Defects in the Biosynthesis of Mitochondrial Heme C and Heme a in Yeast and Mammals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
COX10 (NM 001303) Human Untagged Clone Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for SC119292 COX10 (NM_001303) Human Untagged Clone Product data: Product Type: Expression Plasmids Product Name: COX10 (NM_001303) Human Untagged Clone Tag: Tag Free Symbol: COX10 Synonyms: MC4DN3 Vector: pCMV6-XL5 E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: None Fully Sequenced ORF: >NCBI ORF sequence for NM_001303, the custom clone sequence may differ by one or more nucleotides ATGGCCGCATCTCCGCACACTCTCTCCTCACGCCTCCTGACAGGTTGCGTAGGAGGCTCTGTCTGGTATC TTGAAAGAAGAACTATACAGGACTCCCCTCACAAGTTCTTACATCTTCTCAGGAATGTCAATAAGCAGTG GATTACATTTCAGCACTTTAGCTTCCTCAAACGCATGTATGTCACACAGCTGAACAGAAGCCACAACCAG CAAGTAAGACCCAAGCCAGAACCAGTAGCATCTCCTTTCCTTGAAAAAACATCTTCAGGTCAAGCCAAAG CAGAAATATATGAGATGAGACCTCTCTCACCGCCCAGCCTATCTTTGTCCAGAAAGCCAAATGAAAAGGA ATTGATAGAACTAGAGCCAGACTCAGTAATTGAAGACTCAATAGATGTAGGGAAAGAGACAAAAGAGGAA AAGCGGTGGAAAGAGATGAAGCTGCAAGTGTATGATTTGCCAGGAATTTTGGCTCGACTATCCAAAATCA AACTCACAGCTCTGGTTGTAAGTACCACTGCAGCTGGATTTGCATTGGCTCCGGGCCCTTTTGACTGGCC CTGTTTCCTGCTTACTTCTGTTGGGACAGGCCTTGCATCCTGTGCTGCCAACTCCATCAATCAGTTTTTT GAGGTGCCATTTGACTCAAACATGAATAGGACAAAGAACAGACCGCTGGTTCGTGGACAGATCAGCCCAT TGCTAGCTGTGTCCTTTGCCACTTGTTGTGCTGTTCCGGGAGTTGCCATTCTGACCTTGGGGGTGAATCC ACTCACAGGAGCCCTGGGGCTCTTCAACATTTTCCTGTATACCTGCTGCTACACACCACTGAAAAGGATC AGCATTGCCAACACATGGGTCGGAGCTGTGGTTGGGGCCATCCCGCCTGTCATGGGCTGGACAGCGGCCA CGGGCAGCCTCGATGCTGGCGCATTTCTCCTGGGAGGAATCCTCTACTCCTGGCAGTTTCCTCATTTCAA -
Chapter 5 High-Pressure Stopped-Flow Kinetic Studies of Nnos
Probing the dynamics and conformational landscape of neuronal nitric oxide synthase A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Life Sciences 2013 Anna Sobolewska-Stawiarz Contents Contents ...................................................................................................................... 2 List of Figures ............................................................................................................. 6 List of Tables ............................................................................................................ 10 Abstract ..................................................................................................................... 12 Declaration ................................................................................................................ 13 Copyright Statement ................................................................................................ 13 Acknowledgements ................................................................................................... 14 List of Abbreviations ............................................................................................... 15 List of Amino Acids Abbreviations ........................................................................ 17 CHAPTER 1. INTRODUCTION ........................................................................... 18 1.1 Nitric oxide synthase ......................................................................................... -
Ncomms8214.Pdf
ARTICLE Received 20 Feb 2015 | Accepted 17 Apr 2015 | Published 26 May 2015 DOI: 10.1038/ncomms8214 OPEN Comprehensive survey of condition-specific reproductive isolation reveals genetic incompatibility in yeast Jing Hou1, Anne Friedrich1, Jean-Sebastien Gounot1 & Joseph Schacherer1 Genetic variation within a species could cause negative epistasis leading to reduced hybrid fitness and post-zygotic reproductive isolation. Recent studies in yeasts revealed chromo- somal rearrangements as a major mechanism dampening intraspecific hybrid fertility on rich media. Here, by analysing a large number of Saccharomyces cerevisiae crosses on different culture conditions, we show environment-specific genetic incompatibility segregates readily within yeast and contributes to reproductive isolation. Over 24% (117 out of 481) of cases tested show potential epistasis, among which 6.7% (32 out of 481) are severe, with at least 20% of progeny loss on tested conditions. Based on the segregation patterns, we further characterize a two-locus Dobzhansky–Mu¨ller incompatibility case leading to offspring respiratory deficiency caused by nonsense mutation in a nuclear-encoding mitochondrial gene and tRNA suppressor. We provide evidence that this precise configuration could be adaptive in fluctuating environments, highlighting the role of ecological selection in the onset of genetic incompatibility and reproductive isolation in yeast. 1 Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156, 28 rue Goethe, 67083 Strasbourg, France. Correspondence -
