Public Key Encryption Based on Discrete Logarithms

Total Page:16

File Type:pdf, Size:1020Kb

Public Key Encryption Based on Discrete Logarithms Chapter 23 Public Key Encryption Based on Discrete Logarithms This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography” by Steven Galbraith, available from http://www.math.auckland.ac.nz/˜sgal018/crypto- book/crypto-book.html The copyright for this chapter is held by Steven Galbraith. This book was published by Cambridge University Press in early 2012. This is the extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be different in the published version. Please send an email to [email protected] if youfind any mistakes. Historically, encryption has been considered the most important part of cryptography. So it is not surprising that there is a vast literature about public key encryption. It is important to note that, in practice, public key encryption is not usually used to encrypt documents. Instead, one uses public key encryption to securely send keys, and the data is encrypted using symmetric encryption. It is beyond the scope of this book to discuss all known results on public key encryption, or even to sketch all known approaches to designing public key encryption schemes. The goal of this chapter is very modest. We simply aim to give some definitions and to provide two efficient encryption schemes (one secure in the random oracle model and one secure in the standard model). The encryption schemes in this chapter are all based on Elgamal encryption, the “textbook” version of which has already been discussed in Sections 20.3 and 20.4. Finally, we emphasise that this Chapter only discusses confidentiality and not simul- taneous confidentiality and authentication. The reader is warned that naively combining signatures and encryption does not necessarily provide the expected security (see, for example, the discussion in Section 1.2.3 of Joux [317]). 23.1 CCA Secure Elgamal Encryption Recall that security notions for public key encryption were given in Section 1.3.1. As we have seen, the textbook Elgamal encryption scheme does not have OWE-CCA security, since one can easily construct a related ciphertext whose decryption yields the original message. A standard way to prevent such attacks is to add a message authentication code (MAC); see Section 3.3. 493 494 CHAPTER 23. ENCRYPTION FROM DISCRETE LOGARITHMS We have also seen (see Section 20.3) that Elgamal can be viewed as static Diffie- Hellman key exchange followed by a specific symmetric encryption. Hence, it is natural to generalise Elgamal encryption so that it works with any symmetric encryption scheme. The scheme we present in this section is known as DHIES and, when implemented with elliptic curves, is called ECIES. We refer to Abdalla, Bellare and Rogaway [1] or Chapter III of [65] for background and discussion. Letκ be a security parameter. The scheme requires a symmetric encryption scheme, a MAC scheme and a key derivation function. The symmetric encryption functions Enc and Dec take anl 1-bit key and encrypt messages of arbitrary length. The MAC function MAC takes anl 2-bit key and a message of arbitrary length and outputs anl 3-bit binary string. The key derivation function is a function kdf:G 0,1 l1+l2 . The valuesl , →{ } 1 l2 andl 3 depend on the security parameter. Note that it is important that the MAC is evaluated on the ciphertext not the message, since a MAC is not required to have any confidentiality properties. The DHIES encryption scheme is given in Figure 23.1. KeyGen(κ): Generate an algebraic group or algebraic group quotientG whose order is divisible by a large primer (so that the discrete logarithm problem in the subgroup of prime orderr requires at least 2 κ bit operations). Choose a randomg G of exact orderr. Choose a random integer 0<a<r and set h=g a. ∈ The public key is (G, g, h) and the private key isa. Alternatively, (G, g) are system parameters that arefixed for all users and onlyh is the public key. The message space isM κ = 0,1 ∗. { } l The ciphertext space isC =G 0,1 ∗ 0,1 3 . κ ×{ } × { } Encrypt(m, h): (m 0,1 ∗ andh is the authentic public key of the receiver) ∈{ } Choose a random 0<k<r and setc =g k. • 1 k SetK= kdf(h ) and parseK asK 1 K2 whereK 1 andK 2 arel 1 andl 2 bit binary • strings respectively. k Setc = Enc (m) andc = MAC (c ). • 2 K1 3 K2 2 Transmit the ciphertext (c ,c ,c ). • 1 2 3 Decrypt(c1,c 2,c 3, a): Check thatc G and thatc is anl -bit string (if not then return and halt). • 1 ∈ 3 3 ⊥ ComputeK= kdf(c a) and parse it asK K . • 1 1k 2 Check whetherc = MAC (c ) (if not then return and halt). • 3 K2 2 ⊥ Returnm= Dec (c ). • K1 2 Figure 23.1: DHIES Public Key Encryption. Exercise 23.1.1. Show that decryption does return the message when given a ciphertext produced by the DHIES encryption algorithm. A variant of DHIES is to compute the key derivation function on the pair of group (or algebraic group quotient) elements (gk, hk) rather than justh k. This case is presented in 23.1. CCA SECURE ELGAMAL ENCRYPTION 495 Section 10 of Cramer and Shoup [161]. As explained in Section 10.7 of [161], this variant can yield a tighter security reduction. 