Climate, Cod, and Capelin in Northern Waters

Total Page:16

File Type:pdf, Size:1020Kb

Climate, Cod, and Capelin in Northern Waters ICES mar. Sei. Symp., 198: 297-310. 1994 Climate, cod, and capelin in northern waters Svend-Aage Malmberg and Johan Blindheim Malmberg, S.-A., and Blindheim, J. 1994. Climate, cod, and capelin in northern waters. - ICES mar. Sei, Symp., 198: 297-310. The hydrographic conditions in the Iceland Sea reveal three different regimes on the North Icelandic Shelf: Atlantic, Arctic, and Polar. Thus, time series of temperature and salinity in the shelf waters show that Atlantic Water from the warm irminger Current dominated during a long period prior to the mid-1960s. During the latter half of the 1960s, however, there was a dramatic change to lower temperatures, as Polar surface waters from the East Greenland Current were carried into the area. As a result, the northern and partly also the eastern coasts of Iceland were frequently blocked by drift ice in the late winter and spring of these years. Oceanographic effects of this extremely cold period, the so-called “Great Salinity Anomaly”, were observed during the following years over wide areas in the northern North Atlantic. Since this event, conditions in North Icelandic waters have been alternating between cold and warm periods, but stable and warm conditions similar to those before 1965 have not returned. There have not always been Polar surface waters on the North Icelandic Shelf during later cold periods, sometimes Arctic Water from the Iceland Sea has occupied the area. These shifts in hydrographic conditions in the Iceland Sea have important ecological impacts, because the North Icelandic Shelf is a nursery area for the Icelandic cod and capelin populations. Thus the variable flow of Atlantic Water into the North Icelandic waters may influence the drift of larvae from the spawning areas on the South Icelandic Shelf to the nursery grounds. In the nursery area the changing oceanographic conditions further bring about varying living conditions for the larvae and juvenile fish. The data show that survival rate of cod has been highest in periods with warm water from the Irminger Current on the North Icelandic Shelf. The Atlantic, Polar, and Arctic conditions in North Icelandic waters also seem to influence the size of the Icelandic capelin stock, which was at its lowest during Arctic conditions. As the “Great Salinity Anomaly” could be traced as it advected around the Subpolar Gyre in the Northern North Atlantic, the ecological impacts of this event on several cod stocks can be compared, i.e. the stocks off Iceland, West Greenland, Newfound­ land, and Norway. On these fishing grounds the catches of cod declined from 1960 to 1990 by about 50%, recruitment by about 67% and spawning stocks by about 75%. This indicates an increasing fishing load from 1960 to 1990. Furthermore, improving hydrographic conditions in Icelandic waters after 1990 did not result in a new strong year class of cod. It is questioned whether this failure in recruitment was due to a critically small spawning stock. Svend-Aage Malmberg: Marine Research Institute, Skûlagata 4, PO Box 1390, 121 Reykjavik, Iceland. Johan Blindheim: Institute for Marine Research, Department of Marine Resources, PO Box 1870 Nordnes, N-5024 Bergen, Norway. Introduction 287-291). Capelin (Mallotus villosus), however, is a cold-water pelagic species which spawns in shallow The distribution of cod (Gadus morhua) in the northern waters along the northern boundaries of the warm-water North Atlantic is confined to shelf areas (as shown in drift, but feeds and grows up farther north in Arctic Fig. 1). The spawning areas of the stocks are reached by waters, occasionally even beyond the Polar Front. Cape­ relatively warm and saline water of the North Atlantic lin is an important food item for cod when the distri­ Drift, while stock distribution in some regions may bution of the two species overlaps during certain life extend into Arctic waters (see Fig. 1 in Jönsson 1994, pp. stages. This is also the case for the Icelandic cod and 298 S.-A. Malmberg and J. Blindheim ICES mar. Sei. Symp., 198(1994) Figure 1. Spawning areas of the different cod stocks in the northern North Atlantic and adjacent seas (ICES, 1991). capelin populations that will be discussed here. Spawn­ stages, variability in the oceanographic structure may ing of both cod and capelin takes place off the south largely influence recruitment to the cod stock. coast of Iceland in relatively temperate waters, while the The present paper deals mainly with relationships spawning products drift with the current to nursery areas between variability in the hydrographic conditions and on the North Icelandic Shelf. the state of the Icelandic cod and capelin populations, Primary production in this area is mainly concentrated particularly growth and reproduction. Emphasis is put in a spring bloom based on nutrients brought up to the on the North Icelandic