Operons and SL2 Trans-Splicing Exist in Nematodes Outside the Genus Caenorhabditis (Polycistronic Transcription͞caenorhabditis Elegans͞splice Leader͞sl RNA)

Total Page:16

File Type:pdf, Size:1020Kb

Operons and SL2 Trans-Splicing Exist in Nematodes Outside the Genus Caenorhabditis (Polycistronic Transcription͞caenorhabditis Elegans͞splice Leader͞sl RNA) Proc. Natl. Acad. Sci. USA Vol. 94, pp. 9751–9756, September 1997 Evolution Operons and SL2 trans-splicing exist in nematodes outside the genus Caenorhabditis (polycistronic transcriptionyCaenorhabditis elegansysplice leaderySL RNA) DONALD EVANS*, DIEGO ZORIO*, MARGARET MACMORRIS*‡,CARLOS E. WINTER†,KRISTI LEA*, AND THOMAS BLUMENTHAL*‡§ *Department of Biology, Indiana University, Bloomington, IN 47405; and †Departamento de Parasitologia, Instituto de CieˆnciasBiome´dicas–University of Sao Paulo, 05508-900, Brazil Communicated by Norman R. Pace, University of California, Berkeley, CA, June 3, 1997 (received for review February 26, 1997) ABSTRACT The genomes of most eukaryotes are com- other nematodes (ref. 7; reviewed in refs. 8 and 9), in Euglena posed of genes arranged on the chromosomes without regard (10), and in flatworms (11, 12). In contrast to trypanosomes, to function, with each gene transcribed from a promoter at its in which only trans-splicing is present, the genes in the other 5* end. However, the genome of the free-living nematode organisms also contain cis-spliced introns. It was presumed Caenorhabditis elegans contains numerous polycistronic clus- that these genes were monocistronic and arranged randomly ters similar to bacterial operons in which the genes are on the chromosomes as in other eukaryotes. However, it was transcribed sequentially from a single promoter at the 5* end recently discovered that the free-living nematode C. elegans of the cluster. The resulting polycistronic pre-mRNAs are does have polycistronic transcription units, as in trypanosomes, processed into monocistronic mRNAs by conventional 3* end and it uses a special small nuclear ribonucleoprotein, the SL2 formation, cleavage, and polyadenylation, accompanied by small nuclear ribonucleoprotein, to process the downstream trans-splicing with a specialized spliced leader (SL), SL2. To genes in the polycistronic pre-mRNAs into monocistronic determine whether this mode of gene organization and ex- mRNAs (13, 14). pression, apparently unique among the animals, occurs in Trans-splicing in nematodes involves the donation of a 22 other species, we have investigated genes in a distantly related nucleotide spliced leader (SL), including a trimethylguanosine free-living rhabditid nematode in the genus Dolichorhabditis cap, from a small nuclear RNA to the 59 ends of pre-mRNAs (strain CEW1). We have identified both SL1 and SL2 RNAs in (15–20). While the exact function of the SL is unknown, it has this species. In addition, we have sequenced a Dolichorhabditis recently been shown to increase translation efficiency of those genomic region containing a gene cluster with all of the mRNAs containing it at their 59 ends in Ascaris lumbricoides characteristics of the C. elegans operons. We show that the in vitro extracts (21). downstream gene is trans-spliced to SL2. We also present C. elegans has two different SLs, each 22 nt long. The first evidence that suggests that these two genes are also clustered to be discovered, SL1 (7), is trans-spliced onto the 59 ends of in the C. elegans and Caenorhabditis briggsae genomes. Thus, it about half of C. elegans mRNAs (14). The signal for SL1 appears that the arrangement of genes in operons pre-dates trans-splicing is the presence of a short sequence, called an the divergence of the genus Caenorhabditis from the other outron, at the 59 end of the pre-mRNA (22). The outron is genera in the family Rhabditidae, and may be more wide- simply an AU-rich sequence