23.1.1 The KEM/DEM Paradigm Shoup introduced a formalism for public key encryption that has proved to be useful. The idea is to separate the “public key” part of the system (i.e., the valuec 1 in Fig- ure 23.1) from the “symmetric” part (i.e., (c2,c 3) in Figure 23.1). A key encapsulation mechanism (or KEM) outputs a public key encryption of a random symmetric key (this functionality is very similar to key transport; the difference being that a KEM gener- ates a fresh random key as part of the algorithm). A data encapsulation mechanism (or DEM) is the symmetric part. The name hybrid encryption is used to describe an encryption scheme obtained by combining a KEM with a DEM. More formally, a KEM is a triple of three algorithms (KeyGen, Encrypt and Decrypt)1 that depend on a security parameterκ. Instead of a message space, there is space κ of possible keys to be encapsulated. The randomised algorithm Encrypt takes as inputK a public key and outputs a ciphertextc and a symmetric keyK κ (whereκ is the security parameter). One says thatc encapsulatesK. The Decrypt∈K algorithm for a KEM takes as input a ciphertextc and the private key and outputs a symmetric keyK (or if the decryption fails). The Encrypt algorithm for a DEM takes as input a message and⊥ a symmetric keyK and outputs a ciphertext. The Decrypt algorithm of a DEM takes a ciphertext and a symmetric keyK and outputs either or a message. The simplest way to obtain a KEM from Elgamal is⊥ given in Figure 23.2. The DEM corresponding to the hybrid encryption scheme in Section 23.1 takes as inputm andK, parsesK asK K , computesc = Enc (m) andc = MAC (c ) and outputs (c ,c ). 1k 2 2 K1 3 K2 2 2 3 KeyGen(κ): This is the same as standard Elgamal; see Figure 23.1. Encrypt(h): Choose random 0 k<r and setc=g k andK= kdf(h k). Return the ciphertextc and the keyK. ≤ Decrypt(c, a): Return ifc g . Otherwise return kdf(c a). ⊥ 6∈h i Figure 23.2: Elgamal KEM. Shoup has defined an analogue of IND-CCA security for a KEM. We refer to Section 7 of Cramer and Shoup [161] for precise definitions for KEMs, DEMs and their security properties, but give an informal statement now. Definition 23.1.2. An IND-CCA adversary for a KEM is an algorithmA that plays the following game: The input toA is a public key. The algorithmA can also query a decryption oracle that will provide decryptions of any ciphertext of its choosing. At some point the adversary requests a challenge, which is a KEM ciphertextc ∗ together with a keyK ∗ . The challenger choosesK ∗ to be either the key corresponding to ∈K κ the ciphertextc ∗ or an independently chosen random element of κ (both cases with probability 1/2). The game continues with the adversary able toK query the decryption oracle with any ciphertextc=c ∗. Finally, the adversary outputs a guess for whether 6 K∗ is the key corresponding toc ∗, or a random key (this is the same as the “real or random” security notion for key exchange in Section 20.5). Denote by Pr(A) the success probability ofA in this game and define the advantage Adv(A) = Pr(A) 1/2 . The KEM is IND-CCA secure if every polynomial-time adversary has negligible| − advantage.| 1Sometimes the names Encap and Decap are used instead of Encrypt and Decrypt. 496 CHAPTER 23. ENCRYPTION FROM DISCRETE LOGARITHMS Theorem 5 of Section 7.3 of [161] shows that, if a KEM satisfies IND-CCA security and if a DEM satisfies an analogous security property, then the corresponding hybrid encryption scheme has IND-CCA security. Due to lack of space we do not present the details. 23.1.2 Proof of Security in the Random Oracle Model We now sketch a proof that the Elgamal KEM of Figure 23.2 has IND-CCA security. The proof is in the random oracle model. The result requires a strong assumption (namely, the Strong-Diffie-Hellman or gap-Diffie-Hellman assumption). Do not be misled by the use of the word “strong”! This computational problem is not harder than the Diffie-Hellman problem.
