Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uncovering the Putative B-Star Binary Companion of the Sn 1993J Progenitor
The Astrophysical Journal, 790:17 (13pp), 2014 July 20 doi:10.1088/0004-637X/790/1/17 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. UNCOVERING THE PUTATIVE B-STAR BINARY COMPANION OF THE SN 1993J PROGENITOR Ori D. Fox1, K. Azalee Bostroem2, Schuyler D. Van Dyk3, Alexei V. Filippenko1, Claes Fransson4, Thomas Matheson5, S. Bradley Cenko1,6, Poonam Chandra7, Vikram Dwarkadas8, Weidong Li1,10, Alex H. Parker1, and Nathan Smith9 1 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA; [email protected]. 2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 3 Caltech, Mailcode 314-6, Pasadena, CA 91125, USA 4 Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden 5 National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719-4933, USA 6 Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771, USA 7 National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Ganeshkhind, Pune-411007, India 8 Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637 9 Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721, USA Received 2014 February 9; accepted 2014 May 23; published 2014 June 27 ABSTRACT The Type IIb supernova (SN) 1993J is one of only a few stripped-envelope SNe with a progenitor star identified in pre-explosion images. SN IIb models typically invoke H envelope stripping by mass transfer in a binary system. For the case of SN 1993J, the models suggest that the companion grew to 22 M and became a source of ultraviolet (UV) excess. -
PSR J1740-3052: a Pulsar with a Massive Companion
Haverford College Haverford Scholarship Faculty Publications Physics 2001 PSR J1740-3052: a Pulsar with a Massive Companion I. H. Stairs R. N. Manchester A. G. Lyne V. M. Kaspi Fronefield Crawford Haverford College, [email protected] Follow this and additional works at: https://scholarship.haverford.edu/physics_facpubs Repository Citation "PSR J1740-3052: a Pulsar with a Massive Companion" I. H. Stairs, R. N. Manchester, A. G. Lyne, V. M. Kaspi, F. Camilo, J. F. Bell, N. D'Amico, M. Kramer, F. Crawford, D. J. Morris, A. Possenti, N. P. F. McKay, S. L. Lumsden, L. E. Tacconi-Garman, R. D. Cannon, N. C. Hambly, & P. R. Wood, Monthly Notices of the Royal Astronomical Society, 325, 979 (2001). This Journal Article is brought to you for free and open access by the Physics at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. Mon. Not. R. Astron. Soc. 325, 979–988 (2001) PSR J174023052: a pulsar with a massive companion I. H. Stairs,1,2P R. N. Manchester,3 A. G. Lyne,1 V. M. Kaspi,4† F. Camilo,5 J. F. Bell,3 N. D’Amico,6,7 M. Kramer,1 F. Crawford,8‡ D. J. Morris,1 A. Possenti,6 N. P. F. McKay,1 S. L. Lumsden,9 L. E. Tacconi-Garman,10 R. D. Cannon,11 N. C. Hambly12 and P. R. Wood13 1University of Manchester, Jodrell Bank Observatory, Macclesfield, Cheshire SK11 9DL 2National Radio Astronomy Observatory, PO Box 2, Green Bank, WV 24944, USA 3Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia 4Physics Department, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8, Canada 5Columbia Astrophysics Laboratory, Columbia University, 550 W. -
Curriculum Vitae Thomas Matheson
