October 2018 BRAS Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nitrogen Abundances in Planet-Harbouring Stars
A&A 418, 703–715 (2004) Astronomy DOI: 10.1051/0004-6361:20035717 & c ESO 2004 Astrophysics Nitrogen abundances in planet-harbouring stars A. Ecuvillon1, G. Israelian1,N.C.Santos2,3, M. Mayor3,R.J.Garc´ıa L´opez1,4, and S. Randich5 1 Instituto de Astrof´ısica de Canarias, 38200 La Laguna, Tenerife, Spain 2 Centro de Astronomia e Astrofisica de Universidade de Lisboa, Observatorio Astronomico de Lisboa, Tapada de Ajuda, 1349-018 Lisboa, Portugal 3 Observatoire de Gen`eve, 51 ch. des Maillettes, 1290 Sauverny, Switzerland 4 Departamento de Astrof´ısica, Universidad de La Laguna, Av. Astrof´ısico Francisco S´anchez s/n, 38206 La Laguna, Tenerife, Spain 5 INAF/Osservatorio Astrofisico di Arcetri, Largo Fermi 5, 50125 Firenze, Italy Received 20 November 2003 / Accepted 4 February 2004 Abstract. We present a detailed spectroscopic analysis of nitrogen abundances in 91 solar-type stars, 66 with and 25 without known planetary mass companions. All comparison sample stars and 28 planet hosts were analysed by spectral synthesis of the near-UV NH band at 3360 Å observed at high resolution with the VLT/UVES, while the near-IR N 7468 Å was measured in 31 objects. These two abundance indicators are in good agreement. We found that nitrogen abundance scales with that of iron in the metallicity range −0.6 < [Fe/H] < +0.4 with the slope 1.08 ± 0.05. Our results show that the bulk of nitrogen production at high metallicities was coupled with iron. We found that the nitrogen abundance distribution in stars with exoplanets is the high [Fe/H] extension of the curve traced by the comparison sample of stars with no known planets. -
Appendix 1 Some Astrophysical Reminders
Appendix 1 Some Astrophysical Reminders Marc Ollivier 1.1 A Physics and Astrophysics Overview 1.1.1 Star or Planet? Roughly speaking, we can say that the physics of stars and planets is mainly governed by their mass and thus by two effects: 1. Gravitation that tends to compress the object, thus releasing gravitational energy 2. Nuclear processes that start as the core temperature of the object increases The mass is thus a good parameter for classifying the different astrophysical objects, the adapted mass unit being the solar mass (written Ma). As the mass decreases, three categories of objects can be distinguished: ∼ 1. if M>0.08 Ma ( 80MJ where MJ is the Jupiter mass) the mass is sufficient and, as a consequence, the gravitational contraction in the core of the object is strong enough to start hydrogen fusion reactions. The object is then called a “star” and its radius is proportional to its mass. 2. If 0.013 Ma <M<0.08 Ma (13 MJ <M<80 MJ), the core temperature is not high enough for hydrogen fusion reactions, but does allow deuterium fu- sion reactions. The object is called a “brown dwarf” and its radius is inversely proportional to the cube root of its mass. 3. If M<0.013 Ma (M<13 MJ) the temperature a the center of the object does not permit any nuclear fusion reactions. The object is called a “planet”. In this category one distinguishes giant gaseous and telluric planets. This latter is not massive enough to accrete gas. The mass limit between giant and telluric planets is about 10 terrestrial masses. -
Arxiv:0804.4630V1 [Astro-Ph] 29 Apr 2008 I Ehnv20;Ficao 06) Ti Nti Oeas Role This in Is It 2006A)
DRAFT VERSION NOVEMBER 9, 2018 Preprint typeset using LATEX style emulateapj v. 05/04/06 OPEN CLUSTERS AS GALACTIC DISK TRACERS: I. PROJECT MOTIVATION, CLUSTER MEMBERSHIP AND BULK THREE-DIMENSIONAL KINEMATICS PETER M. FRINCHABOY1,2,3 AND STEVEN R. MAJEWSKI2 Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325, USA Draft version November 9, 2018 ABSTRACT We have begun a survey of the chemical and dynamical properties of the Milky Way disk as traced by open star clusters. In this first contribution, the general goals of our survey are outlined and the strengths and limita- tions of using star clusters as a Galactic disk tracer sample are discussed. We also present medium resolution (R 15,0000) spectroscopy of open cluster stars obtained with the Hydra multi-object spectrographs on the Cerro∼ Tololo Inter-American Observatory 4-m and WIYN 3.5-m telescopes. Here we use these data to deter- mine the radial velocities of 3436 stars in the fields of open clusters within about 3 kpc, with specific attention to stars having proper motions in the Tycho-2 catalog. Additional radial velocity members (without Tycho-2 proper motions) that can be used for future studies of these clusters were also identified. The radial velocities, proper motions, and the angular distance of the stars from cluster center are used to derive cluster member- ship probabilities for stars in each cluster field using a non-parametric approach, and the cluster members so-identified are used, in turn, to derive the reliable bulk three-dimensional motion for 66 of 71 targeted open clusters. -