Shelf waters, which is the nursery photic zone by winter convection, although there is a area for these species. Oceanographic structure and moderate blooming throughout summer. The intensity variability in this area depend on fluctuations in trans­ and development of primary production depends on ports and properties in the major current systems in the how stratification in the water column develops when region, i.e. the supply of warm water masses from the the surface layer is warmed during spring and summer. Irminger Current and cold waters from the East Green­ This will further be reflected in the distribution and land Current (Fig. 2). abundance of zooplankton and, hence, in feeding con­ Some thoughts are also given to parallel relationships ditions for plankton consumers like capelin and postlar­ in some of the other cod stocks in the northern North vae cod. As the strength of year classes in the cod stock Atlantic, mainly those off Labrador and Newfoundland, depends on survival rate during larval and postlarval life West Greenland, and in the Barents Sea. ICES mar. Sei. Symp.. 198 (1994) Climate, cod, and capelin in northern waters 299 68' S-3 66' ICELAND 64' 62' 30' 25' 20 ' Figure 2. Main ocean currents in Icelandic waters and location of sections and stations studied. Data The Iceland Sea General circulation The hydrographic data used in this paper are mainly time series collected in Icelandic waters by the Marine Iceland is situated in the junction between two large Research Institute, Reykjavik. Hydrography and plank­ submerged ridges, the Mid-Atlantic Ridge and the ton have been observed in standard sections since 1924. Greenland-Scotland Ridge. This major bathymetric Since 1950, data have been collected annually in spring; feature is decisive for the hydrography in the region. The prior to 1950 sampling frequency was more irregular. Iceland Sea, which covers the area between Iceland, Since 1970 a grid of standard sections around Iceland has Greenland, and the island of Jan Mayen, consists of been observed four times a year. The present study is mainly cold waters from the north (Stefânsson, 1962; based mainly on a standard section carried out in spring Swift, 1980; Swift and Aagaard, 1981), while the area northwards from Siglunes on the North Icelandic coast south of Iceland is characterized by the North Atlantic (Fig. 2), and time series from Station S3 from the coast in Drift with relatively warm waters of southern origin. this section are chosen as representing the conditions in Thus, the circulation is dominated by two major current North Icelandic shelf waters. This section and station systems (Fig. 2). To the south, the Irminger Current reflect the overall conditions in North Icelandic waters carries warm waters from the North Atlantic Drift to the throughout the year (Malmberg and Kristmannsson, area south of Iceland and with a transport of approxi­ 1992). mately 3 Sv it continues northward along the west coast Annual assessments of the cod and capelin stocks are of Iceland. It splits into two branches in the Denmark taken from annual status reports from the Marine Re­ Strait. One turns southwestwards to flow along the East search Institute (e.g. Anon., 1993). The time series used Greenland Shelf and slope, where it gradually becomes in the present paper for the cod stock cover the period a warm intermediate component of the East Greenland back to 1950, while there are data on the capelin stock Current. The other branch follows the Icelandic slope since 1978. and with varying transport of 1-2 Sv (Kristmannsson et 300 S.-A. Malmberg and J. Blindheim ICES mar. Sei. Symp., 198 (1994) al., 1989) it flows eastwards into North Icelandic shelf Intermediate water types formed during winter, partly waters where it ultimately disperses off the eastern coast in the Greenland Sea and partly in the northern and (Stefânsson, 1962). central Iceland Sea, are defined by Swift (1980) and The East Greenland Current carries cold and fresh Swift and Aagaard (1981). In the Iceland Sea these waters southward along the east coast of Greenland with water types are characterized by temperatures around an offshoot into the Greenland Sea - the Jan Mayen 0°C and salinities of between 34.7 and 34.9. Current - and a larger one - the East Icelandic Current - North Icelandic Winter Water, with temperatures of into the Iceland Sea. The major portion of its transport, 2-3°C and salinities from 34.8 to 34.9, is defined by however, flows out of the Iceland Sea through western Stefânsson (1962) to be formed on the North Icelandic Denmark Strait to continue southwards along the East shelf during winter by convective mixing of cold and Greenland shelf. The Polar Water is separated from the warm water masses. basin water masses in the Greenland and Iceland Seas by Arctic waters in the upper few hundred metres of the a zone with increased horizontal gradients, particularly southern Iceland Sea may be relatively pure forms of in salinity.