lacking a functional 59 splice site, spread than is currently appreciated. followed by a 39 splice site (23, 24). The second SL to be discovered, SL2 (25), was shown to be In bacteria and archaea, the genomes are primarily organized reserved for splicing to downstream genes in polycistronic in arrays of genes whose products have related functions. These pre-mRNAs derived from cotranscribed gene clusters, or gene clusters, called operons, are cotranscribed from an operons (13). The resulting polycistronic pre-mRNAs are upstream promoter and the resulting polycistronic mRNA is processed into monocistronic units by cleavage and polyade- translated by ribosomes initiating at or near the 59 end of the nylation and by trans-splicing as they are synthesized. Approx- RNA. These operons serve to efficiently coregulate proteins imately 25% of C. elegans genes are arranged in operons (14). that function together. In contrast, eukaryotes have genomes The genes in these clusters are oriented in the same 59 to 39 composed of genes arranged apparently at random, with each direction and are separated by '100 bp of intercistronic DNA, transcribed by a promoter at its 59 end. However, in a group or in rarer cases 300–400 bp (26). In every case investigated, of primitive eukaryotic protozoa, the trypanosomes, genes are the first gene in the cluster is either trans-spliced to SL1 or is transcribed polycistronically (1–3). In this case, the polycis- not trans-spliced, whereas the downstream genes are trans- tronic pre-mRNA is processed by 39 end formation and spliced, either exclusively to SL2 or to a mixture of SL2 and SL1 trans-splicing to create conventional eukaryotic monocistronic (13, 14). Since SL2 has only been found trans-spliced to mRNAs. The trans-splicing reaction that creates the 59 ends of downstream genes in operons, we interpret the presence of SL2 the mRNAs is related to the cis-splicing of higher eukaryotes; on the 59 end of an mRNA as evidence of an operon (27). it proceeds through a 29–59 branched intermediate, the splice Although C. elegans operons may not always serve to sites have the same consensus sequences, and it is catalyzed by coregulate genes whose products function together, as in some of the same small nuclear ribonucleoprotein particles (4, bacteria, there are a few clear examples of operons that serve 5). this purpose. For example the deg-3 operon contains two Trans-splicing was first discovered in trypanosomatids (4, 6), and later shown to occur also in Caenorhabditis elegans and Abbreviations: SL, spliced leader; RT, reverse transcription. Data deposition: The sequences reported in this paper have been The publication costs of this article were defrayed in part by page charge deposited in the GenBank database (accession nos. U90830–U90835). ‡Present address: Department of Biochemistry and Molecular Genet- payment. This article must therefore be hereby marked ‘‘advertisement’’ in ics, University of Colorado Health Sciences Center, 4200 East 9th accordance with 18 U.S.C. §1734 solely to indicate this fact. Avenue, Denver, CO 80262. © 1997 by The National Academy of Sciences 0027-8424y97y949751-6$2.00y0 §To whom reprint requests should be sent at the present address. PNAS is available online at http:yywww.pnas.org. e-mail: [email protected]. 