Locomotor Adaptations in the Limb Skeletons of North American Mustelids

Total Page:16

File Type:pdf, Size:1020Kb

Locomotor Adaptations in the Limb Skeletons of North American Mustelids LOCOMOTOR ADAPTATIONS IN THE LIMB SKELETONS OF NORTH AMERICAN MUSTELIDS by Thor Holmes A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Arts June, 1980 LOCOMOTOR ADAPTATIONS IN THE LIMB SKELETONS OF NORTH AMERICAN MUSTELIDS Approved by the Master's Thesis Committee Chairman Approved by the Graduate Dean TABLE OF CONTENTS Page Acknowledgments iv Abstract vi Introduction 1 Materials and Methods 11 Results and Discussion 30 Intraspecific Variation 30 Species Comparisons 46 Forelimb 46 Hindlimb 68 Conclusions 91 Literature Cited 97 Appendices 105 ACKNOWLEDGMENTS This study was partially funded by a thesis grant from the Biology Graduate Student Association at HSU. I thank the following museums and their curators for the use of materials in their collections: American Museum of Natural History; California Academy of Science; Carnegie Museum of Natural History; Field Museum of Natural History; Humboldt State University, Museum of Vertebrate Zoology; University of Kansas Natural History Museum; Los Angeles County Museum of Natural History; Museum of Zoology, University of California, Berkeley; Michigan State University, The Museum; National Museum of Natural History; San Diego Museum of Natural History; San Diego Natural History Museum; University of California at Los Angeles; University of Michigan Zoology Museum; University of Montana Department of Zoology; University of Puget Sound, Museum of Natural History; I would like to thank particularly Murray Johnson, Helen Kafka, and Shiela Kortlucke for help during the times I used their collections. Suzanne Edwards, Judy Fessenden, Cynthia Hofmann, Rebecca Leuck, Bob Sullivan, my brother, Thomas, and my wife, Elaine helped me make measurements. Mike Gwilliam, Tim Lawlor, Steve Smith, and Bob Sullivan helped me with computer programs. Cynthia Hofmann, Elaine Holmes, and Kathy McCutcheon helped type the manuscript. Kathy typed the final draft. V I would like to thank the members of my committee, Jake Houck, Frank Kilmer, Tim Lawlor, John Sawyer, and Jim Waters for time they invested in my thesis and my education. I would like to thank particularly my major professor, Tim Lawlor, for help, friendship, encouragement, and sundry other contributions to my life and my education far too numerous to mention here. Finally I wish to thank Elaine, my wife, for a decade of support in every sense of the word. And I wish to acknowledge that she, more than any other person, is the reason that I can look back from this point in my life and smile. ABSTRACT The morphology and proportions of the limb skeletons of thirteen species of North American mustelids are examined. A series of forty-nine ratios is generated for each species. Ratios are analyzed using standard descriptive statistics; mean, standard deviation, variance, standard error, coefficient of variation, and range. Ratios are also analyzed with a closest connection (Prim) network. Qualitative comparisons of appendicular skeletons are made with drawings of each limb element. Progressive specialization from an hypothesized primitive condition to fossorial, arboreal-cursorial, aquatic, and ambulatory modes of locomotion is revealed in limb skeletons of the Mustelidae. Relationships between morphology and proportions of mustelid limb skeletons, and modes of locomotion are discussed. INTRODUCTION The family Mustelidae, comprising twenty-five recent and some seventy fossil genera (Anderson and Jones, 1967), is one of the most diverse families of carnivores. Only its ecological counterpart in the Old World tropics, the family Viverridae, contains more extant genera. Mustelids