Recommended publications
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Eddy-Driven Recirculation of Atlantic Water in Fram Strait
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Eddy-driven recirculation of Atlantic Water in Fram Strait 10.1002/2016GL068323 Tore Hattermann1,2, Pål Erik Isachsen3,4, Wilken-Jon von Appen2, Jon Albretsen5, and Arild Sundfjord6 Key Points: 1Akvaplan-niva AS, High North Research Centre, Tromsø, Norway, 2Alfred Wegener Institute, Helmholtz Centre for Polar and • fl Seasonally varying eddy-mean ow 3 4 interaction controls recirculation of Marine Research, Bremerhaven, Germany, Norwegian Meteorological Institute, Oslo, Norway, Institute of Geosciences, 5 6 Atlantic Water in Fram Strait University of Oslo, Oslo, Norway, Institute for Marine Research, Bergen, Norway, Norwegian Polar Institute, Tromsø, Norway • The bulk recirculation occurs in a cyclonic gyre around the Molloy Hole at 80 degrees north Abstract Eddy-resolving regional ocean model results in conjunction with synthetic float trajectories and • A colder westward current south of observations provide new insights into the recirculation of the Atlantic Water (AW) in Fram Strait that 79 degrees north relates to the Greenland Sea Gyre, not removing significantly impacts the redistribution of oceanic heat between the Nordic Seas and the Arctic Ocean. The Atlantic Water from the slope current simulations confirm the existence of a cyclonic gyre around the Molloy Hole near 80°N, suggesting that most of the AW within the West Spitsbergen Current recirculates there, while colder AW recirculates in a Supporting Information: westward mean flow south of 79°N that primarily relates to the eastern rim of the Greenland Sea Gyre. The • Supporting Information S1 fraction of waters recirculating in the northern branch roughly doubles during winter, coinciding with a • Movie S1 seasonal increase of eddy activity along the Yermak Plateau slope that also facilitates subduction of AW Correspondence to: beneath the ice edge in this area.
    [Show full text]
  • On the Connection Between the Mediterranean Outflow and The
    FEBRUARY 2001 OÈ ZGOÈ KMEN ET AL. 461 On the Connection between the Mediterranean Out¯ow and the Azores Current TAMAY M. OÈ ZGOÈ KMEN,ERIC P. C HASSIGNET, AND CLAES G. H. ROOTH RSMAS/MPO, University of Miami, Miami, Florida (Manuscript received 18 August 1999, in ®nal form 19 April 2000) ABSTRACT As the salty and dense Mediteranean over¯ow exits the Strait of Gibraltar and descends rapidly in the Gulf of Cadiz, it entrains the fresher overlying subtropical Atlantic Water. A minimal model is put forth in this study to show that the entrainment process associated with the Mediterranean out¯ow in the Gulf of Cadiz can impact the upper-ocean circulation in the subtropical North Atlantic Ocean and can be a fundamental factor in the establishment of the Azores Current. Two key simpli®cations are applied in the interest of producing an eco- nomical model that captures the dominant effects. The ®rst is to recognize that in a vertically asymmetric two- layer system, a relatively shallow upper layer can be dynamically approximated as a single-layer reduced-gravity controlled barotropic system, and the second is to apply quasigeostrophic dynamics such that the volume ¯ux divergence effect associated with the entrainment is represented as a source of potential vorticity. Two sets of computations are presented within the 1½-layer framework. A primitive-equation-based com- putation, which includes the divergent ¯ow effects, is ®rst compared with the equivalent quasigeostrophic formulation. The upper-ocean cyclonic eddy generated by the loss of mass over a localized area elongates westward under the in¯uence of the b effect until the ¯ow encounters the western boundary.