Alterations of Genetic Variants and Transcriptomic Features of Response to Tamoxifen in the Breast Cancer Cell Line
Alterations of Genetic Variants and Transcriptomic Features of Response to Tamoxifen in the Breast Cancer Cell Line Mahnaz Nezamivand-Chegini Shiraz University Hamed Kharrati-Koopaee Shiraz University https://orcid.org/0000-0003-2345-6919 seyed taghi Heydari ( [email protected] ) Shiraz University of Medical Sciences https://orcid.org/0000-0001-7711-1137 Hasan Giahi Shiraz University Ali Dehshahri Shiraz University of Medical Sciences Mehdi Dianatpour Shiraz University of Medical Sciences Kamran Bagheri Lankarani Shiraz University of Medical Sciences Research Keywords: Tamoxifen, breast cancer, genetic variants, RNA-seq. Posted Date: August 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-783422/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/33 Abstract Background Breast cancer is one of the most important causes of mortality in the world, and Tamoxifen therapy is known as a medication strategy for estrogen receptor-positive breast cancer. In current study, two hypotheses of Tamoxifen consumption in breast cancer cell line (MCF7) were investigated. First, the effect of Tamoxifen on genes expression prole at transcriptome level was evaluated between the control and treated samples. Second, due to the fact that Tamoxifen is known as a mutagenic factor, there may be an association between the alterations of genetic variants and Tamoxifen treatment, which can impact on the drug response. Methods In current study, the whole-transcriptome (RNA-seq) dataset of four investigations (19 samples) were derived from European Bioinformatics Institute (EBI). At transcriptome level, the effect of Tamoxifen was investigated on gene expression prole between control and treatment samples. -
The Role of Genetics Mutations in Genes PORCN, TWIST2, HCCS In
ISSN: 2378-3672 Asadi and Jamali. Int J Immunol Immunother 2019, 6:038 DOI: 10.23937/2378-3672/1410038 Volume 6 | Issue 1 International Journal of Open Access Immunology and Immunotherapy REVIEW ARTICLE The Role of Genetics Mutations in Genes PORCN, TWIST2, HCCS in Goltz Syndrome Shahin Asadi1* and Mahsa Jamali2 Check for updates Division of Medical Genetics and Molecular Pathology Research, Molecular Genetics-IRAN-TABRIZ, Iran *Corresponding author: Shahin Asadi, Division of Medical Genetics and Molecular Pathology Research, Molecular Genetics-IRAN-TABRIZ, Iran are usually formed around the nose, the lips, the anal Abstract holes and the genitals of women with Goltz syndrome. Goltz syndrome (focal skin hypoplasia) is a genetic disorder In addition, papillomas may be present in the throat, that primarily affects the skin, skeletal system, eyes and face. People with Goltz syndrome have birth defects. These especially in the esophagus or larynx, and can cause disorders include very thin skin veins (skin hypoplasia), pink swallowing, respiration or sleep poisoning. The papillo- yellow nodules, subcutaneous fat, lack of upper skin layers mas can be removed if necessary by surgery from the (aplasia cutis), small clusters of superficial skin vessels growing regions. People with Goltz syndrome may have (telangiectasia), and veins in dark skin Or bright. Goltz syndrome is caused by mutation genes PORCN, TWIST2, small and abnormal nails on the toes. In addition, hair in HCCS. the scalp of these people can be weak or fragile or not [2] (Figure 2). Keywords Goltz syndrome, PORCN, TWIST2, HCCS genes, Skin and Many people with Goltz syndrome also have hand Skeletal disorders and foot disorders, including abnormalities such as oligodactyly in fingers and toes, fingers and legs (cin- Generalizations of Goltz Syndrome dactyly) or ecd rhodactyly. -
Download English-US Transcript (PDF)
MITOCW | watch?v=56vQ0S2eAjw SPEAKER 1: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a donation or view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu. PROFESSOR: Today what I want to do within the lexicon is tell you about nature's most spectacularly beautiful cofactors. And these are formed from vitamin B-12, which you find in your vitamin bottle. OK. So what is the structure of vitamin B-12, and why do I say they are spectacularly beautiful? So it's very hard to see, but if you look at the structure of this, where have you seen a molecule this complicated with five membered rings, each of which has a nitrogen in this? You've seen this when you studied hemoglobin, and you think about heme and proto protoporphyrin IX. If you look at the biosynthetic pathway of heme, a branchpoint of that pathway is to make this ring, which is found in adenosylcobalamin and methylcobalamin, which is what we're going to be focusing on today. And this ring is called the corrin ring. So what I want to do is introduce you a little bit to this corrin ring and what's unusual about it compared to protoporphyrin IX that you've seen before. So the vitamin, as in the case of all vitamins that we've talked about over the course of the semester, is not the actual cofactor used in the enzymatic transformation. -