9751 Downloaded by guest on September 26, 2021 9752 Evolution: Evans et al. Proc. Natl. Acad. Sci. USA 94 (1997) subunits of the same acetylcholine receptor (ref. 28; M. Treinin hybridized with either a Dolichorhabditis rpl-29 RT-PCR prod- and M. Chalfie, personal communication), and the lin-15 uct or a C. elegans rpp-1 cDNA PCR product. operon encodes two unrelated proteins whose products col- Southern Blots. Genomic DNA isolated from Dolichorhab- laborate in the cell signaling pathway resulting in vulva for- ditis, C. elegans, and C. briggsae was digested with restriction mation (29, 30). endonucleases, separated electrophoretically on a 1% agarose It is not yet known how widespread SL2 and operons are in gel, and transferred to Hybond-N. This blot was then probed the nematode phylum. SL1 has been detected in all nematode with a 283-bp Dolichorhabditis rpl-29 PCR product (oligos: species studied with virtually no sequence variation (reviewed L27B659-1, 59-GCACCCTGGAGGACGTG-39 and L27- in ref. 9). In contrast, SL2 has been found only in Caenorhab- B659-4, 59-GCCTTCTCAGCGCTGACC-39), which was la- ditis species (25). Comparison of C. elegans with Caenorhabditis beled as above. The low stringency hybridization conditions briggsae, two species that have been estimated to have been were 53 SSC, 23 Denhardt’s solution, 0.05 M NaPO4 (pH 6.5), separated for 25–50 million years (31), shows perfect conser- 0.1% SDS, and 0.2 mgyml salmon sperm DNA, incubated at vation of SL2 and in several cases, the same operons found in 48°C. The wash conditions were 23 SSC at room temperature the C. elegans genome are present in the genome of C. briggsae and 13 SSC at 50°C. The annealed probe was removed from (32–34). the blot (confirmed by autoradiographic exposure) and then In this paper we report, to the best of our knowledge, the the blot was hybridized with the C. elegans rpp-1 cDNA PCR first example of an operon and of SL2 trans-splicing in a product used to select the Dolichorhabditis clone. Conditions nematode outside of the genus Caenorhabditis: the rhabditid were the same, except that the rpp-1 probe was hybridized at Dolichorhabditis (CEW1). The isolate CEW1 is an undescribed 50°C. sibling species of Rhabditis (Oscheius) tipulae, a member of the Cloning Dolichorhabditis SL1 Genes. The Dolichorhabditis Dolichura Group (35). Placement of CEW1 and R. tipulae in a genomic library was screened with a 32P-kinased oligonucle- genus is actively under investigation (L. Carta, personal com- otide composed of the first 20 nt of the C. elegans SL1 spliced munication), but CEW1 is provisionally called Dolichorhabdi- leader (SL1–20: 59-GGTTTAATTACCCAAGTTTG-39). tis. Although Dolichorhabditis is a small free-living nematode, Plaques that hybridized to this probe were isolated. At least it is much more evolutionarily distant from C. elegans than is two different clones were isolated based on digestion with C. briggsae. This conclusion is based on the sequence of SL1 multiple restriction endonucleases. Fragments that hybridized and SL2 RNAs, as well as a comparison of the vit-6 genes from to the probe were subcloned and sequenced as above.
Recommended publications
  • Deep Evolutionary Origin of Nematode SL2 Trans-Splicing Revealed by Genome-Wide
    bioRxiv preprint doi: https://doi.org/10.1101/642082; this version posted May 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Deep evolutionary origin of nematode SL2 trans-splicing revealed by genome-wide analysis of the Trichinella spiralis transcriptome Marius Wenzel2, Christopher Johnston1, Berndt Müller1, Jonathan Pettitt1 and Bernadette Connolly1 Running Title: Conservation of nematode SL2 trans-splicing 1 School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK 2 Centre of Genome-Enabled Biology and Medicine, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3RY, UK Corresponding Author: Jonathan Pettitt, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK. Tel.: +44 1224 437516. Email: [email protected] Keywords: spliced leader trans-splicing; polycistronic RNA processing; eukaryotic operons; RNA splicing; nematode genome evolution 1 bioRxiv preprint doi: https://doi.org/10.1101/642082; this version posted May 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. ABSTRACT Spliced leader trans-splicing is intimately associated with the presence of eukaryotic operons, allowing the processing of polycistronic RNAs into individual mRNAs.
