Advances in Boundary Element Techniques XI

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Boundary Element Techniques XI Advances inBoundaryElementTechniquesXI Advances in Boundary ISBN 978-0-9547783-7-8 Element Techniques XI Publish by EC Ltd, United Kingdom Proceedings of the 11th International Conference Berlin, Germany 12-14 July 2010 Edited by Ch Zhang MH Aliabadi M Schanz ECltd Advances In Boundary Element Techniques XI Advances In Boundary Element Techniques XI Edited by Ch Zhang M H Aliabadi M Schanz ECltd Published by EC, Ltd, UK Copyright © 2010, Published by EC Ltd, P.O.Box 425, Eastleigh, SO53 4YQ, England Phone (+44) 2380 260334 All Rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, except under terms of the Copyright, Designs and Patents Act 1988. Requests to the Publishers should be addressed to the Permission Department, EC, Ltd Publications, P.O.Box 425, Eastleigh, Hampshire, SO53 4YQ, England. ISBN: 978-0-9547783-7-8 The text of the papers in this book was set individually by the authors or under their supervision. No responsibility is assumed by the editors or the publishers for any injury and/or damage to person or property as a matter of product liability, negligence or other wise, or from any used or operation of any method, instructions or ideas contained in the material herein. International Conference on Boundary Element Techniques XI 12-14 July 2010, Berlin, Germany Langer S (Germany) Liu,G-R (Singapore) Organising Committee: Mallardo V (Italy) Mansur WJ (Brazil) Prof. Dr.-Ing. Chuanzeng Zhang, Mantic V (Spain) University of Siegen, Germany Marburg S (Germany) [email protected] Marin L (Romania)) Prof. Ferri M.H. Aliabadi Matsumoto T (Japan) Department of Aeronautics Mattheij RMM (The Netherlands) Imperial College London Mesquita E (Brazil) E-mail: [email protected] Millazo A (Italy) Prof. Martin Schanz Minutolo V (Italy) Mohamad Ibrahim MN (Malaysia) Graz University of Technology Nishimura N (Japan) Graz, Austria Niu Z (China) [email protected] Ochiai Y (Japan) Pan E (USA) International Scientific Advisory Committee Panzeca T (Italy) Abascal R (Spain) Phan AV (USA) Abe K (Japan) Partridge P (Brazil) Albuquerque EL (Brazil) Perez Gavilan JJ (Mexico) Baiz P (UK) Pineda E (Mexico) Baker G (USA) Prochazka P (Czech Republic) Beskos D (Greece) Qin T (China) Blasquez A (Spain) Qin Q (Australia) Bonnet M (France) Rjasanow S (Germany) Chen JT (Taiwan) Saez A (Spain) Chen Weiqiu (China) Salvadori A (Italy) Chen Wen (China) Sändig,A-M (Germany) Cheng A (USA) Sapountzakis EJ (Greece) Cisilino A (Argentina) Sarler B (Slovenia) Davies A (UK) Schneider R (Germany) Denda M (USA) Sellier A (France) Dong C (China) Seok Soon Lee (Korea) Dumont N (Brazil) Shiah Y (Taiwan) Estorff Ov (Germany) Sladek J (Slovakia) Gao XW (China) Sollero P (Brazil) Garcia-Sanchez F (Spain) Stephan EP (Germany) Gaul L (Germany) Taigbenu A (South Africa) Gatmiri B (France) Tan CL (Canada) Gray L (USA) Tao W (China) Gospodinov G (Bulgaria) Telles JCF (Brazil) Gumerov N (USA) Venturini WS (Brazil) Han X (China) Wang Y (China) Harbrecht H (Germany) Wen PH (UK) Hartmann F (Germany) Wendland W (Germany) Hematiyan MR (Iran) Wrobel LC (UK) Hirose S (Japan) Yao Z (China) Kinnas S (USA) Ye W (Hong Kong) Kuna M (Germany) Zhao MH (China) PREFACE The Conferences in Boundary Element Techniques are devoted to fostering the continued involvement of the research community in identifying new problem areas, mathematical procedures, innovative applications, and novel solution techniques in both boundary element methods (BEM) and boundary integral equation methods (BIEM). Previous successful conferences devoted to Boundary Element Techniques were held in London, UK (1999), New Jersey, USA (2001), Beijing, China (2002), Granada, Spain (2003), Lisbon, Portugal (2004), Montreal, Canada (2005), Paris, France (2006), Naples, Italy (2007), Seville, Spain (2008) and Athens, Greece (2009). The present volume is a collection of edited papers that were accepted for presentation at the Boundary Element Techniques Conference held at the Maritim Hotel Berlin, Germany, during 12th-14th July 2010. Research papers received from 18 counties formed the basis for the Technical Program. The themes considered for the technical program included solid mechanics, fluid mechanics, potential theory, composite materials, fracture mechanics, damage mechanics, contact and wear, optimization, heat transfer, dynamics and vibrations, acoustics and geomechanics. A symposium “Recent Advances in Theory and Application of BEM” was organized at the conference in honor of Professor Zhenhan Yao (Tsinghua University, Beijing. PR China), who is working on BEM for many years and has made many significant contributions to the Computational Mechanics especially to BEM. We would like thanks the organizers of the symposium (Prof. Ch. Zhang, Prof. C.Y.Dong and Prof. Y.H.Liu) for their effort. The conference organizers would also like to express their appreciation to the International Scientific Advisory Board for their assistance in supporting and promoting the objectives of the meeting and for their assistance in the form of reviews of the submitted papers. Editors July 2010 Contents Study of contact stress evolution on fretting problems using a 3D boundary 1 elements formulation L Rodriguez-Tembleque, R Abascal Shape optimization with topological derivative and its application to noise 7 barrier for railway viaducts K Abe, T Fujiu and K Koro On the transient response of actively repaired damaged structures by the 13 boundary element method A Alaimo, G Davì, A Milazzo Computation of moments in thin plates of composite materials under dynamic 20 load using the boundary element method K R Sousa, A P Santana, E L Albuquerque, and P Sollero Drilling rotations in BEM 26 P Baiz Blob regularization of boundary integrals 32 G Baker, H Zhang On the accuracy of the fast hierarchical DBEM for the analysis of static and 38 dynamic elastic crack problems I Benedetti, A Alaimo, M H Aliabadi A boundary knot method for three-dimensional harmonic viscoelastic 46 problems B Sensale, A Canelas Non-Incremental boundary element discretization of non-linear heat equation 54 based on the use of the proper generalized decompositions G Bonithon, P Joyot, F Chinesta and P. Villon Three-dimensional boundary elements for the analysis of anisotropic solids 62 F C Buroni, J E Ortiz, A Sáez Sensitivity analysis of cracked structures with static and dynamic Green’s 69 functions O Carl, Ch Zhang A D-BEM approach with constant time weighting function applied to the 77 solution of the scalar wave equation J A M Carrer and W J Mansur A novel boundary meshless method for radiation and scattering problems Z 83 Fu, W Chen Anti-plane shear Green’s function for an isotropic elastic layer on a substrate 91 with a material surface W. Q. Chen and Ch Zhang Stress intensity factor formulas for a rectangular interfacial crack in three- 97 dimensional bimaterials C-H Xu, T-Y Qin, Ch Zhang, N-A Noda Iterative optimization methodology for sound scattering using the topological 104 derivative approach and the boundary element method, A Sisamon, S C Beck, A P Cisilino, S Langer A Laplace transform boundary element solution for the Cahn-Hilliard equation 110 A J Davies and D Crann Strategy for writing general scalable parallel boundary-element codes 118 F C de Araújo, E F d'Azevedo, and L J Gray Incomplete LU preconditioning of BEM systems of equations based upon the 124 generic substructuring algorithm F C de Araújo, E F d'Azevedo, and L J Gray Hypersingular BEM analysis of semipermeable cracks in 130 magnetoelectroelastic solids R Rojas-Dıaz, M Denda, F Garcıa-Sanchez, A