    [Show full text]
  • Surface Circulation2016
    OCN 201 Surface Circulation Excess heat in equatorial regions requires redistribution toward the poles 1 In the Northern hemisphere, Coriolis force deflects movement to the right In the Southern hemisphere, Coriolis force deflects movement to the left Combination of atmospheric cells and Coriolis force yield the wind belts Wind belts drive ocean circulation 2 Surface circulation is one of the main transporters of “excess” heat from the tropics to northern latitudes Gulf Stream http://earthobservatory.nasa.gov/Newsroom/NewImages/Images/gulf_stream_modis_lrg.gif 3 How fast ( in miles per hour) do you think western boundary currents like the Gulf Stream are? A 1 B 2 C 4 D 8 E More! 4 mph = C Path of ocean currents affects agriculture and habitability of regions ~62 ˚N Mean Jan Faeroe temp 40 ˚F Islands ~61˚N Mean Jan Anchorage temp 13˚F Alaska 4 Average surface water temperature (N hemisphere winter) Surface currents are driven by winds, not thermohaline processes 5 Surface currents are shallow, in the upper few hundred metres of the ocean Clockwise gyres in North Atlantic and North Pacific Anti-clockwise gyres in South Atlantic and South Pacific How long do you think it takes for a trip around the North Pacific gyre? A 6 months B 1 year C 10 years D 20 years E 50 years D= ~ 20 years 6 Maximum in surface water salinity shows the gyres excess evaporation over precipitation results in higher surface water salinity Gyres are underneath, and driven by, the bands of Trade Winds and Westerlies 7 Which wind belt is Hawaii in? A Westerlies B Trade
    [Show full text]
  • Lecture 4: OCEANS (Outline)
    LectureLecture 44 :: OCEANSOCEANS (Outline)(Outline) Basic Structures and Dynamics Ekman transport Geostrophic currents Surface Ocean Circulation Subtropicl gyre Boundary current Deep Ocean Circulation Thermohaline conveyor belt ESS200A Prof. Jin -Yi Yu BasicBasic OceanOcean StructuresStructures Warm up by sunlight! Upper Ocean (~100 m) Shallow, warm upper layer where light is abundant and where most marine life can be found. Deep Ocean Cold, dark, deep ocean where plenty supplies of nutrients and carbon exist. ESS200A No sunlight! Prof. Jin -Yi Yu BasicBasic OceanOcean CurrentCurrent SystemsSystems Upper Ocean surface circulation Deep Ocean deep ocean circulation ESS200A (from “Is The Temperature Rising?”) Prof. Jin -Yi Yu TheThe StateState ofof OceansOceans Temperature warm on the upper ocean, cold in the deeper ocean. Salinity variations determined by evaporation, precipitation, sea-ice formation and melt, and river runoff. Density small in the upper ocean, large in the deeper ocean. ESS200A Prof. Jin -Yi Yu PotentialPotential TemperatureTemperature Potential temperature is very close to temperature in the ocean. The average temperature of the world ocean is about 3.6°C. ESS200A (from Global Physical Climatology ) Prof. Jin -Yi Yu SalinitySalinity E < P Sea-ice formation and melting E > P Salinity is the mass of dissolved salts in a kilogram of seawater. Unit: ‰ (part per thousand; per mil). The average salinity of the world ocean is 34.7‰. Four major factors that affect salinity: evaporation, precipitation, inflow of river water, and sea-ice formation and melting. (from Global Physical Climatology ) ESS200A Prof. Jin -Yi Yu Low density due to absorption of solar energy near the surface. DensityDensity Seawater is almost incompressible, so the density of seawater is always very close to 1000 kg/m 3.