Curriculum Vitae Thomas Matheson Address: NSF's National Optical-Infrared Astronomy Research Laboratory Community Science and Data Center 950 North Cherry Avenue Tucson, AZ 85719, USA Telephone: (520) 318{8517 Fax: (520) 318{8360 e-mail: [email protected] WWW: http://www.noao.edu/noao/staff/matheson/ Education: University of California, Berkeley, Berkeley, CA Department of Astronomy Ph.D. received June 2000 M.A. received June 1992 PhD Thesis Topic: The Spectral Characteristics of Stripped-Envelope Supernovae Thesis Advisor: Professor Alexei V. Filippenko Harvard University, Cambridge, MA Department of Astronomy & Astrophysics and Physics A.B. magna cum laude, received June 1989 Senior Thesis Topic: Transients in the Solar Transition Region Thesis Advisor: Professor Robert W. Noyes Employment: NSF's National Optical-Infrared Astronomy Research Laboratory (The Former National Optical Astronomy Observatory) Community Science and Data Center Head of Time-Domain Services 2017 { present Astronomer 2018 { present Associate Astronomer 2009 { 2018 (Tenure, 2011) Assistant Astronomer 2004 { 2009 Harvard-Smithsonian Center for Astrophysics Optical and Infrared Division Post-doctoral fellow 2000 { 2004 University of California, Berkeley Department of Astronomy Research Assistant 1991 { 2000 Harvard-Smithsonian Center for Astrophysics Solar and Stellar Physics Division Research Assistant 1989 { 1990 Thomas Matheson|Curriculum Vitae Teaching: Harvard University, Department of Astronomy, Teaching Assistant 2001, 2003 University of California, Berkeley, -
Spectrum Analysis of Type Iib Supernova 1996Cb
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Spectrum Analysis of Type IIb Supernova 1996cb Jinsong Deng 1,2 Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Yulei Qiu and Jinyao Hu Beijing Astronomical Observatory, Chaoyang District, Beijing 100012, P.R.China ABSTRACT We analyze a time series of optical spectra of SN 1993J-like supernova 1996cb, from 14 days before maximum to 86 days after that, with a parame- terized supernova synthetic-spectrum code SYNOW. Detailed line identification are made through fitting the synthetic spectra to observed ones. The derived 1 1 photospheric velocity, decreasing from 11; 000 km s− to 3; 000 km s− ,gives a rough estimate of the ratio of explosion kinetic energy to ejecta mass, i.e. 51 E=Mej 0:2 0:5 10 ergs=Mej(M ). We find that the minimum velocity of ∼ − × 1 hydrogen is 10; 000 km s− , which suggests a small hydrogen envelope mass ∼ 51 of 0:02 0:1 Mej,or0:1 0:2 M if E is assumed 1 10 ergs. A possible ∼ − − × Ni II absorption feature near 4000 A˚ is identified throughout the epochs studied here and is most likely produced by primordial nickel. Unambiguous Co II fea- tures emerge from 16 days after maximum onward, which suggests that freshly synthesized radioactive material has been mixed outward to a velocity of at least 1 7; 000 km s− as a result of hydrodynamical instabilities. Although our synthetic spectra show that the bulk of the blueshift of [O I] λ5577 net emission, as large as 70 A˚ at 9 days after maximum, is attributed to line blending, a still consid- ∼ erable residual 20 A˚ remains till the late phase. -
Multiwavelength Study of the Fast Rotating Supergiant High-Mass X-Ray Binary IGR J16465−4507? S
A&A 591, A87 (2016) Astronomy DOI: 10.1051/0004-6361/201628110 & c ESO 2016 Astrophysics Multiwavelength study of the fast rotating supergiant high-mass X-ray binary IGR J16465−4507? S. Chaty1; 2, A. LeReun1, I. Negueruela3; 4, A. Coleiro5, N. Castro6, S. Simón-Díaz7; 8, J. A. Zurita Heras1, P. Goldoni5, and A. Goldwurm5 1 AIM (UMR 7158 CEA/DSM-CNRS-Université Paris Diderot), Irfu/Service d’Astrophysique, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France e-mail: [email protected] 2 Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France 3 Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Escuela Politécnica Superior, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Spain 4 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA 5 APC (UMR 7164 CEA/DSM-CNRS-Université Paris Diderot), 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France 6 Argelander Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany 7 Instituto de Astrofísica de Canarias, vía Láctea s/n, 38205 La Laguna, Santa Cruz de Tenerife, Spain 8 Departamento de Astrofísica, Facultad de Física y Matemáticas, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez, s/n, 38206 La Laguna, Santa Cruz de Tenerife, Spain Received 11 January 2016 / Accepted 4 April 2016 ABSTRACT Context. Since its launch, the X-ray and γ-ray observatory INTEGRAL satellite has revealed a new class of high-mass X-ray binaries (HMXB) displaying fast flares and hosting supergiant companion stars. -