range in size from small (35 g) to medium (37 kg). They are distributed throughout the world except for Australasia and Antarctica. The Mustelidae apparently arose from the most ancient carnivorans, family Miacidae, about 35 mybp. The origin of the Mustelidae within the miacids seems to be separate from that of the other canoid carnivores. They quickly adopted the typical mustelid specializations of a strongly carnivor- ous dentition, short powerful jaws, prominent pre- and post- glenoid processes, and a long cylindrical body (Ewer, 1973; Romer, 1966). Mustelids as a group also are characterized by a weak zygoma. Ewer (1973) and Gambaryan (1974) suggested that the weak zygoma and a long cylindrical body are adaptations to hunting small mammals within their burrows, a method of predation that still characterizes the largest and one of the most primitive living genera, Mustela (Table 1). Despite specializations of cranial and axial osteology the mustelids retain a very generalized limb structure. They do, however, show fusion of two carpals, the scaphoid 2 Table 1. -- Earliest record for ten genera of the family Mustelidae (after Romer, 1966). Genus Time of Probable Origin Mustela Upper Miocene Martes Middle Miocene Eira Pleistocene Gulo Pleistocene Spilogale Lower Pleistocene Mephitis Pleistocene Conepatus Upper Pliocene Taxidea Upper Pliocene Lutra Lower Pliocene Enhydra Pleistocene PLEISTOCENE Mephitis Eira Gulo Enhydra Spilogale Conepatus Taxidea PLIOCENE Lutra Mustela MIOCENE Martes 3 and lunar. They also have lost a third carpal, the centrale. These are interpreted as cursorial specializations and are the common heritage of all carnivores (Ewer, 1973; Vaughn, 1978). Mustelids are plantigrade to digitigrade. The extent to which they are digitigrade is never as pronounced as in the Felidae or Canidae. The mustelids are pentadactyl and all of the digits touch the substrate. Members of the family retain relatively short, stocky limbs and do not have retractile claws. Gambaryan (1974) suggested that the basic cursorial gait in the Mustelidae, the bound or half bound, is a result of their long narrow body. Variations on the basic gait include a slow ambulatory walk (Mephitis, Conepatus), a speedy trot (Taxidea, Mustela), and a bear-like shuffle (Gulo). The Mustelidae, at least as regards appendicular anatomy, more closely resemble basal fissipeds than any extant group of carnivores. While a generalized limb skeleton characterizes most mustelids, some species have evolved ambulatory, arboreal, semi-aquatic, aquatic, and fossorial habits. Mustelids, therefore, present the student an opportunity to observe a spectrum of locomotor adapta- tions in a single family. There are numerous studies on locomotor specialists. Horses, gazelles, cheetahs, whales, and moles have all been examined. Studies of this kind are valuable in that they reveal the types of adaptations to specific modes of 4 locomotion that typify specialists. I have chosen, however, to examine the array of locomotor adaptations that charac- terize the Mustelidae. No mustelid is highly specialized for a particular mode of locomotion. For that reason I think that an investigation of the Mustelidae is of particular interest because it promises to elucidate locomotor trends in types of animals often ignored in the locomotor literature. Some recent members of the Mustelidae have been the object of considerable osteological or myological study (Fisher, 1942; Howard, 1973, 1975; Leach, 1977a, 1977b; Leach and Dagg, 1976; Ondrias, 1960, 1961; Tarasoff, 1972). As yet no one has studied the entire spectrum of locomotor adaptations in the Mustelidae either myologically or osteo- logically. Some studies on the limb skeletons of other families of carnivores have been made: Hildebrand (1952, 1954), on canids; Goynea and Ashworth (1975) and Hopwood (1947), on fends; and Taylor (1970, 1974, 1976), on viverrids. Techniques used in those studies could produc- tively be applied to the Mustelidae. The burgeoning literature on primate locomotion (Ashton et al., 1971; Ashton and Oxnard, 1964; Jenkins, 1976; Lewis, 1972; Reisenfeld, 1974) contains techniques with possible applica- tions to mustelids. A similar, if somewhat older, literature on locomotion in mammals in general (Brown and Yalden, 1973, and citations therein) provides a valuable backdrop against which to compare mustelids. Finally there are studies of 5 the effect of modes of life on the skeleton, or on particular skeletal elements (Chapman, 1919; Jones, 1953; Lehmann, 1963; Taylor, 1914; Yalden, 1972). These papers are especially useful in that they elucidated the type of morphological indicators that suggest specializations to a particular mode of life. The taxonomic position of some mustelids is not well understood (Simpson, 1945), but the family lends itself to separation into four locomotor categories corresponding roughly to the four main recognized subfamilies (Fig.1 ). The Mustelinae are weasel-like forms which typically have sub-cursorial, scampering habits. This is the oldest and most primitive subfamily. Martens, fishers, and tayras, the larger members of this group, have arboreal proclivities. The mink, another member of the Mustelinae, is amphibious. The Mephitinae, the skunks, are ambulatory. The Melinae include most of the badgers; they are fossorial. Finally, the Lutrinae comprises the most aquatic fissipeds, the otters. The American badger, Taxidea, and the wolverine, Gulo, are the subject of some taxonomic debate. Nevertheless, they may be conveniently grouped with the badger and weasel subfamilies, respectively, in regard to locomotion. North American mustelids encompass all of the locomotor types that characterize the family as a whole. Hence they should constitute a representative subset of the range of locomotor specializations that characterize mustelids as a whole.
Recommended publications
  • MINNESOTA MUSTELIDS Young
    By Blane Klemek MINNESOTA MUSTELIDS Young Naturalists the Slinky,Stinky Weasel family ave you ever heard anyone call somebody a weasel? If you have, then you might think Hthat being called a weasel is bad. But weasels are good hunters, and they are cunning, curious, strong, and fierce. Weasels and their relatives are mammals. They belong to the order Carnivora (meat eaters) and the family Mustelidae, also known as the weasel family or mustelids. Mustela means weasel in Latin. With 65 species, mustelids are the largest family of carnivores in the world. Eight mustelid species currently make their homes in Minnesota: short-tailed weasel, long-tailed weasel, least weasel, mink, American marten, OTTERS BY DANIEL J. COX fisher, river otter, and American badger. Minnesota Conservation Volunteer May–June 2003 n e MARY CLAY, DEMBINSKY t PHOTO ASSOCIATES r mammals a WEASELS flexible m Here are two TOM AND PAT LEESON specialized mustelid feet. b One is for climb- ou can recognize a ing and the other for hort-tailed weasels (Mustela erminea), long- The long-tailed weasel d most mustelids g digging. Can you tell tailed weasels (M. frenata), and least weasels eats the most varied e food of all weasels. It by their tubelike r which is which? (M. nivalis) live throughout Minnesota. In also lives in the widest Ybodies and their short Stheir northern range, including Minnesota, weasels variety of habitats and legs. Some, such as badgers, hunting. Otters and minks turn white in winter. In autumn, white hairs begin climates across North are heavy and chunky. Some, are excellent swimmers that hunt to replace their brown summer coat.