    [Show full text]
  • Global Ocean Surface Velocities from Drifters: Mean, Variance, El Nino–Southern~ Oscillation Response, and Seasonal Cycle Rick Lumpkin1 and Gregory C
    JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 2992–3006, doi:10.1002/jgrc.20210, 2013 Global ocean surface velocities from drifters: Mean, variance, El Nino–Southern~ Oscillation response, and seasonal cycle Rick Lumpkin1 and Gregory C. Johnson2 Received 24 September 2012; revised 18 April 2013; accepted 19 April 2013; published 14 June 2013. [1] Global near-surface currents are calculated from satellite-tracked drogued drifter velocities on a 0.5 Â 0.5 latitude-longitude grid using a new methodology. Data used at each grid point lie within a centered bin of set area with a shape defined by the variance ellipse of current fluctuations within that bin. The time-mean current, its annual harmonic, semiannual harmonic, correlation with the Southern Oscillation Index (SOI), spatial gradients, and residuals are estimated along with formal error bars for each component. The time-mean field resolves the major surface current systems of the world. The magnitude of the variance reveals enhanced eddy kinetic energy in the western boundary current systems, in equatorial regions, and along the Antarctic Circumpolar Current, as well as three large ‘‘eddy deserts,’’ two in the Pacific and one in the Atlantic. The SOI component is largest in the western and central tropical Pacific, but can also be seen in the Indian Ocean. Seasonal variations reveal details such as the gyre-scale shifts in the convergence centers of the subtropical gyres, and the seasonal evolution of tropical currents and eddies in the western tropical Pacific Ocean. The results of this study are available as a monthly climatology. Citation: Lumpkin, R., and G.
    [Show full text]
  • A Review of the North Atlantic Circulation, Marine Climate Change and Its Impact on North European Climate
    A Review of the North Atlantic Circulation, Marine Climate Change and its Impact on North European Climate MAJ 2004 Journal nr.: 2002-2204-009 ISBN.: 87-7992-026-8 Udarbejdet af : Steffen M. Olsen og Erik Buch, Danmarks Meteorologiske Institut Projektmedarbejdere IMV: Rico Busk (projektansvarlig) Udgivet: Maj 2004 Version: 1.0 Bedes citeret som: Olsen, Steffen M. & Buch, Erik 2004. A Review of the North Atlantic Circulation, Marine Climate Change and its Impact on North European Climate. Rapport fra Institut for Miljøvurdering ©2004, Institut for Miljøvurdering Tryk: Dystan Henvendelse angående rapporten kan ske til: Institut for Miljøvurdering Linnésgade 18 1361 København K Tlf.: 7226 5800 Fax: 7226 5839 e-mail: [email protected] www.imv.dk A Review of the North Atlantic Circulation, Marine Climate Change and its Impact on North European Climate. Steffen M. Olsen and Erik Buch Danish Meteorological Institute This review was commissioned by the Danish Environmental Assessment Institute and submitted in its final version on May 18, 2004. DMI A Review of the North Atlantic Circulation, May 2004 Marine Climate Change and its Impact on North European Climate 2 DMI A Review of the North Atlantic Circulation, May 2004 Marine Climate Change and its Impact on North European Climate Indholdsfortegnelse Abstract........................................................................................5 Sammenfatning .............................................................................7 1 Introduction...........................................................................9
    [Show full text]
  • Ocean-Gyre-4.Pdf
    This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more × security, comfort and the best experience on this site. Encyclopedic Entry ocean gyre For the complete encyclopedic entry with media resources, visit: http://education.nationalgeographic.com/encyclopedia/ocean-gyre/ An ocean gyre is a large system of circular ocean currents formed by global wind patterns and forces created by Earth’s rotation. The movement of the world’s major ocean gyres helps drive the “ocean conveyor belt.” The ocean conveyor belt circulates ocean water around the entire planet. Also known as thermohaline circulation, the ocean conveyor belt is essential for regulating temperature, salinity and nutrient flow throughout the ocean. How a Gyre Forms Three forces cause the circulation of a gyre: global wind patterns, Earth’s rotation, and Earth’s landmasses. Wind drags on the ocean surface, causing water to move in the direction the wind is blowing. The Earth’s rotation deflects, or changes the direction of, these wind-driven currents. This deflection is a part of the Coriolis effect. The Coriolis effect shifts surface currents by angles of about 45 degrees. In the Northern Hemisphere, ocean currents are deflected to the right, in a clockwise motion. In the Southern Hemisphere, ocean currents are pushed to the left, in a counterclockwise motion. Beneath surface currents of the gyre, the Coriolis effect results in what is called an Ekman spiral. While surface currents are deflected by about 45 degrees, each deeper layer in the water column is deflected slightly less.