Iptf14hls: a Unique Long-Lived Supernova from a Rare Ex- Plosion Channel
iPTF14hls: A unique long-lived supernova from a rare ex- plosion channel I. Arcavi1;2, et al. 1Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117, USA. 2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA. 1 Most hydrogen-rich massive stars end their lives in catastrophic explosions known as Type 2 IIP supernovae, which maintain a roughly constant luminosity for ≈100 days and then de- 3 cline. This behavior is well explained as emission from a shocked and expanding hydrogen- 56 4 rich red supergiant envelope, powered at late times by the decay of radioactive Ni produced 1, 2, 3 5 in the explosion . As the ejected mass expands and cools it becomes transparent from the 6 outside inwards, and decreasing expansion velocities are observed as the inner slower-moving 7 material is revealed. Here we present iPTF14hls, a nearby supernova with spectral features 8 identical to those of Type IIP events, but remaining luminous for over 600 days with at least 9 five distinct peaks in its light curve and expansion velocities that remain nearly constant in 10 time. Unlike other long-lived supernovae, iPTF14hls shows no signs of interaction with cir- 11 cumstellar material. Such behavior has never been seen before for any type of supernova 12 and it challenges all existing explosion models. Some of the properties of iPTF14hls can be 13 explained by the formation of a long-lived central power source such as the spindown of a 4, 5, 6 7, 8 14 highly magentized neutron star or fallback accretion onto a black hole . -
A Magnetar Model for the Hydrogen-Rich Super-Luminous Supernova Iptf14hls Luc Dessart
A&A 610, L10 (2018) https://doi.org/10.1051/0004-6361/201732402 Astronomy & © ESO 2018 Astrophysics LETTER TO THE EDITOR A magnetar model for the hydrogen-rich super-luminous supernova iPTF14hls Luc Dessart Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS, UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile e-mail: [email protected] Received 2 December 2017 / Accepted 14 January 2018 ABSTRACT Transient surveys have recently revealed the existence of H-rich super-luminous supernovae (SLSN; e.g., iPTF14hls, OGLE-SN14-073) that are characterized by an exceptionally high time-integrated bolometric luminosity, a sustained blue optical color, and Doppler- broadened H I lines at all times. Here, I investigate the effect that a magnetar (with an initial rotational energy of 4 × 1050 erg and 13 field strength of 7 × 10 G) would have on the properties of a typical Type II supernova (SN) ejecta (mass of 13.35 M , kinetic 51 56 energy of 1:32 × 10 erg, 0.077 M of Ni) produced by the terminal explosion of an H-rich blue supergiant star. I present a non-local thermodynamic equilibrium time-dependent radiative transfer simulation of the resulting photometric and spectroscopic evolution from 1 d until 600 d after explosion. With the magnetar power, the model luminosity and brightness are enhanced, the ejecta is hotter and more ionized everywhere, and the spectrum formation region is much more extended. This magnetar-powered SN ejecta reproduces most of the observed properties of SLSN iPTF14hls, including the sustained brightness of −18 mag in the R band, the blue optical color, and the broad H I lines for 600 d. -
Luminous Blue Variables: an Imaging Perspective on Their Binarity and Near Environment?,??