    [Show full text]
  • VOLATILE COMPOUNDS from ANAL GLANDS of the WOLVERINE, Gulo Gulo
    Journal of Chemical Ecology, Vol. 12, No. 9, September 2005 ( #2005) DOI: 10.1007/s10886-005-6080-9 VOLATILE COMPOUNDS FROM ANAL GLANDS OF THE WOLVERINE, Gulo gulo WILLIAM F. WOOD,1,* MIRANDA N. TERWILLIGER,2 and JEFFREY P. COPELAND3 1Department of Chemistry, Humboldt State University, Arcata, CA 95521, USA 2Alaska Cooperative Fish & Wildlife Research Unit, Department of Biology & Wildlife, University of Alaska, Fairbanks, AK 99775, USA 3USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA (Received February 12, 2005; revised March 24, 2005; accepted April 20, 2005) Abstract—Dichloromethane extracts of wolverine (Gulo gulo, Mustelinae, Mustelidae) anal gland secretion were examined by gas chromatographyYmass spectrometry. The secretion composition was complex and variable for the six samples examined: 123 compounds were detected in total, with the number per animal ranging from 45 to 71 compounds. Only six compounds were common to all extracts: 3-methylbutanoic acid, 2-methylbutanoic acid, phenylacetic acid, a-tocopherol, cholesterol, and a compound tentatively identified as 2-methyldecanoic acid. The highly odoriferous thietanes and dithiolanes found in anal gland secretions of some members of the Mustelinae [ferrets, mink, stoats, and weasels (Mustela spp.) and zorillas (Ictonyx spp.)] were not observed. The composition of the wolverine’s anal gland secretion is similar to that of two other members of the Mustelinae, the pine and beech marten (Martes spp.). Key WordsVWolverine, Gulo gulo, Mustelinae, Mustelidae, scent marking, fear-defense mechanism, short-chain carboxylic acids. INTRODUCTION The wolverine (Gulo gulo) is the largest terrestrial member of the Mustelidae and is part of the subfamily, Mustelinae, which includes ferrets, fishers, martens, mink, stoats, weasels, and zorillas.
    [Show full text]
  • The Ontogeny and Distribution of Countershading in Colonies of the Naked Mole-Rat (Heterocephalus Glaber)
    J. Zool., Lond. (2001) 253, 351±357 # 2001 The Zoological Society of London Printed in the United Kingdom The ontogeny and distribution of countershading in colonies of the naked mole-rat (Heterocephalus glaber) Stanton Braude1*, Deborah Ciszek2, Nancy E. Berg3 and Nancy Shefferly4 1 International Center for Tropical Ecology at UMSL and Washington University, St Louis, MO 63130, U.S.A. 2 University of Michigan, Ann Arbor, MI 48109-1079, U.S.A. 3 Washington University, St Louis, MO 63130, U.S.A. 4 Oakland Community College, Farmington Hills, MI 48334, U.S.A. (Accepted 22 February 2000) Abstract Most naked mole-rats Heterocephalus glaber are countershaded, with purple-grey dorsal but pale pink ventral skin. The exceptions to this coloration pattern are uniformly pink, and include newborn pups, most queens and breeding males, and very old animals. Countershading begins to appear at 2±3 weeks of age and begins to disappear at c. 7 years of age. Countershading may provide camou¯age when young naked mole-rats are above ground attempting to disperse. Therefore, reproductives and older workers may lose this coloration once they are unlikely to leave the burrow. Alternative hypotheses for pigmentation that we considered include: thermoregulation, and protection from abrasion or from damaging ultraviolet radiation. These hypotheses are not necessarily mutually exclusive, but do lead to different predictions regarding the development of pigmentation and which colony members should be countershaded. Key words: Heterocephalus glaber, naked mole-rat, countershading, adaptive coloration INTRODUCTION and tail, rows of brushes between the toes, and scattered bristles (Thigpen, 1940; Daly & Buffenstein, 1998).