    [Show full text]
  • Caenorhabditis Elegans Mrnas That Encode a Protein Similar to Adars Derive from an Operon Containing Six Genes Ronald F
    3424–3432 Nucleic Acids Research, 1999, Vol. 27, No. 17 © 1999 Oxford University Press Caenorhabditis elegans mRNAs that encode a protein similar to ADARs derive from an operon containing six genes Ronald F. Hough, Arunth T. Lingam and Brenda L. Bass* Department of Biochemistry and Howard Hughes Medical Institute, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA Received June 8, 1999; Revised and Accepted July 15, 1999 DDBJ/EMBL/GenBank accession nos+ ABSTRACT adenosines within base-paired regions of cellular pre-mRNAs and viral RNAs (reviewed in 5). In addition to the C-terminal The Caenorhabditis elegans T20H4.4 open reading domain, which contains the catalytic active site (2,6,7), frame (GenBank accession no. U00037) predicted by ADARs contain variable numbers of an amino acid sequence Genefinder encodes a 367 amino acid protein that is known as the dsRNA binding motif (dsRBM) (8,9). 32–35% identical to the C-terminal domain of adeno- We isolated several T20H4.4 clones from a C.elegans cDNA sine deaminases that act on RNA. We show that library. The cDNAs included two exons in addition to those T20H4.4 cDNAs (GenBank accession no. AF051275) identified as part of the T20H4.4 ORF by Genefinder (10), and encode a larger 495 amino acid protein that is encoded a larger protein (55.3 kDa) that contained a single extended at its N-terminus to include a single double- dsRBM. While one of the newly identified exons was created stranded RNA-binding motif, and that T20H4.4 occu- by conventional cis-splicing, the second derived from a trans- pies the second position in a six-gene operon splicing event since the 5' ends of the three longest clones con- (5'-T20H4.5, T20H4.4, R151.8A, R151.8B, R151.7, tained non-genomic spliced-leader (SL) sequences.
    [Show full text]
  • 143.Full.Pdf
    Copyright 1999 by the Genetics Society of America The Levels of the RoRNP-Associated Y RNA Are Dependent Upon the Presence of ROP-1, the Caenorhabditis elegans Ro60 Protein Jean-Claude LabbeÂ,* Siegfried Hekimi² and Luis A. Rokeach* *DeÂpartement de Biochimie, Universite de MontreÂal, MontreÂal, QueÂbec H3C 3J7, Canada and ²Biology Department, McGill University, MontreÂal, QueÂbec H3C 3J7, Canada Manuscript received July 15, 1998 Accepted for publication October 5, 1998 ABSTRACT The Ro ribonucleoproteins (RoRNP) consist of at least one major protein of 60 kD, Ro60, and one small associated RNA, designated Y RNA. Although RoRNP have been found in all vertebrate species examined so far, their function remains unknown. The Caenorhabditis elegans rop-1 gene previously has been identi®ed as encoding a Ro60 homologue. We report here the phenotypic characterization of a C. elegans strain in which rop-1 has been disrupted. This is the ®rst report regarding the inactivation of a major RoRNP constituent in any organism. The rop-1 mutant worms display no visible defects. However, at the molecular level, the disruption of rop-1 results in a dramatic decrease in the levels of the ROP-1- associated RNA (CeY RNA). Moreover, transgenic expression of wild-type rop-1 partially rescues the levels of CeY RNA. Considering that transgenes are poorly expressed in the germline, the fact that the rescue is only partial is most likely related to the high abundance of the CeY RNA in the adult germline and in embryos. The developmental expression pattern and localization of CeY RNA suggest a role for this molecule during embryogenesis.
    [Show full text]
  • Mrna Editing, Processing and Quality Control in Caenorhabditis Elegans
    | WORMBOOK mRNA Editing, Processing and Quality Control in Caenorhabditis elegans Joshua A. Arribere,*,1 Hidehito Kuroyanagi,†,1 and Heather A. Hundley‡,1 *Department of MCD Biology, UC Santa Cruz, California 95064, †Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and ‡Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405 ABSTRACT While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes. KEYWORDS Caenorhabditis elegans; splicing; RNA editing; RNA modification; polyadenylation; quality control; WormBook TABLE OF CONTENTS Abstract 531 RNA Editing and Modification 533 Adenosine-to-inosine RNA editing 533 The C. elegans A-to-I editing machinery 534 RNA editing in space and time 535 ADARs regulate the levels and fates of endogenous dsRNA 537 Are other modifications present in C.