A&A 587, A115 (2016) Astronomy DOI: 10.1051/0004-6361/201526578 & c ESO 2016 Astrophysics Luminous blue variables: An imaging perspective on their binarity and near environment?;?? Christophe Martayan1, Alex Lobel2, Dietrich Baade3, Andrea Mehner1, Thomas Rivinius1, Henri M. J. Boffin1, Julien Girard1, Dimitri Mawet4, Guillaume Montagnier5, Ronny Blomme2, Pierre Kervella7;6, Hugues Sana8, Stanislav Štefl???;9, Juan Zorec10, Sylvestre Lacour6, Jean-Baptiste Le Bouquin11, Fabrice Martins12, Antoine Mérand1, Fabien Patru11, Fernando Selman1, and Yves Frémat2 1 European Organisation for Astronomical Research in the Southern Hemisphere, Alonso de Córdova 3107, Vitacura, 19001 Casilla, Santiago de Chile, Chile e-mail: [email protected] 2 Royal Observatory of Belgium, 3 avenue Circulaire, 1180 Brussels, Belgium 3 European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany 4 Department of Astronomy, California Institute of Technology, 1200 E. California Blvd, MC 249-17, Pasadena, CA 91125, USA 5 Observatoire de Haute-Provence, CNRS/OAMP, 04870 Saint-Michel-l’Observatoire, France 6 LESIA (UMR 8109), Observatoire de Paris, PSL, CNRS, UPMC, Univ. Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France 7 Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 8 ESA/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, -
Arxiv:1901.06939V2 [Astro-Ph.HE] 25 Jan 2019 a Single Object, Possibly Resembling a Thorne-Zytkow Star
High-Mass X-ray Binaries Proceedings IAU Symposium No. 346, 2019 c 2019 International Astronomical Union L.M. Oskinova, E. Bozzo, T. Bulik, D. Gies, eds. DOI: 00.0000/X000000000000000X High-Mass X-ray Binaries: progenitors of double compact objects Edward P.J. van den Heuvel Anton Pannekoek Institute of Astronomy, University of Amsterdam, Postbus 92429, NL-1090GE, Amsterdam, the Netherlands email: [email protected] Abstract. A summary is given of the present state of our knowledge of High-Mass X-ray Bina- ries (HMXBs), their formation and expected future evolution. Among the HMXB-systems that contain neutron stars, only those that have orbital periods upwards of one year will survive the Common-Envelope (CE) evolution that follows the HMXB phase. These systems may produce close double neutron stars with eccentric orbits. The HMXBs that contain black holes do not necessarily evolve into a CE phase. Systems with relatively short orbital periods will evolve by stable Roche-lobe overflow to short-period Wolf-Rayet (WR) X-ray binaries containing a black hole. Two other ways for the formation of WR X-ray binaries with black holes are identified: CE-evolution of wide HMXBs and homogeneous evolution of very close systems. In all three cases, the final product of the WR X-ray binary will be a double black hole or a black hole neutron star binary. Keywords. Common Envelope Evolution, neutron star, black hole, double neutron star, double black hole, Wolf-Rayet X-ray Binary, formation, evolution 1. Introduction My emphasis in this review is on evolution: on what we think to know about how High Mass X-ray Binaries (HMXBs) were formed and how they may evolve further to form binaries consisting of two compact objects: double neutron stars, double black holes and neutron star-black hole binaries. -
(NASA/Chandra X-Ray Image) Type Ia Supernova Remnant – Thermonuclear Explosion of a White Dwarf
Stellar Evolution Card Set Description and Links 1. Tycho’s SNR (NASA/Chandra X-ray image) Type Ia supernova remnant – thermonuclear explosion of a white dwarf http://chandra.harvard.edu/photo/2011/tycho2/ 2. Protostar formation (NASA/JPL/Caltech/Spitzer/R. Hurt illustration) A young star/protostar forming within a cloud of gas and dust http://www.spitzer.caltech.edu/images/1852-ssc2007-14d-Planet-Forming-Disk- Around-a-Baby-Star 3. The Crab Nebula (NASA/Chandra X-ray/Hubble optical/Spitzer IR composite image) A type II supernova remnant with a millisecond pulsar stellar core http://chandra.harvard.edu/photo/2009/crab/ 