    [Show full text]
  • Mammalia, Felidae, Canidae, and Mustelidae) from the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas
    Chapter 9 Carnivora (Mammalia, Felidae, Canidae, and Mustelidae) From the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas MARGARET SKEELS STEVENS1 AND JAMES BOWIE STEVENS2 ABSTRACT The Screw Bean Local Fauna is the earliest Hemphillian fauna of the southwestern United States. The fossil remains occur in all parts of the informal Banta Shut-in formation, nowhere very fossiliferous. The formation is informally subdivided on the basis of stepwise ®ning and slowing deposition into Lower (least fossiliferous), Middle, and Red clay members, succeeded by the valley-®lling, Bench member (most fossiliferous). Identi®ed Carnivora include: cf. Pseudaelurus sp. and cf. Nimravides catocopis, medium and large extinct cats; Epicyon haydeni, large borophagine dog; Vulpes sp., small fox; cf. Eucyon sp., extinct primitive canine; Buisnictis chisoensis, n. sp., extinct skunk; and Martes sp., marten. B. chisoensis may be allied with Spilogale on the basis of mastoid specialization. Some of the Screw Bean taxa are late survivors of the Clarendonian Chronofauna, which extended through most or all of the early Hemphillian. The early early Hemphillian, late Miocene age attributed to the fauna is based on the Screw Bean assemblage postdating or- eodont and predating North American edentate occurrences, on lack of de®ning Hemphillian taxa, and on stage of evolution. INTRODUCTION southwestern North America, and ®ll a pa- leobiogeographic gap. In Trans-Pecos Texas NAMING AND IMPORTANCE OF THE SCREW and adjacent Chihuahua and Coahuila, Mex- BEAN LOCAL FAUNA: The name ``Screw Bean ico, they provide an age determination for Local Fauna,'' Banta Shut-in formation, postvolcanic (,18±20 Ma; Henry et al., Trans-Pecos Texas (®g.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Ecology of the European Badger (Meles Meles) in the Western Carpathian Mountains: a Review
    Wildl. Biol. Pract., 2016 Aug 12(3): 36-50 doi:10.2461/wbp.2016.eb.4 REVIEW Ecology of the European Badger (Meles meles) in the Western Carpathian Mountains: A Review R.W. Mysłajek1,*, S. Nowak2, A. Rożen3, K. Kurek2, M. Figura2 & B. Jędrzejewska4 1 Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106 Warszawa, Poland. 2 Association for Nature “Wolf”, Twardorzeczka 229, 34-324 Lipowa, Poland. 3 Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland. 4 Mammal Research Institute, Polish Academy of Sciences, Waszkiewicza 1c, 17-230 Białowieża, Poland. * Corresponding author email: [email protected]. Keywords Abstract Altitudinal Gradient; This article summarizes the results of studies on the ecology of the European Diet Composition; badger (Meles meles) conducted in the Western Carpathians (S Poland) Meles meles; from 2002 to 2010. Badgers inhabiting the Carpathians use excavated setts Mustelidae; (53%), caves and rock crevices (43%), and burrows under human-made Sett Utilization; constructions (4%) as permanent shelters. Excavated setts are located up Spatial Organization. to 640 m a.s.l., but shelters in caves and crevices can be found as high as 1,050 m a.s.l. Badger setts are mostly located on slopes with southern, eastern or western exposure. Within their territories, ranging from 3.35 to 8.45 km2 (MCP100%), badgers may possess 1-12 setts. Family groups are small (mean = 2.3 badgers), population density is low (2.2 badgers/10 km2), as is reproduction (0.57 young/year/10 km2). Hunting by humans is the main mortality factor (0.37 badger/year/10 km2).
    [Show full text]
  • Morphology and Burrowing Energetics of Semi-Fossorial Skinks (Liopholis Spp.) Nicholas C
    © 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 2416-2426 doi:10.1242/jeb.113803 RESEARCH ARTICLE Morphology and burrowing energetics of semi-fossorial skinks (Liopholis spp.) Nicholas C. Wu1,*, Lesley A. Alton1, Christofer J. Clemente1, Michael R. Kearney2 and Craig R. White1 ABSTRACT mouse (Notomys alexis), can expend 5000 times more energy −1 −1 Burrowing is an important form of locomotion in reptiles, but no study burrowing than running (7.1 kJ m compared with 1.2 J m ; has examined the energetic cost of burrowing for reptiles. This is White et al., 2006b). Despite the considerable energetic cost, significant because burrowing is the most energetically expensive burrowing has many benefits. These include food storage, access to mode of locomotion undertaken by animals and many burrowing underground food, a secure micro-environment free from predators species therefore show specialisations for their subterranean lifestyle. and extreme environmental gradients (Robinson and Seely, 1980), We examined the effect of temperature and substrate characteristics nesting (Seymour and Ackerman, 1980), hibernation (Moberly, (coarse sand or fine sand) on the net energetic cost of burrowing 1963) and enhanced acoustics to facilitate communication (Bennet- (NCOB) and burrowing rate in two species of the Egernia group of Clark, 1987). skinks (Liopholis striata and Liopholis inornata) compared with other Animals utilise a range of methods to burrow through soil, burrowing animals. We further tested for morphological specialisations depending on soil characteristics (density, particle size and moisture among burrowing species by comparing the relationship between content) and body morphology (limbed or limbless).