    [Show full text]
  • Landscape of the Spliced Leader Trans-Splicing Mechanism In
    www.nature.com/scientificreports OPEN Landscape of the spliced leader trans-splicing mechanism in Schistosoma mansoni Received: 12 July 2017 Mariana Boroni1,2, Michael Sammeth 3,4, Sandra Grossi Gava 5, Natasha Andressa Accepted: 12 February 2018 Nogueira Jorge2, Andréa Mara Macedo1, Carlos Renato Machado1, Marina Moraes Mourão5 & Published: xx xx xxxx Glória Regina Franco1 Spliced leader dependent trans-splicing (SLTS) has been described as an important RNA regulatory process that occurs in diferent organisms, including the trematode Schistosoma mansoni. We identifed more than seven thousand putative SLTS sites in the parasite, comprising genes with a wide spectrum of functional classes, which underlines the SLTS as a ubiquitous mechanism in the parasite. Also, SLTS gene expression levels span several orders of magnitude, showing that SLTS frequency is not determined by the expression level of the target gene, but by the presence of particular gene features facilitating or hindering the trans-splicing mechanism. Our in-depth investigation of SLTS events demonstrates widespread alternative trans-splicing (ATS) acceptor sites occurring in diferent regions along the entire gene body, highlighting another important role of SLTS generating alternative RNA isoforms in the parasite, besides the polycistron resolution. Particularly for introns where SLTS directly competes for the same acceptor substrate with cis-splicing, we identifed for the frst time additional and important features that might determine the type of splicing. Our study substantially extends the current knowledge of RNA processing by SLTS in S. mansoni, and provide basis for future studies on the trans-splicing mechanism in other eukaryotes. In contrast to conventional splicing in cis, trans-splicing connects exons of two diferent primary RNA molecules tran- scribed from a priori unrelated genomic loci.
    [Show full text]
  • IMPACTO DO PROCESSAMENTO DE TRANSCRITOS POR SPLICED LEADER TRANS-SPLICING NO REPERTÓRIO PROTEICO DE Schistosoma Mansoni
    Jéssica Silqueira Hickson Rios Universidade Federal de Minas Gerais IMPACTO DO PROCESSAMENTO DE TRANSCRITOS POR SPLICED LEADER TRANS-SPLICING NO REPERTÓRIO PROTEICO DE Schistosoma mansoni Belo Horizonte 2017 Jéssica Silqueira Hickson Rios Universidade Federal de Minas Gerais IMPACTO DO PROCESSAMENTO DE TRANSCRITOS POR SPLICED LEADER TRANS-SPLICING NO REPERTÓRIO PROTEICO DE Schistosoma mansoni Dissertação apresentada a Universidade Federal de Minas Gerais como requisito parcial para obtenção de título de Mestre pelo Programa de Pós-Graduação em Bioinformática. Orientadora: Profa. Dra Glória Regina Franco Co-orientadora: Dra Mariana Lima Boroni Martins Belo Horizonte 2017 SUMÁRIO RESUMO .................................................................................................................................... V ABSTRACT ............................................................................................................................... VI LISTA DE ABREVIATURAS ............................................................................................... VII ÍNDICE DE ILUSTRAÇÕES ............................................................................................... VIII ÍNDICE DE TABELAS ............................................................................................................ IX 1 INTRODUÇÃO ........................................................................................................................ 1 1.1 Aspectos gerais da esquistossomose ................................................................................