4. Cygnus X-1 (NASA/Chandra/M Weiss illustration) A stellar mass black hole in an X-ray binary system with a main sequence companion star http://chandra.harvard.edu/photo/2011/cygx1/ 5. White dwarf with red giant companion star (ESO/M. Kornmesser illustration/video) A white dwarf accreting material from a red giant companion could result in a Type Ia supernova http://www.eso.org/public/videos/eso0943b/ 6. Eight Burst Nebula (NASA/Hubble optical image) A planetary nebula with a white dwarf and companion star binary system in its center http://apod.nasa.gov/apod/ap150607.html 7. The Carina Nebula star-formation complex (NASA/Hubble optical image) A massive and active star formation region with newly forming protostars and stars http://www.spacetelescope.org/images/heic0707b/ 8. NGC 6826 (Chandra X-ray/Hubble optical composite image) A planetary nebula with a white dwarf stellar core in its center http://chandra.harvard.edu/photo/2012/pne/ 9. -
The Life Cycle of the Stars Chart
NAME__________________________________DATE_______________PER________ The Life Cycle of the Stars Chart Refer to the “Life Cycle of the Stars Notes and the following terms to fill in the labels on the chart: Black Hole (Forms after the supernova of a massive star that is more than 5 times the mass of the sun) Black Dwarf Star (The remains of a white dwarf that no longer shines) Blue Supergiant Star (more than 3 times more massive than our sun) Nebula (clouds of interstellar dust and gas) Neutron Star (Forms after the supernova of a massive star. Neutron stars are about 10-20 km in diameter but 1.4 times the mass of sun) Planetary or Ring Nebula (the aftermath of a Red Giant that goes “nova”, which means it expels it outer layers) Red Dwarf Star ( a main sequence star of small size and lower temperature) Red Giant Star ( Forms from sun-like stars that start fusing helium. The star expands and cools to a red giant) Red Supergiant Star (Forms from massive stars that start fusing helium. The star expands and cools to a supergiant) Sun-Like Star (a yellow medium-sized star) Supernova (Occurs after a massive star produces iron which cannot be fused further. The result us a massive explosion) White Dwarf (The left-over core of a red giant that has expelled its outer layers. It may continue to shine for billions of years) Color all stars (except neutron star) the appropriate color with colored pencil or marker. Color nebulas red and orange. Do not color supernovas and black holes. -
Stellar Evolution
AccessScience from McGraw-Hill Education Page 1 of 19 www.accessscience.com Stellar evolution Contributed by: James B. Kaler Publication year: 2014 The large-scale, systematic, and irreversible changes over time of the structure and composition of a star. Types of stars Dozens of different types of stars populate the Milky Way Galaxy. The most common are main-sequence dwarfs like the Sun that fuse hydrogen into helium within their cores (the core of the Sun occupies about half its mass). Dwarfs run the full gamut of stellar masses, from perhaps as much as 200 solar masses (200 M,⊙) down to the minimum of 0.075 solar mass (beneath which the full proton-proton chain does not operate). They occupy the spectral sequence from class O (maximum effective temperature nearly 50,000 K or 90,000◦F, maximum luminosity 5 × 10,6 solar), through classes B, A, F, G, K, and M, to the new class L (2400 K or 3860◦F and under, typical luminosity below 10,−4 solar). Within the main sequence, they break into two broad groups, those under 1.3 solar masses (class F5), whose luminosities derive from the proton-proton chain, and higher-mass stars that are supported principally by the carbon cycle. Below the end of the main sequence (masses less than 0.075 M,⊙) lie the brown dwarfs that occupy half of class L and all of class T (the latter under 1400 K or 2060◦F). These shine both from gravitational energy and from fusion of their natural deuterium. Their low-mass limit is unknown.