Recommended publications
  • The Twin Diffie-Hellman Problem and Applications
    The Twin Diffie-Hellman Problem and Applications David Cash1 Eike Kiltz2 Victor Shoup3 February 10, 2009 Abstract We propose a new computational problem called the twin Diffie-Hellman problem. This problem is closely related to the usual (computational) Diffie-Hellman problem and can be used in many of the same cryptographic constructions that are based on the Diffie-Hellman problem. Moreover, the twin Diffie-Hellman problem is at least as hard as the ordinary Diffie-Hellman problem. However, we are able to show that the twin Diffie-Hellman problem remains hard, even in the presence of a decision oracle that recognizes solutions to the problem — this is a feature not enjoyed by the Diffie-Hellman problem in general. Specifically, we show how to build a certain “trapdoor test” that allows us to effectively answer decision oracle queries for the twin Diffie-Hellman problem without knowing any of the corresponding discrete logarithms. Our new techniques have many applications. As one such application, we present a new variant of ElGamal encryption with very short ciphertexts, and with a very simple and tight security proof, in the random oracle model, under the assumption that the ordinary Diffie-Hellman problem is hard. We present several other applications as well, including: a new variant of Diffie and Hellman’s non-interactive key exchange protocol; a new variant of Cramer-Shoup encryption, with a very simple proof in the standard model; a new variant of Boneh-Franklin identity-based encryption, with very short ciphertexts; a more robust version of a password-authenticated key exchange protocol of Abdalla and Pointcheval.
    [Show full text]
  • Blind Schnorr Signatures in the Algebraic Group Model
    An extended abstract of this work appears in EUROCRYPT’20. This is the full version. Blind Schnorr Signatures and Signed ElGamal Encryption in the Algebraic Group Model Georg Fuchsbauer1, Antoine Plouviez2, and Yannick Seurin3 1 TU Wien, Austria 2 Inria, ENS, CNRS, PSL, Paris, France 3 ANSSI, Paris, France first.last@{tuwien.ac.at,ens.fr,m4x.org} January 16, 2021 Abstract. The Schnorr blind signing protocol allows blind issuing of Schnorr signatures, one of the most widely used signatures. Despite its practical relevance, its security analysis is unsatisfactory. The only known security proof is rather informal and in the combination of the generic group model (GGM) and the random oracle model (ROM) assuming that the “ROS problem” is hard. The situation is similar for (Schnorr-)signed ElGamal encryption, a simple CCA2-secure variant of ElGamal. We analyze the security of these schemes in the algebraic group model (AGM), an idealized model closer to the standard model than the GGM. We first prove tight security of Schnorr signatures from the discrete logarithm assumption (DL) in the AGM+ROM. We then give a rigorous proof for blind Schnorr signatures in the AGM+ROM assuming hardness of the one-more discrete logarithm problem and ROS. As ROS can be solved in sub-exponential time using Wagner’s algorithm, we propose a simple modification of the signing protocol, which leaves the signatures unchanged. It is therefore compatible with systems that already use Schnorr signatures, such as blockchain protocols. We show that the security of our modified scheme relies on the hardness of a problem related to ROS that appears much harder.