    [Show full text]
  • In Pdf Format
    COLD WIND TWO GYRES A Tribute To VAL WORTHINGTON by a few of his friends in honor of his forty-one years of activity in oceanography Publication costs for this supplementary issue have been subsidized by the National Science Foundation, by the Office of Naval Research, and by the Woods Hole Oceanographic Institution. Printed in U.S.A. for the Sears Foundation for Marine Research, Yale University, New Haven, Connecticut, 06520, U.S.A. Van Dyck Printing Company, North Haven, Connecticut, 06473, U.S.A. EDITORIAL PREFACE Val Worthington has worked in oceanography for forty-one years. In honor of his long career, and on the occasion of his sixty-second birthday and retirement from the Woods Hole Oceanographic Institution, we offer this collection of forty-one papers by some of his friends. The subtitle for the volume, “Cold Wind- Two Gyres,” is a free translation of his Japanese nickname, given him by Hideo Kawai and Susumu Honjo. It refers to two of his more controversial interpretations of the general circulation of the North Atlantic. The main emphasis of the collection is physical oceanography; in particular the general circulation of "his ocean," the North Atlantic (ten papers). Twenty-nine papers deal with physical oceanographic studies in other regions, modeling and techniques. There is one paper on the “Worthington effect” in paleo oceanography and one on fishes – this last being a topic dear to Val's heart, but one on which his direct influence has been mainly on population levels in Vineyard Sound. Many more people would like to have contributed to the volume but were prevented by the tight time table, the editorial and referee process, or the paper limit of forty-one.
    [Show full text]
  • Enhancement of the North Atlantic CO2 Sink by Arctic Waters
    Biogeosciences, 18, 1689–1701, 2021 https://doi.org/10.5194/bg-18-1689-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Enhancement of the North Atlantic CO2 sink by Arctic Waters Jon Olafsson1, Solveig R. Olafsdottir2, Taro Takahashi3;, Magnus Danielsen2, and Thorarinn S. Arnarson4; 1Institute of Earth Sciences, Sturlugata 7 Askja, University of Iceland, IS 101 Reykjavik, Iceland 2Marine and Freshwater Research Institute, Fornubúðir 5, IS 220 Hafnafjörður, Iceland 3Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA 4National Energy Authority, Grensásvegur 9, IS 108 Reykjavík, Iceland deceased Correspondence: Jon Olafsson ([email protected]) Received: 13 August 2020 – Discussion started: 27 August 2020 Revised: 20 January 2021 – Accepted: 27 January 2021 – Published: 10 March 2021 ◦ Abstract. The North Atlantic north of 50 N is one of the lantic CO2 sink which we reveal was previously unrecog- most intense ocean sink areas for atmospheric CO2 consid- nized. However, we point out that there are gaps and conflicts ering the flux per unit area, 0.27 Pg-C yr−1, equivalent to in the knowledge about the Arctic alkalinity and carbonate −2 −1 −2:5 mol C m yr . The northwest Atlantic Ocean is a re- budgets and that future trends in the North Atlantic CO2 sink gion with high anthropogenic carbon inventories. This is on are connected to developments in the rapidly warming and account of processes which sustain CO2 air–sea fluxes, in changing Arctic. The results we present need to be taken into particular strong seasonal winds, ocean heat loss, deep con- consideration for the following question: will the North At- vective mixing, and CO2 drawdown by primary production.