    [Show full text]
  • Trans-Splicing of the C. Elegans Let-7 Primary Transcript Developmentally Regulates Let-7
    bioRxiv preprint doi: https://doi.org/10.1101/400077; this version posted August 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Nelson and Ambros Trans-splicing of the C. elegans let-7 primary transcript developmentally regulates let-7 microRNA biogenesis and let-7 family microRNA activity Charles Nelson and Victor Ambros* 1Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA *Corresponding author: Victor Ambros, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA, telephone: 508-856-6380, fax: 508-856-2577, email: [email protected] Running Title: Trans-splicing of the let-7 primary transcript regulates the let-7 family of microRNAs. Keywords: let-7 family microRNAs; lin-28; trans-splicing; developmental timing 1 bioRxiv preprint doi: https://doi.org/10.1101/400077; this version posted August 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Nelson and Ambros SUMMARY let-7 is a microRNA whose sequence and roles as a regulator of developmental progression are conserved throughout bilaterians. In most systems, transcription of the let-7 locus occurs relatively early in development, whilst processing of let-7 primary transcript into mature microRNA arises later and is associated with cellular differentiation. In C. elegans and other animals, the RNA binding protein LIN-28 post-transcriptionally inhibits let-7 biogenesis at early developmental stages. The mechanisms by which LIN-28 and other factors developmentally regulate let-7 biogenesis are not fully understood.
    [Show full text]
  • Interactions Between the Ur Element RNA Oligonucleotide and Cstf
    1 Interactions Between the Ur Element RNA Oligonucleotide and CstF-64 in C. elegans Nematodes Bryan Nycz University of Colorado at Boulder Molecular, Cellular, and Developmental Biology Senior Honors Thesis April 5, 2013 Thesis Advisor: Dr. Thomas Blumenthal, MCDB Direct supervisor: Dr. Erika Lasda Committee Members: Dr. Jennifer Martin, MCDB Dr. James Goodrich, CHEM Dr. Nancy Guild, MCDB 2 Abstract In C. elegans, RNA processing of downstream operon genes through SL2 trans-splicing is crucial for polycistronic transcripts to be separated into monocistronic transcripts. The Ur element RNA sequence, which is important for proper SL2 trans-splicing, is found in the intercistronic region (ICR) of the pre-mRNA. The ICR is located between the 3’ end of one gene and the trans-splice site of a downstream operon gene. Lasda has shown that the Ur element sequence is required for downstream SL2 trans-splicing and proposed that it defines the 5’splice site on the SL2 RNA (Lasda, Allen, & Blumenthal, 2010). This project investigates whether there is an interaction between the Ur element RNA oligonucleotide and purified GST CstF-64, a 3’end formation factor. The Ur element RNA oligo contains short stem-loop and multiple UAYYUU motifs similar to Ur element RNA sequence found in ICRs. These experiments specifically analyze whether various mutant and wild type Ur element RNA oligos pull down GST CstF-64 directly, in the absence of extract. Results suggest that the wild type Ur element RNA oligo interacts directly with GST CstF-64, while the mutant RNA oligo does not pull down GST CstF-64.
    [Show full text]
  • A Functional Difference Between Native and Horizontally Acquired Genes in Bdelloid Rotifers
    Gene 590 (2016) 186–191 Contents lists available at ScienceDirect Gene journal homepage: www.elsevier.com/locate/gene Research paper A functional difference between native and horizontally acquired genes in bdelloid rotifers Elton G.G. Barbosa a, Alastair Crisp a, Sarah E. Broadbent a, Martina Carrillo a,b, Chiara Boschetti a,⁎, Alan Tunnacliffe a,⁎ a Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom b Max-Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany article info abstract Article history: The form of RNA processing known as SL trans-splicing involves the transfer of a short conserved sequence, the Received 16 December 2015 spliced leader (SL), from a noncoding SL RNA to the 5′ ends of mRNA molecules. SL trans-splicing occurs in several Received in revised form 2 June 2016 animal taxa, including bdelloid rotifers (Rotifera, Bdelloidea). One striking feature of these aquatic microinverte- Accepted 6 June 2016 brates is the large proportion of foreign genes, i.e. those acquired by horizontal gene transfer from other organ- Available online 13 June 2016 isms, in their genomes. However, whether such foreign genes behave similarly to native genes has not been tested in bdelloids or any other animal. We therefore used a combination of experimental and computational Keywords: Spliced leader methods to examine whether transcripts of foreign genes in bdelloids were SL trans-spliced, like their native trans-Splicing counterparts. We found that many foreign transcripts contain SLs, use similar splice acceptor sequences to native Horizontal (lateral) gene transfer genes, and are able to undergo alternative trans-splicing.