Saez Boundary element analysis of cracked transversely isotropic and 136 inhomogeneous materials C Y Dong, X Yang and E Pan A family of 2D and 3D hybrid finite elements for strain gradient elasticity 144 N A Dumont, D H Mosqueira Transient thermoelastic crack analysis in functionally graded materials by a 154 BDEM A Ekhlakov, O Khay, Ch Zhang Time-Domain boundary element analysis of semicircular hill on viscoelastic 162 media under vertically incident SV wave A Eslami Haghighat, S A Anvar, M Jahanandish, A Ghahramani HEDD-FS method for numerical analysis of cracks in 2D finite smart materials 168 C-Y Fan, G-Tao Xu and M-Hao Zhao Recent developments of radial integration boundary element method in 174 solving nonlinear and nonhomogeneous multi-size problems X W Gao, M Cui and Ch Zhang A meshless boundary interpolation technique for solving the Stokes equations 184 C Gáspá A boundary element formulation based on the convolution quadrature method 190 for the quasi-static behaviour analysis of the unsaturated soils P Maghoul, B Gatmiri, D Duhamel Elastodynamic laminate element method for lengthy structures 196 E V Glushkov, N V Glushkova and A A Eremin Three-dimensional eigenstrain formulation of boundary integral equation 202 method for spheroidal particle-reinforced materials H Ma, Q-H Qin Green’s functions, boundary elements and finite elements 208 F Hartmann Crack identification in magneto-electro-elastic materials using neural networks 215 and boundary element method G Hattori and A Saez The singular nodal integration method for evaluation of domain integrals in the 221 BEM M R Hematiyan, A Khosravifard, M Mohammadi Application of convolution quadrature method to electromagnetic acoustic 227 wave analysis S Hirose, Y Temma and T Saitoh Boundary integral equations for unsymmetric laminated Composites 231 C Hwu BEM analysis of dynamic effects of microcracks and inclusions
Recommended publications
  • Preprint, 1703.10016, 2017
    ASC Report No. 20/2018 Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods T. Fuhrer,¨ G. Gantner, D. Praetorius, and S. Schimanko Institute for Analysis and Scientific Computing Vienna University of Technology | TU Wien www.asc.tuwien.ac.at ISBN 978-3-902627-00-1 Most recent ASC Reports 19/2018 A. Arnold, C. Klein, and B. Ujvari WKB-method for the 1D Schr¨odinger equation in the semi-classical limit: enhanced phase treatment 18/2018 A. Bespalov, T. Betcke, A. Haberl, and D. Praetorius Adaptive BEM with optimal convergence rates for the Helmholtz equation 17/2018 C. Erath and D. Praetorius Optimal adaptivity for the SUPG finite element method 16/2018 M. Fallahpour, S. McKee, and E.B. Weinm¨uller Numerical simulation of flow in smectic liquid crystals 15/2018 A. Bespalov, D. Praetorius, L. Rocchi, and M. Ruggeri Goal-oriented error estimation and adaptivity for elliptic PDEs with parametric or uncertain inputs 14/2018 J. Burkotova, I. Rachunkova, S. Stanek, E.B. Weinm¨uller, S. Wurm On nonsingular BVPs with nonsmooth data. Part 1: Analytical results 13/2018 J. Gambi, M.L. Garcia del Pino, J. Mosser, and E.B. Weinm¨uller Post-Newtonian equations for free-space laser communications between space- based systems 12/2018 T. F¨uhrer, A. Haberl, D. Praetorius, and S. Schimanko Adaptive BEM with inexact PCG solver yields almost optimal computational costs 11/2018 X. Chen and A. J¨ungel Weak-strong uniqueness of renormalized solutions to reaction-cross-diffusion systems 10/2018 C. Erath, G. Gantner, and D. Praetorius Optimal convergence behavior of adaptive FEM driven by simple (h-h/2)-type error estimators Institute for Analysis and Scientific Computing Vienna University of Technology Wiedner Hauptstraße 8{10 1040 Wien, Austria E-Mail: [email protected] WWW: http://www.asc.tuwien.ac.at FAX: +43-1-58801-10196 ISBN 978-3-902627-00-1 c Alle Rechte vorbehalten.
