 5 (March 2016): 052011 © 2016 CERN, for the CMS Collaboration As Published http://dx.doi.org/10.1103/PhysRevD.93.052011 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/110705 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW D 93, 052011 (2016) Search for dark matter and unparticles producedp inffiffi association with a Z boson in proton-proton collisions at s ¼ 8 TeV V. Khachatryan et al.* (CMS Collaboration) (Received 30 November 2015; published 22 March 2016) A search for evidence of particle dark matter (DM) and unparticle production at the LHC has been performed using events containing two charged leptons, consistent with the decay of a Z boson, and large missing transverse momentum. This study is based on data collected with the CMS detector corresponding to an integrated luminosity of 19.7 fb−1 of pp collisions at the LHC at a center-of-mass energy of 8 TeV. No significant excess of events is observed above the number expected from the standard model contributions.
    [Show full text]
  • Vector Unparticle Enhanced Black Holes: Exact Solutions and Thermodynamics
    Physics Faculty Works Seaver College of Science and Engineering 9-2010 Vector unparticle enhanced black holes: exact solutions and thermodynamics Jonas R. Mureika Loyola Marymount University, [email protected] Euro Spallucci Universit`a di Trieste & INFN Follow this and additional works at: https://digitalcommons.lmu.edu/phys_fac Part of the Physics Commons Recommended Citation Mureika, J.R. and E. Spallucci, "Vector unparticle enhanced black holes: Exact solutions and thermodynamics," Physics Letters B 693, 129-133 (2010). http://dx.doi.org/10.1016/ j.physletb.2010.08.025. This Article - post-print is brought to you for free and open access by the Seaver College of Science and Engineering at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Physics Faculty Works by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact [email protected]. Vector unparticle enhanced black holes: exact solutions and thermodynamics J. R. Mureika 1 Department of Physics, Loyola Marymount University, Los Angeles, CA 90045-2659 Euro Spallucci 2 Dipartimento di Fisica Teorica, Universit`adi Trieste and INFN, Sezione di Trieste, Italy Abstract Tensor and scalar unparticle couplings to matter have been shown to enhance gravitational interactions and provide corrections to the Schwarzschild metric and associated black hole structure. We derive an exact solution to the Einstein equations for vector unparticles, and conclusively demonstrate that these induce Riessner-Nordstr¨om (RN)-like solutions where the role of the “charge” is defined by a composite of unparticle phase space parameters. These black holes admit double-horizon structure, although unlike the RN metric these solutions have a minimum inner horizon value.
    [Show full text]
  • Strange Metals
    SciPost Phys. 6, 061 (2019) Planckian dissipation, minimal viscosity and the transport in cuprate strange metals Jan Zaanen The Institute Lorentz for Theoretical Physics, Leiden University, Leiden, The Netherlands [email protected] Abstract Could it be that the matter formed from the electrons in high Tc superconductors is of a radically new kind that may be called "many body entangled compressible quantum matter"? Much of this text is intended as an easy to read tutorial, explaining recent theoretical advances that have been unfolding at the cross roads of condensed matter- and string theory, black hole physics as well as quantum information theory. These de- velopments suggest that the physics of such matter may be governed by surprisingly simple principles. My real objective is to present an experimental strategy to test criti- cally whether these principles are actually at work, revolving around the famous linear resistivity characterizing the strange metal phase. The theory suggests a very simple explanation of this "unreasonably simple" behavior that is actually directly linked to re- markable results from the study of the quark gluon plasma formed at the heavy ion colliders: the "fast hydrodynamization" and the "minimal viscosity". This leads to high quality predictions for experiment: the momentum relaxation rate governing the resis- tivity relates directly to the electronic entropy, while at low temperatures the electron fluid should become unviscous to a degree that turbulent flows can develop even on the nanometre scale. Copyright J. Zaanen. Received 05-09-2018 This work is licensed under the Creative Commons Accepted 14-05-2019 Check for Attribution 4.0 International License.
    [Show full text]
  • Unparticle Physics
    UNPARTICLE PHYSICS Jonathan Feng UC Irvine Detecting the Unexpected UC Davis 16-17 November 2007 OVERVIEW • New physics weakly coupled to SM through heavy mediators Mediators SM CFT • Many papers [hep-un] • Many basic, outstanding questions • Goal: provide groundwork for discussion, LHC phenomenology 16 Nov 07 Feng 2 CONFORMAL INVARIANCE • Conformal invariance implies scale invariance, theory “looks the same on all scales” • Scale transformations: x Æ e-α x , φ Æ edα φ • Classical field theories are conformal if they have no dimensionful parameters: dφ = 1, dψ = 3/2 • SM is not conformal even as a classical field theory – Higgs mass breaks conformal symmetry 16 Nov 07 Feng 3 CONFORMAL INVARIANCE • At the quantum level, dimensionless couplings depend on scale: renormalization group evolution g g Q Q • QED, QCD are not conformal 16 Nov 07 Feng 4 CONFORMAL FIELD THEORIES • Banks-Zaks (1982) β-function for SU(3) with NF flavors g For a range of N , flows to a F Q perturbative infrared stable fixed point • N=1 SUSY SU(NC) with NF flavors For a range of NF, flows to a strongly coupled infrared stable fixed point Intriligator, Seiberg (1996) 16 Nov 07 Feng 5 UNPARTICLES Georgi (2007) • Hidden sector (unparticles) coupled to SM through non- renormalizable couplings at M g • Assume unparticle sector [ ] [ ] becomes conformal at Λ , U couplings to SM preserve conformality in the IR Q ΛU M • Operator OUV , dimension dUV = 1, 2,… Æ operator O, dimension d • BZ Æ d ≈ dUV, but strong coupling Æ d ≠ dUV . Unitary CFT Æ d ≥ 1 for scalar O, d ≥ 3 for vector O.