    [Show full text]
  • Implementation and Performance Evaluation of XTR Over Wireless Network
    Implementation and Performance Evaluation of XTR over Wireless Network By Basem Shihada [email protected] Dept. of Computer Science 200 University Avenue West Waterloo, Ontario, Canada (519) 888-4567 ext. 6238 CS 887 Final Project 19th of April 2002 Implementation and Performance Evaluation of XTR over Wireless Network 1. Abstract Wireless systems require reliable data transmission, large bandwidth and maximum data security. Most current implementations of wireless security algorithms perform lots of operations on the wireless device. This result in a large number of computation overhead, thus reducing the device performance. Furthermore, many current implementations do not provide a fast level of security measures such as client authentication, authorization, data validation and data encryption. XTR is an abbreviation of Efficient and Compact Subgroup Trace Representation (ECSTR). Developed by Arjen Lenstra & Eric Verheul and considered a new public key cryptographic security system that merges high level of security GF(p6) with less number of computation GF(p2). The claim here is that XTR has less communication requirements, and significant computation advantages, which indicate that XTR is suitable for the small computing devices such as, wireless devices, wireless internet, and general wireless applications. The hoping result is a more flexible and powerful secure wireless network that can be easily used for application deployment. This project presents an implementation and performance evaluation to XTR public key cryptographic system over wireless network. The goal of this project is to develop an efficient and portable secure wireless network, which perform a variety of wireless applications in a secure manner. The project literately surveys XTR mathematical and theoretical background as well as system implementation and deployment over wireless network.
    [Show full text]
  • Lecture 14: Elgamal Encryption, Hash Functions from DL, Prgs from DDH 1 Topics Covered 2 Recall 3 Key Agreement from the Diffie
    CS 7880 Graduate Cryptography October 29, 2015 Lecture 14: ElGamal Encryption, Hash Functions from DL, PRGs from DDH Lecturer: Daniel Wichs Scribe: Biswaroop Maiti 1 Topics Covered • Public Key Encryption • A Public Key Encryption from the DDH Assumption • El Gamal Encryption • CRHF from Discrete Log • PRG from DDH 2 Recall Recall the three number theoretic assumptions we saw last time. We will build Crypto- graphic schemes or protocols based on the hardness of these problems. Definition 1 (G; g; q) Groupgen(1n) } Assumption 1 DL Given g; gX , it is hard to find X. Assumption 2 Computational Diffie Hellman Given g; gX ; gY , it is hard to find gXY . Assumption 3 Decisional Diffie Hellman Given g; gX ; gY , it is hard to distinguish between gXY and gZ , where Z is chosen at random. (g; gX ; gY ; gXY ) ≈ (g; gX ; gY ; gZ ) 3 Key Agreement from the Diffie Helman scheme AB x Zq X hA = g −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−£ Y hB = g ¡−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Y Zq X XY Y XY hB = g hA = g The keys agreed upon by A and B is gXY . Lecture 14, Page 1 It is interesting to note that in this scheme, A and B were able to agree upon a key without communicating about it. Each party generates a puzzle uniformly at random: A X Y generates hA = g , and B generates hB = g . Then, they send their puzzles to each other, and establish the key to be gXY . Proving this scheme is secure is equivalent to showing that the DDH assumption holds. 4 Public Key Encryption The general syntax of Public Key Encryption is the following.