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • Mustelidae: Carnivora) from the Late Miocene of Africa
    A new species of Plesiogulo (Mustelidae: Carnivora) from the Late Miocene of Africa Yohannes Haile-Selassie1, Leslea J. Hlusko2* & F. Clark Howell3 1Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, OH 44106, U.S.A. 2Department of Integrative Biology, University of California, Berkeley, CA 94720, U.S.A. 3 Laboratory for Human Evolutionary Studies, Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, U.S.A. Receiced 21 October 2003. Accepted 9 November 2004 A new species of Plesiogulo (Plesiogulo botori sp. nov.) is described from 5.5–6.0 Ma deposits in East Africa. This new fossil material comes from two localities: Lemudong’o in southern Kenya, and Adu Dora, in the Afar Depression of Ethiopia. The new mustelid species is larger than all known Old World Plesiogulo species and extends the temporal and spatial range of the genus in Africa. Plesiogulo botori sp. nov. documents the earliest occurrence of the genus in Africa in general and the first evidence of its occurrence in late Miocene deposits of eastern Africa. Associated mammalian fauna at both localities where the species has been found indicate a closed/wooded habitat for the genus. This and other occurrences of the genus across Europe, Asia, and the New World indicate that the genus Plesiogulo was geographically widely dispersed during the upper Tertiary. Keywords: Late Miocene, Carnivora, Mustelidae, Kenya, Ethiopia. INTRODUCTION considerably smaller than those of P. crassa. However, The large mustelid Plesiogulo (Zdansky, 1924) was first Harrison (1981) has since reported that P. crassa falls described from the late Miocene or early Pliocene of China within the range of variation observed in P.
    [Show full text]
  • ZE Study on the Tertiary Bone Breccia Fauna from Wc
    ACT A PALAEO NTOLOGI CA POLONI C4 I 9 5 9 No . :! JAN STACH ,ON SOME MUSTELIN AE FROM TH E PLIOCENE BONE BRECCIA OF WE;ZE Study on the Tertiary bone brecc ia fa una from Wc::z e ne ar Dzialoszyn in Poland PART X · A bst r act. - T his pape r describes the remain s of skulls a nd mandib les of three ·s pecies, namely Mustela pliocaeni ca n. sp., Mustela plioerminea n. sp. a nd Martes wenzensis n. sp. By their characteristic fe atures a ll the three described spe cies com e very near to thei r Pl eistocen e representatives as well as to the living forms. INTRODUCTIO N Several interesting large r carnivores 1 have, so far, been described from the Pliocene bone breccia in Wf;ze near Dzial oszyn (province of Lo dz). The writer has now identified from the sa me breccia the remains ·of their smaller relatives fr om the mustelid grou p. They are: Mustela pliocaenica n. sp. and Mustela plioerminea n. sp. from the subfamily of .Must elinae Gill, also Martes wenzensis n. sp. from the subfamily Martinae Burmeiste r. • Pa rts I-V - see Acta Geol , Pol., vol. II-V/1952-55 ; parts VI- IX - Acta Palaeont. Pol. , vol. I-III, 1956- 58. 1 Arctomel es pliocaen icus n. ge n. & n. sp. from the Melinae subfamily. A ct a C eo!. Po!. , vo l. 11/19511. - Ursus wenze nsis, new sp ecies of a small Pliocene be a r. I bid. , vo l. 111/ 195.