    [Show full text]
  • Thermal Unparticles: a New Form of Energy Density in the Universe
    EPJ manuscript No. (will be inserted by the editor) Thermal Unparticles: A New Form of Energy Density in the Universe Shao-Long Chen1,2, Xiao-Gang He1,2, Xue-Peng Hu3, and Yi Liao3 a 1 Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 2 Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 3 Department of Physics, Nankai University, Tianjin 300071 Received: date / Revised version: date Abstract. Unparticle U with scaling dimension dU has peculiar thermal properties due to its unique phase space structure. We find that the equation of state parameter ωU , the ratio of pressure to energy density, is given by 1/(2dU + 1) providing a new form of energy in our universe. In an expanding universe, the unparticle energy density ρU (T ) evolves dramatically differently from that for photons. For dU > 1, even if ρU (TD) at a high decoupling temperature TD is very small, it is possible to have a large relic density 0 0 ρU (Tγ ) at present photon temperature Tγ , large enough to play the role of dark matter. We calculate TD 0 and ρU (Tγ ) using photon-unparticle interactions for illustration. PACS. 98.80.Cq Particle-theory and field-theory models of the early Universe – 11.15.Tk Other nonper- turbative techniques – 11.25.Hf Conformal field theory, algebraic structures – 14.80.-j Other particles In cosmology the equation of state (EoS) parameter the behavior of unparticle energy density ρ (T ) is dramat- ω, the ratio of pressure (p) to energy density (ρ), for a ically different than that for photons.
    [Show full text]
  • Proceedings of Introduction to Neutrosophic Physics: Unmatter
    Florentin Smarandache editor UNMATTER Combinations. Let’s note by q = quark ∈{Up, Down, Top, Bottom, Strange, Charm}, and by a = antiquark ∈{Up^, Down^, Top^, Bottom^, Strange^, Charm^}. Hence, for combinations of n quarks and antiquarks, n ≥ 2, prevailing the colorless, we have the following unmatter possibilities: - if n = 2, we have: qa (biquark – for example the mesons and antimessons); - if n = 3, we have qqq, aaa (triquark – for example the baryons and antibaryons); - if n = 4, we have qqaa (tetraquark); - if n = 5, we have qqqqa, aaaaq (pentaquark); - if n = 6, we have qqqaaa, qqqqqq, aaaaaa (hexaquark); - if n = 7, we have qqqqqaa, qqaaaaa (septiquark); - if n = 8, we have qqqqaaaa, qqqqqqaa, qqaaaaaa (octoquark); - if n = 9, we have qqqqqqqqq, qqqqqqaaa, qqqaaaaaa, aaaaaaaaa Zip(nonaquark); Publishing - if n = 10, we have qqqqqaaaaa, qqqqqqqqaa, qqaaaaaaaa (decaquark);2011 etc. -------------------------------------------------------------------------------------------------- The American Mathematical Society International Conference Introduction to Neutrosophic Physics: Unmatter & Unparticle University of New Mexico, Mathematics & Sciences Department Gallup, New Mexico, USA, December 2-4, 2011 -------------------------------------------------------------------------------------------------- Proceedings of the Introduction to Neutrosophic Physics: Unmatter & Unparticle International Conference Florentin Smarandache editor University of New Mexico Mathematics & Sciences Department Gallup, NM 87301, USA [email protected] December 2-4, 2011 1 1 This book can be ordered on paper or electronic formats from: Zip Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614) 485-0721 E-mail: [email protected] Website: www.zippublishing.com Copyright 2011 by Editor and the Authors for their papers Front and back covers by Editor Peer-reviewers: Dmitri Rabounski, editor-in-chief of Progress in Physics international journal.