    [Show full text]
  • Implementing Several Attacks on Plain Elgamal Encryption Bryce D
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2008 Implementing several attacks on plain ElGamal encryption Bryce D. Allen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Allen, Bryce D., "Implementing several attacks on plain ElGamal encryption" (2008). Graduate Theses and Dissertations. 11535. https://lib.dr.iastate.edu/etd/11535 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Implementing several attacks on plain ElGamal encryption by Bryce Allen A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Mathematics Program of Study Committee: Clifford Bergman, Major Professor Paul Sacks Sung-Yell Song Iowa State University Ames, Iowa 2008 Copyright c Bryce Allen, 2008. All rights reserved. ii Contents CHAPTER 1. OVERVIEW . 1 1.1 Introduction . .1 1.2 Hybrid Cryptosystems . .2 1.2.1 Symmetric key cryptosystems . .2 1.2.2 Public key cryptosystems . .3 1.2.3 Combining the two systems . .3 1.2.4 Short messages and public key systems . .4 1.3 Implementation . .4 1.4 Splitting Probabilities . .5 CHAPTER 2. THE ELGAMAL CRYPTOSYSTEM . 7 2.1 The Discrete Log Problem . .7 2.2 Encryption and Decryption . .8 2.3 Security . .9 2.4 Efficiency .
    [Show full text]
  • Power Analysis on NTRU Prime
    Power Analysis on NTRU Prime Wei-Lun Huang, Jiun-Peng Chen and Bo-Yin Yang Academia Sinica, Taiwan, [email protected], [email protected], [email protected] Abstract. This paper applies a variety of power analysis techniques to several imple- mentations of NTRU Prime, a Round 2 submission to the NIST PQC Standardization Project. The techniques include vertical correlation power analysis, horizontal in- depth correlation power analysis, online template attacks, and chosen-input simple power analysis. The implementations include the reference one, the one optimized using smladx, and three protected ones. Adversaries in this study can fully recover private keys with one single trace of short observation span, with few template traces from a fully controlled device similar to the target and no a priori power model, or sometimes even with the naked eye. The techniques target the constant-time generic polynomial multiplications in the product scanning method. Though in this work they focus on the decapsulation, they also work on the key generation and encapsulation of NTRU Prime. Moreover, they apply to the ideal-lattice-based cryptosystems where each private-key coefficient comes from a small set of possibilities. Keywords: Ideal Lattice Cryptography · Single-Trace Attack · Correlation Power Analysis · Template Attack · Simple Power Analysis · NTRU Prime 1 Introduction Due to Shor’s algorithm [Sho97], quantum computing is a potential threat to all public-key cryptosystems based on the hardness of integer factorization and discrete logarithms, in- cluding RSA [RSA78], Diffie-Hellman key agreement [DH76], ElGamal encryption [Gam85], and ECDSA [JMV01]. Recently, quantum computers have been estimated as arriving in 10 to 15 years [Sni16, WLYZ18], which identifies an urgent need for the examination and standardization of post-quantum cryptosystems.
    [Show full text]
  • Comparison of Two Public Key Cryptosystems
    Journal of Optoelectronical Nanostructures Summer 2018 / Vol. 3, No. 3 Islamic Azad University Comparison of two Public Key Cryptosystems 1 *,2 1 Mahnaz Mohammadi , Alireza Zolghadr , Mohammad Ali Purmina 1 Department of Electrical and Electronic Eng., Science and Research Branch, Islamic Azad University, Tehran, Iran 2 Faculty of Computer and Electrical Eng., Department of Communication and Electronics, Shiraz University, Shiraz, Iran (Received 10 Jun. 2018; Revised 11 Jul. 2018; Accepted 26 Aug. 2018; Published 15 Sep. 2018) Abstract: Since the time public-key cryptography was introduced by Diffie and Hellman in 1976, numerous public-key algorithms have been proposed. Some of these algorithms are insecure and the others that seem secure, many are impractical, either they have too large keys or the cipher text they produce is much longer than the plaintext. This paper focuses on efficient implementation and analysis of two most popular of these algorithms, RSA and ElGamal for key generation and the encryption scheme (encryption/decryption operation). RSA relies on the difficulty of prime factorization of a very large number, and the hardness of ElGamal algorithm is essentially equivalent to the hardness of finding discrete logarithm modulo a large prime. These two systems are compared to each other from different parameters points of view such as performance, security, speed and applications. To have a good comparison and also to have a good level of security correspond to users need the systems implemented are designed flexibly in terms of the key size. Keywords: Cryptography, Public Key Cryptosystems, RSA, ElGamal. 1. INTRODUCTION The security is a necessary for the network to do all the works related to ATM cards, computer passwords and electronic commerce.