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    UNDERSTANDING CARNIVORAN ECOMORPHOLOGY THROUGH DEEP TIME, WITH A CASE STUDY DURING THE CAT-GAP OF FLORIDA By SHARON ELIZABETH HOLTE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Sharon Elizabeth Holte To Dr. Larry, thank you ACKNOWLEDGMENTS I would like to thank my family for encouraging me to pursue my interests. They have always believed in me and never doubted that I would reach my goals. I am eternally grateful to my mentors, Dr. Jim Mead and the late Dr. Larry Agenbroad, who have shaped me as a paleontologist and have provided me to the strength and knowledge to continue to grow as a scientist. I would like to thank my colleagues from the Florida Museum of Natural History who provided insight and open discussion on my research. In particular, I would like to thank Dr. Aldo Rincon for his help in researching procyonids. I am so grateful to Dr. Anne-Claire Fabre; without her understanding of R and knowledge of 3D morphometrics this project would have been an immense struggle. I would also to thank Rachel Short for the late-night work sessions and discussions. I am extremely grateful to my advisor Dr. David Steadman for his comments, feedback, and guidance through my time here at the University of Florida. I also thank my committee, Dr. Bruce MacFadden, Dr. Jon Bloch, Dr. Elizabeth Screaton, for their feedback and encouragement. I am grateful to the geosciences department at East Tennessee State University, the American Museum of Natural History, and the Museum of Comparative Zoology at Harvard for the loans of specimens.
    [Show full text]
  • Helminths of Mustelids (Mustelidae) in Lithuania
    BIOLOGIJA. 2014. Vol. 60. No. 3. P. 117–125 © Lietuvos mokslų akademija, 2014 Helminths of mustelids (Mustelidae) in Lithuania Dovilė Nugaraitė, This study provides new faunistic data for helminths of muste­ lids in Lithuania. Twenty­five mustelids were examined for hel­ Vytautas Mažeika*, minths: 2 pine martens (Martes martes), 4 stone martens (Mar­ tes foina), 9 American minks (Neovison vison) and 10 European Algimantas Paulauskas polecats (Mustela putorius). Nine taxa of the parasitic worms were found: trematodes Isthmiophora melis (Schrank, 1788) and Stri­ Faculty of Natural Sciences, gea strigis (Schrank, 1788) mesocercaria, cestodes Mesocestoides Vytautas Magnus University, lineatus Goeze, 1782 and Cestoda g. sp. and nematodes Eucoleus Vileikos str. 8, aerophilus (Creplin, 1839), Aonchotheca putorii (Rudolphi, 1819), LT-44404 Kaunas, Lithuania Crenosoma schachmatovae Kontrimavičius, 1969, Molineus pa­ tens (Rudolphi, 1845) and Nematoda g. sp. The biggest infection parameters were detected for flukes Isthmiophora melis and Stri­ gea strigis mesocercaria in American mink and European pole­ cat. In most cases the distribution of helminths in populations of mustelids was aggregated (s2/A > 1). Key words: mustelids, helminths, Lithuania INTRODUCTION melis (recorded under name Euparyphium me­ lis) were found. Both pine marten and Eurasian In Lithuania pine marten (Martes martes), stone badger were infected by nematodes Aonchotheca marten (Martes foina), stoat (Mustela erminea), putorii (recorded under name Capillaria putorii) least weasel (Mustela nivalis), European pole­ and Filaroides martis. Only Eurasian badger cat (Mustela putorius), American mink (Neovi­ was parasitized by cestode Mesocestoides linea­ son vison), Eurasian badger (Meles meles) and tus and nematodes Trichinella spiralis and Unci­ European otter (Lutra lutra) are found.
    [Show full text]