    [Show full text]
  • Unparticle Dark Matter
    THE UNIVERSITY OF ALABAMA University Libraries Unparticle Dark Matter T. Kikuchi – KEK N. Okada – KEK Deposited 05/30/2019 Citation of published version: Kikuchi, T., Okada, N. (2008): Unparticle Dark Matter. Physics Letters B, 665(4). DOI: https://doi.org/10.1016/j.physletb.2008.06.021 © 2008 Elsevier Science B. V. All rights reserved. Physics Letters B 665 (2008) 186–189 Contents lists available at ScienceDirect Physics Letters B ELSEVIER www.elsevier.com/locate/physletb Unparticle dark matter ∗ Tatsuru Kikuchi a, , Nobuchika Okada a,b a Theory Division, KEK, 1-1 Oho, Tsukuba 305-0801, Japan b Department of Particle and Nuclear Physics, The Graduate University for Advanced Studies, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan article info abstract Article history: Once a parity is introduced in unparticle physics, under which unparticle provided in a hidden conformal Received 8 May 2008 sector is odd while all Standard Model particles are even, unparticle can be a suitable candidate for Received in revised form 4 June 2008 the cold dark matter (CDM) in the present universe through its coupling to the Standard Model Higgs Accepted 6 June 2008 doublet. We find that for Higgs boson mass in the range, 114.4GeV m 250 GeV, the relic abundance Availableonline18June2008 h of unparticle with mass 50 GeV mU 80 GeV can be consistent with the currently observed CDM Editor: T. Yanagida density. In this scenario, Higgs boson with mass mh 160 GeV dominantly decays into a pair of unparticles and such an invisible Higgs boson may be discovered in future collider experiments.
    [Show full text]
  • Unparticle Self-Interactions the Harvard Community Has
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Unparticle Self-Interactions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Georgi, Howard, and Yevgeny Kats. Forthcoming. Unparticle self- interactions. Journal of High Energy Physics. Published Version http://www.springer.com/new+%26+forthcoming+titles+%28defa ult%29/journal/13130 Accessed February 18, 2015 7:55:08 AM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4317739 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP (Article begins on next page) Unparticle self-interactions Howard Georgi,1 Yevgeny Kats,2 Center for the Fundamental Laws of Nature Jefferson Physical Laboratory Harvard University Cambridge, MA 02138 Abstract We develop techniques for studying the effects of self-interactions in the conformal sector of an unparticle model. Their physics is encoded in the higher !-point functions of the conformal theory. We study inclusive processes and argue that the inclusive production of unparticle stuff in standard model processes due to the unparticle self- interactions can be decomposed using the conformal partial wave expansion and its generalizations into a sum over contributions from the production of various kinds of unparticle stuff, corresponding to different primary conformal operators. Such processes typically involve the production of unparticle stuff associated with oper- ators other than those to which the standard model couples directly.
    [Show full text]
  • Arxiv:Hep-Ph/0703260V3 20 May 2007 Unparticle Physics
    Unparticle Physics Howard Georgi,∗ Center for the Fundamental Laws of Nature Jefferson Physical Laboratory Harvard University Cambridge, MA 02138 Abstract I discuss some simple aspects of the low-energy physics of a nontrivial scale invariant sector of an effective field theory — physics that cannot be described in terms of particles. I argue that it is important to take seriously the possibility that the unpar- ticle stuff described by such a theory might actually exist in our world. I suggest a scenario in which some details of the production of unparticle stuff can be calculated. I find that in the appropriate low energy limit, unparticle stuff with scale dimension dU looks like a non-integral number dU of invisible particles. Thus dramatic evidence for a nontrivial scale invariant sector could show up experimentally in missing energy distributions. arXiv:hep-ph/0703260v3 20 May 2007 ∗[email protected] Stuff with nontrivial scale invariance in the infrared (IR) [1] would be very unlike anything we have seen in our world. Our quantum mechanical world seems to be well-described in terms of particles. We have a common-sense notion of what a particle is. Classical particles have definite mass and therefore carry energy and momentum in a definite relation E2 = p2c2 + m2c4. In quantum mechanics, this relation becomes the dispersion relation for the corresponding quantum waves with the mass fixing the low-frequency cut-off, ω2 = c2k2 + m2c4/~2. Scale invariant stuff cannot have a definite mass unless that mass is zero. A scale transfor- mation multiplies all dimensional quantities by a rescaling factor raised to the mass dimension so a nonzero mass is not scale invariant.
    [Show full text]
  • Π Decays Within Unparticle Physics ∗ Chuan-Hung Chen A, C.S
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Physics Letters B 671 (2009) 250–255 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Investigation of Bu,d → (π, K )π decays within unparticle physics ∗ Chuan-Hung Chen a, C.S. Kim b, , Yeo Woong Yoon b a Department of Physics, National Cheng-Kung University, Tainan 701, Taiwan b Department of Physics, Yonsei University, Seoul 120-479, Republic of Korea article info abstract Article history: We investigate the implication of unparticle physics on the Bu,d → (π, K )π decays under the constraints Received 12 June 2008 ¯ of the Bd,s–Bd,s mixing. We found that not only the unparticle parameters that belong to the flavor Received in revised form 25 November 2008 changing neutral current (FCNC) processes but also scaling dimension dU could be constrained by the Accepted 3 December 2008 B –B¯ mixing phenomenology. Employing the minimum χ 2 analysis to the B → (π, K )π decays Availableonline7December2008 d,s d,s u,d with the constraints of B mixing, we find that the puzzle of large branching ratio for B → 0 0 Editor: M. Cveticˇ d,s d π π and the discrepancy between the standard model estimation and data for the direct CP asymmetry of + + 0 + − B → K π and Bd → π π can be resolved well. However, the mixing induced CP asymmetry of 0 Bd → K S π could not be well accommodated by the unparticle contributions. © 2008 Elsevier B.V.
    [Show full text]