Chemical Reactions, and Cellular Respiration
Chapter 03 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 Energy, Chemical Reactions, and Cellular Respiration • All living organisms require energy to – Power muscle – Pump blood – Absorb nutrients – Exchange respiratory gases – Synthesize new molecules – Establish cellular ion concentrations • Glucose broken down through metabolic pathways – Forms ATP, the “energy currency” of cells 2 3.1a Classes of Energy • Energy – Capacity to do work – Two classes of energy o Potential energy—stored energy (energy of position) o Kinetic energy—energy of motion – Both can be converted from one class to the other 3 3.1a Classes of Energy • Potential energy and the plasma membrane – Concentration gradient exists across plasma membrane o Boundary between inside and outside of cell • Potential energy and electron shells – Electrons move from a higher- to lower-energy shell – Kinetic energy can be harnessed to do work • Potential energy must be converted to kinetic energy before it can do work 4 Conversion of Potential Energy to Kinetic Energy Figure 3.1 5 3.1b Forms of Energy • Chemical energy – One form of potential energy – Energy stored in a molecule’s chemical bonds – Most important form of energy in the human body – Used for o Movement o Molecule synthesis o Establishing concentration gradients – Present in all chemical bonds – Released when bonds are broken during reactions 6 3.1b Forms of -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Supplementary Data Table 1. Genes Upregulated in N-Myc-Overexpressing Mouse Mac1+/Gr1+ BM Cells
Supplementary Data Table 1. Genes upregulated in N-Myc-overexpressing mouse Mac1+/Gr1+ BM cells Probeset C-myc / N-myc / N-myc / C- Gene Title Representative 430v2 Vector Fold Vector Fold myc Fold Public ID Change Change Change 1435368_a_at 2.3 4.6 2.1 poly (ADP-ribose) polymerase family, member 1 BB767586 1455648_at 1.3 3.0 2.1 similar to reduced expression 2 /// similar to reduced expression 2 BG244780 1438973_x_at 2.5 9.8 4.0 gap junction membrane channel protein alpha 1 BB043407 1419915_at 2.0 3.0 2.1 DNA segment, Chr 10, ERATO Doi 438, expressed AW538011 1454842_a_at 1.6 4.0 2.3 UDP-GalNAc:betaGlcNAc beta 1,3-galactosaminyltransferase, AI853240 polypeptide 2 1436704_x_at 2.1 9.2 3.2 methylenetetrahydrofolate dehydrogenase (NADP+ dependent), AV215673 methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate synthase 1423142_a_at 2.0 2.5 2.1 GTP binding protein 4 AI987834 1420043_s_at 2.5 5.7 2.8 THO complex 1 AW107924 1439444_x_at 1.5 4.3 2.5 transmembrane emp24-like trafficking protein 10 (yeast) /// similar to AV213456 transmembrane trafficking protein 1438610_a_at 1.9 4.9 2.3 Crystallin, zeta BB793369 1434291_a_at 2.5 4.3 2.8 small EDRK-rich factor 1 AA709993 1422716_a_at 2.8 6.5 2.6 acid phosphatase 1, soluble AW554436 1447895_x_at -1.3 2.3 2.6 PAN3 polyA specific ribonuclease subunit homolog (S. cerevisiae) AV368189 1434097_at 1.5 3.2 2.5 Transcribed locus BM218328 1420982_at 1.1 3.5 2.6 RNA-binding region (RNP1, RRM) containing 2 NM_133242 1433853_at 2.6 7.5 2.6 mindbomb homolog 1 (Drosophila) BG063791 1419824_a_at 1.6 4.0 2.1 RIKEN cDNA A230062G08 gene AI875121 1453797_at 7.5 14.9 2.1 phosphatase, orphan 2 AK010147 1440803_x_at 2.3 4.0 2.3 tachykinin receptor 3 BB498416 1455737_at -2.0 1.1 2.8 RIKEN cDNA C030002B11 gene AU040848 1450954_at -1.5 2.8 4.6 YME1-like 1 (S. -
NASH, Fibrosis and Hepatocellular Carcinoma: Lipid Synthesis and Glutamine/Acetate Signaling
International Journal of Molecular Sciences Review NASH, Fibrosis and Hepatocellular Carcinoma: Lipid Synthesis and Glutamine/Acetate Signaling Yoshiaki Sunami Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle, Germany; [email protected]; Tel.: +49-345-557-2794 Received: 31 July 2020; Accepted: 8 September 2020; Published: 16 September 2020 Abstract: Primary liver cancer is predicted to be the sixth most common cancer and the fourth leading cause of cancer mortality worldwide. Recent studies identified nonalcoholic fatty liver disease (NAFLD) as the underlying cause in 13–38.2% of patients with hepatocellular carcinoma unrelated to viral hepatitis and alcohol abuse. NAFLD progresses to nonalcoholic steatohepatitis (NASH), which increases the risk for the development of liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD is characterized by dysregulation of lipid metabolism. In addition, lipid metabolism is effected not only in NAFLD, but also in a broad range of chronic liver diseases and tumor development. Cancer cells manipulate a variety of metabolic pathways, including lipid metabolism, in order to build up their own cellular components. Identifying tumor dependencies on lipid metabolism would provide options for novel targeting strategies. This review article summarizes the research evidence on metabolic reprogramming and focuses on lipid metabolism in NAFLD, NASH, fibrosis, and cancer. As alternative routes of acetyl-CoA production for fatty acid synthesis, topics on glutamine and acetate metabolism are included. Further, studies on small compound inhibitors targeting lipid metabolism are discussed. Understanding reprogramming strategies in liver diseases, as well as the visualization of the metabolism reprogramming networks, could uncover novel therapeutic options. -
Design and Fine-Tuning Redox Potentials of Metalloproteins Involved in Electron Transfer in Bioenergetics
1 Design and Fine-tuning Redox Potentials of Metalloproteins Involved in Electron Transfer in Bioenergetics Parisa Hosseinzadeh and Yi Lu Abstract: 1. Introduction A significant portion of biological processes are involved with providing vital energy sources such as ATP, and controlling the flow of energy through living systems. These bioenergetics processes, the most important of which are photosynthesis and respiration, require electron transfer (ET) between different redox partners. Metalloproteins are one of the most widely used ET centers in biology. They can be classified into three major classes: cupredoxins, which include type 1 copper (T1Cu) proteins and CuA centers [1- 10], cytochromes [10-17], and iron-sulfur (FeS) proteins [10,18-24]. Each class of ET proteins transfer electrons between different redox partners which possess different reduction potentials (E°) (Figure 1). Therefore, the ET centers need to adjust their E° in a way that matches those of their redox partners. No single class of protein can cover the entire range of physiological E°, which is between ~ -1V, at which protons are reduced to H2, and 1V, at which water is oxidized to O2. Cupredoxins usually function at the high end of the E°, while FeS proteins are mostly involved in ET reactions possessing relatively low E° [10]. The E°’s of FeS proteins overlap significantly with those of cytochromes that often have intermediate E° among the three classes of ET proteins. Figure 1. Reduction potential range of metal centers in electron transfer metalloprotein. Adapted from ref. [10] 2 In this review, we first describe the importance of tuning E° of ET centers, including the metalloproteins described above. -
Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases
cells Review Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases George J. Kontoghiorghes * and Christina N. Kontoghiorghe Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus * Correspondence: [email protected]; Tel./Fax: +357-2627-2076 Received: 7 May 2020; Accepted: 5 June 2020; Published: 12 June 2020 Abstract: Iron is essential for all living organisms. Many iron-containing proteins and metabolic pathways play a key role in almost all cellular and physiological functions. The diversity of the activity and function of iron and its associated pathologies is based on bond formation with adjacent ligands and the overall structure of the iron complex in proteins or with other biomolecules. The control of the metabolic pathways of iron absorption, utilization, recycling and excretion by iron-containing proteins ensures normal biologic and physiological activity. Abnormalities in iron-containing proteins, iron metabolic pathways and also other associated processes can lead to an array of diseases. These include iron deficiency, which affects more than a quarter of the world’s population; hemoglobinopathies, which are the most common of the genetic disorders and idiopathic hemochromatosis. Iron is the most common catalyst of free radical production and oxidative stress which are implicated in tissue damage in most pathologic conditions, cancer initiation and progression, neurodegeneration and many other diseases. The interaction of iron and iron-containing proteins with dietary and xenobiotic molecules, including drugs, may affect iron metabolic and disease processes. Deferiprone, deferoxamine, deferasirox and other chelating drugs can offer therapeutic solutions for most diseases associated with iron metabolism including iron overload and deficiency, neurodegeneration and cancer, the detoxification of xenobiotic metals and most diseases associated with free radical pathology.