    [Show full text]
  • Ciona Intestinalis: Molecular Characterization of the SL RNA
    Spliced leader (SL) trans-splicing in the ascidian tunicate Ciona intestinalis: molecular characterization of the SL RNA Brendan Yeats Biology Department McGill University, Montreal August 2009 A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of MSc, biology. © Brendan Yeats 2009 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-61656-7 Our file Notre référence ISBN: 978-0-494-61656-7 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Overview of Gene Structure in C. Elegans John Spieth Washington University School of Medicine in St
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 Overview of gene structure in C. elegans John Spieth Washington University School of Medicine in St. Louis Daniel Lawson European Bioinformatics Institute Paul Davis European Bioinformatics Institute Gary Williams European Bioinformatics Institute Kevin Howe European Bioinformatics Institute Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Spieth, John; Lawson, Daniel; Davis, Paul; Williams, Gary; and Howe, Kevin, ,"Overview of gene structure in C. elegans." WormBook.,. 1-18. (2014). http://digitalcommons.wustl.edu/open_access_pubs/3462 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Overview ofgenestructurein C. elegans* John Spieth1, Daniel Lawson2,PaulDavis2, Gary Williams2,Kevin Howe2§ 1Genome Sequencing Center, Washington University School of Medicine, St. Louis, MO 63108 USA 2European Molecular Biology Laboratory,European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SDUK Table of Contents 1. Whatis a gene? .......................................................................................................................2 2. Protein-coding genes ................................................................................................................2
    [Show full text]
  • Trans-Splicing of the C. Elegans Let-7 Primary Transcript Developmentally
    © 2019. Published by The Company of Biologists Ltd | Development (2019) 146, dev182212. doi:10.1242/dev.182212 CORRECTION Correction: Trans-splicing of the C. elegans let-7 primary transcript developmentally regulates let-7 microRNA biogenesis and let-7 family microRNA activity (doi: 10.1242/dev.172031) Charles Nelson and Victor Ambros There was an error published in Development (2019) 146, dev172031 (doi:10.1242/dev.172031). In Table S3 in the supplementary material, the genotype for strain VT3903 was incorrect. Corrected: maEx267 [rol-6(su1006); unc-119+, plet-7::let-7 locus without mature let-7 sequence]; let-7(ma388) X; mir-48(n4097), maIs105 V Original: maEx264 [unc-119+; plet-7::let-7 locus without mature let-7]; let-7(ma388) X; mir-48(n4097), maIs105 V The online supplementary PDF has been been updated. The authors apologise for this error and any inconvenience it may have caused. DEVELOPMENT 1 © 2019. Published by The Company of Biologists Ltd | Development (2019) 146, dev172031. doi:10.1242/dev.172031 RESEARCH ARTICLE Trans-splicing of the C. elegans let-7 primary transcript developmentally regulates let-7 microRNA biogenesis and let-7 family microRNA activity Charles Nelson and Victor Ambros* ABSTRACT promotes the differentiation of cellular fates (Reinhart et al., 2000). The sequence and roles in developmental progression of the Orthologs of the C. elegans let-7 microRNA are easily identified microRNA let-7 are conserved. In general, transcription of the let-7 across animal phyla because of the near perfect conservation of the primary transcript ( pri-let-7) occurs early in development, whereas entire 22 nt sequence (Pasquinelli et al., 2000).
    [Show full text]