    [Show full text]
  • Timing Attacks and the NTRU Public-Key Cryptosystem
    Eindhoven University of Technology BACHELOR Timing attacks and the NTRU public-key cryptosystem Gunter, S.P. Award date: 2019 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Timing Attacks and the NTRU Public-Key Cryptosystem by Stijn Gunter supervised by prof.dr. Tanja Lange ir. Leon Groot Bruinderink A thesis submitted in partial fulfilment of the requirements for the degree of Bachelor of Science July 2019 Abstract As we inch ever closer to a future in which quantum computers exist and are capable of break- ing many of the cryptographic algorithms that are in use today, more and more research is being done in the field of post-quantum cryptography.
    [Show full text]
  • Lecture 19: Public-Key Cryptography (Diffie-Hellman Key Exchange & Elgamal Encryption)
    Lecture 19: Public-key Cryptography (Diffie-Hellman Key Exchange & ElGamal Encryption) Public-key Cryptography Recall In private-key cryptography the secret-key sk is always established ahead of time The secrecy of the private-key cryptography relies on the fact that the adversary does not have access to the secret key sk For example, consider a private-key encryption scheme $ 1 The Alice and Bob generate sk Gen() ahead of time 2 Later, when Alice wants to encrypt and send a message to Bob, she computes the cipher-text c = Encsk(m) 3 The eavesdropping adversary see c but gains no additional information about the message m 4 Bob can decrypt the message me = Decsk(c) 5 Note that the knowledge of sk distinguishes Bob from the eavesdropping adversary Public-key Cryptography Perspective If jskj >jmj, then we can construct private-key encryption schemes (like, one-time pad) that is secure even against adversaries with unbounded computational power If jskj = O(jmj"), where " 2 (0; 1) is a constant, then we can construction private-key encryption schemes using pseudorandom generators (PRGs) What if, jskj = 0? That is, what if Alice and Bob never met? How is “Bob” any different from an “adversary”? Public-key Cryptography In this Lecture We shall introduce the Decisional Diffie-Hellmann (DDH) Assumption and the Diffie-Hellman key-exchange protocol, We shall introduce the El Gamal (public-key) Encryption Scheme, and Finally, abstract out the principal design principles learned. Public-key Cryptography Decisional Diffie-Hellman (DDH) Computational Hardness AssumptionI Let (G; ◦) be a group of size N that is generated by g.
    [Show full text]
  • Public-Key Cryptography
    Public-key Cryptogra; Theory and Practice ABHIJIT DAS Department of Computer Science and Engineering Indian Institute of Technology Kharagpur C. E. VENIMADHAVAN Department of Computer Science and Automation Indian Institute ofScience, Bangalore PEARSON Chennai • Delhi • Chandigarh Upper Saddle River • Boston • London Sydney • Singapore • Hong Kong • Toronto • Tokyo Contents Preface xiii Notations xv 1 Overview 1 1.1 Introduction 2 1.2 Common Cryptographic Primitives 2 1.2.1 The Classical Problem: Secure Transmission of Messages 2 Symmetric-key or secret-key cryptography 4 Asymmetric-key or public-key cryptography 4 1.2.2 Key Exchange 5 1.2.3 Digital Signatures 5 1.2.4 Entity Authentication 6 1.2.5 Secret Sharing 8 1.2.6 Hashing 8 1.2.7 Certification 9 1.3 Public-key Cryptography 9 1.3.1 The Mathematical Problems 9 1.3.2 Realization of Key Pairs 10 1.3.3 Public-key Cryptanalysis 11 1.4 Some Cryptographic Terms 11 1.4.1 Models of Attacks 12 1.4.2 Models of Passive Attacks 12 1.4.3 Public Versus Private Algorithms 13 2 Mathematical Concepts 15 2.1 Introduction 16 2.2 Sets, Relations and Functions 16 2.2.1 Set Operations 17 2.2.2 Relations 17 2.2.3 Functions 18 2.2.4 The Axioms of Mathematics 19 Exercise Set 2.2 20 2.3 Groups 21 2.3.1 Definition and Basic Properties . 21 2.3.2 Subgroups, Cosets and Quotient Groups 23 2.3.3 Homomorphisms 25 2.3.4 Generators and Orders 26 2.3.5 Sylow's Theorem 27 Exercise Set 2.3 29 2.4 Rings 31 2.4.1 Definition and Basic Properties 31 2.4.2 Subrings, Ideals and Quotient Rings 34 2.4.3 Homomorphisms 37 2.4.4