    [Show full text]
  • Recent Subsurface North Atlantic Cooling Trend in Context of Atlantic Decadal-To-Multidecadal Variability
    SERIES A DYANAMIC METEOROLOGY Tellus AND OCEANOGRAPHY PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM Recent subsurface North Atlantic cooling trend in context of Atlantic decadal-to-multidecadal variability 1 2Ã 1 By ALFREDO RUIZ-BARRADAS ,LEON CHAFIK , SUMANT NIGAM AND SIRPA HaKKINEN€ 3, 1Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD, USA; 2Geophysical Institute University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway; 3NASA Goddard Space Flight Center, Greenbelt, MD, USA (Manuscript received 20 July 2017; in final form 18 May 2018) ABSTRACT The spatiotemporal structure of the recent decadal subsurface cooling trend in the North Atlantic Ocean is analyzed in the context of the phase reversal of Atlantic multidecadal variability. A vertically integrated ocean heat content (HC) Atlantic Multidecadal Oscillation index (AMO-HC) definition is proposed in order to capture the thermal state of the ocean and not just that of the surface as in the canonical AMO SST-based indices. The AMO-HC (5–657 m) index (defined over the area, 0N–60N, 5W–75W) indicates that: (1) The traditional surface AMO index lags the heat content (and subsurface temperatures) with the leading time being latitude-dependent. (2) The North Atlantic subsurface was in a warming trend since the mid-1980s to the mid-2000s, a feature that was also present at the surface with a lag of 3 years. (3) The North Atlantic subsurface is in a cooling trend since the mid-2000s with significant implications for predicting future North Atlantic climate. The spatial structure of decadal trends in upper-ocean heat content (5–657 m) in the North Atlantic prior to and after 2006 suggests a link with variability of the Gulf Stream–Subpolar Gyre system.
    [Show full text]
  • North Atlantic Circulation Slows Down
    RESEARCH NEWS & VIEWS OCEAN SCIENCE the observational data, and demonstrated that this pattern was associated with a decline in AMOC strength. The authors then calibrated the model’s results with their SST data to esti- North Atlantic mate that the AMOC has declined by about 15% in the past half-century. They infer that the slowdown in the AMOC was probably a circulation slows down response to warming caused by anthropogenic greenhouse-gas emissions. A possible mecha- Evidence suggests that the circulation system of the North Atlantic Ocean is in a nism could be enhanced melting of the Green- weakened state that is unprecedented in the past 1,600 years, but questions remain land Ice Sheet7, which adds fresh water to the as to when exactly the decline commenced. See Article p.191 & Letter p.227 surface ocean and reduces the density of the water that drives deep convection. Thornalley et al. provide a longer-term SUMMER K. PRAETORIUS a slowdown of the AMOC have been studied perspective on changes in AMOC strength previously6–8, the main advance of Caesar and during the past 1,600 years using a proxy he warm, salty waters of the Gulf Stream colleagues’ work is their comprehensive com- measurement — the ‘sortable-silt’ grain make a northeasterly meander across parison of global SST data sets with state-of- size9 — of deep-sea sediment cores that the Atlantic Ocean, eventually form- the-art, high-resolution climate models. reflects the speeds of the bottom waters Ting the North Atlantic Current, which then The authors’ data analysis shows that this that flow along the path of the North Atlan- funnels into the Nordic Seas.
    [Show full text]