    [Show full text]
  • Another Look at Tightness Ii: Practical Issues in Cryptography
    ANOTHER LOOK AT TIGHTNESS II: PRACTICAL ISSUES IN CRYPTOGRAPHY SANJIT CHATTERJEE, NEAL KOBLITZ, ALFRED MENEZES, AND PALASH SARKAR Abstract. How to deal with large tightness gaps in security proofs is a vexing issue in cryptography. Even when analyzing protocols that are of practical importance, leading researchers often fail to treat this question with the seriousness that it deserves. We discuss nontightness in connection with complexity leveraging, HMAC, lattice-based cryptography, identity-based encryption, and hybrid encryption. 1. Introduction The purpose of this paper is to address practicality issues in cryptography that are related to nontight security reductions. A typical security reduction (often called a “proof of security”) for a protocol has the following form: A certain mathematical task reduces to the task of successfully mounting a certain class of attacks on the protocolP — that is, of being aQ successful adversary in a certain security model. More precisely, the security reduction is an algorithm for solving the mathematical problem that has access to a hypothetical oracle for R. If the oracle takes time at most T andP is successful with probability at least ǫ (hereQ T and ǫ are functions of the security parameter k), then R solves in time at most T ′ with probability at least ǫ′ (where again T ′ and ǫ′ are functions of k).P We call (T ǫ)/(Tǫ ) the tightness gap. The reduction is said to be tight if the ′ ′ R tightness gap is 1 (or is small); otherwise it is nontight. Usually T ′ T and ǫ′ ǫ in a tight reduction. ≈ ≈ A tight security reduction is often very useful in establishing confidence in a protocol.
    [Show full text]
  • Rethinking Verifiably Encrypted Signatures
    Rethinking Verifiably Encrypted Signatures: A Gap in Functionality and Potential Solutions Theresa Calderon1 and Sarah Meiklejohn1 and Hovav Shacham1 and Brent Waters2 1 UC San Diego ftcaldero, smeiklej, [email protected] 2 UT Austin [email protected] Abstract. Verifiably encrypted signatures were introduced by Boneh, Gentry, Lynn, and Shacham in 2003, as a non-interactive analogue to in- teractive protocols for verifiable encryption of signatures. As their name suggests, verifiably encrypted signatures were intended to capture a no- tion of encryption, and constructions in the literature use public-key encryption as a building block. In this paper, we show that previous definitions for verifiably encrypted signatures do not capture the intuition that encryption is necessary, by presenting a generic construction of verifiably encrypted signatures from any signature scheme. We then argue that signatures extracted by the arbiter from a verifiably encrypted signature object should be distributed identically to ordinary signatures produced by the original signer, a prop- erty that we call resolution independence. Our generic construction of verifiably encrypted signatures does not satisfy resolution independence, whereas all previous constructions do. Finally, we introduce a stronger but less general version of resolution independence, which we call res- olution duplication. We show that verifiably encrypted signatures that satisfy resolution duplication generically imply public-key encryption. Keywords: Verifiably encrypted signatures, signatures, public-key en- cryption 1 Introduction Verifiably encrypted signatures were introduced by Boneh, Gentry, Lynn, and Shacham in 2003 [5] as a non-interactive analogue to interactive protocols for verifiable encryption of signatures [3,4] and of other cryptographic objects [7].
    [Show full text]