    [Show full text]
  • Overview of Meshless Methods
    Technical Article Overview of Meshless Methods Abstract— This article presents an overview of the main develop- ments of the mesh-free idea. A review of the main publications on the application of the meshless methods in Computational Electromagnetics is also given. I. INTRODUCTION Several meshless methods have been proposed over the last decade. Although these methods usually all bear the generic label “meshless”, not all are truly meshless. Some, such as those based on the Collocation Point technique, have no associated mesh but others, such as those based on the Galerkin method, actually do Fig. 1. EFG background cell structure. require an auxiliary mesh or cell structure. At the time of writing, the authors are not aware of any proposed formal classification of these techniques. This paper is therefore not concerned with any C. The Element-Free Galerkin (EFG) classification of these methods, instead its objective is to present In 1994 Belytschko and colleagues introduced the Element-Free an overview of the main developments of the mesh-free idea, Galerkin Method (EFG) [8], an extended version of Nayroles’s followed by a review of the main publications on the application method. The Element-Free Galerkin introduced a series of im- of meshless methods to Computational Electromagnetics. provements over the Diffuse Element Method formulation, such as II. MESHLESS METHODS -THE HISTORY • Proper determination of the approximation derivatives: A. The Smoothed Particle Hydrodynamics In DEM the derivatives of the approximation function The advent of the mesh free idea dates back from 1977, U h are obtained by considering the coefficients b of the with Monaghan and Gingold [1] and Lucy [2] developing a polynomial basis p as constants, such that Lagrangian method based on the Kernel Estimates method to h T model astrophysics problems.
    [Show full text]
  • Boundary Particle Method with High-Order Trefftz Functions
    Copyright © 2010 Tech Science Press CMC, vol.13, no.3, pp.201-217, 2010 Boundary Particle Method with High-Order Trefftz Functions Wen Chen1;2, Zhuo-Jia Fu1;3 and Qing-Hua Qin3 Abstract: This paper presents high-order Trefftz functions for some commonly used differential operators. These Trefftz functions are then used to construct boundary particle method for solving inhomogeneous problems with the boundary discretization only, i.e., no inner nodes and mesh are required in forming the final linear equation system. It should be mentioned that the presented Trefftz functions are nonsingular and avoids the singularity occurred in the fundamental solution and, in particular, have no problem-dependent parameter. Numerical experiments demonstrate the efficiency and accuracy of the present scheme in the solution of inhomogeneous problems. Keywords: High-order Trefftz functions, boundary particle method, inhomoge- neous problems, meshfree 1 Introduction Since the first paper on Trefftz method was presented by Trefftz (1926), its math- ematical theory was extensively studied by Herrera (1980) and many other re- searchers. In 1995 a special issue on Trefftz method, was published in the jour- nal of Advances in Engineering Software for celebrating its 70 years of develop- ment [Kamiya and Kita (1995)]. Qin (2000, 2005) presented an overview of the Trefftz finite element and its application in various engineering problems. The Trefftz method employs T-complete functions, which satisfies the governing dif- ferential operators and is widely applied to potential problems [Cheung, Jin and Zienkiewicz (1989)], two-dimensional elastic problems [Zielinski and Zienkiewicz (1985)], transient heat conduction [Jirousek and Qin (1996)], viscoelasticity prob- 1 Center for Numerical Simulation Software in Engineering and Sciences, Department of Engineer- ing Mechanics, Hohai University, Nanjing, Jiangsu, P.R.China 2 Corresponding author.
    [Show full text]
  • Boundary Knot Method for Heat Conduction in Nonlinear Functionally Graded Material
    Engineering Analysis with Boundary Elements 35 (2011) 729–734 Contents lists available at ScienceDirect Engineering Analysis with Boundary Elements journal homepage: www.elsevier.com/locate/enganabound Boundary knot method for heat conduction in nonlinear functionally graded material Zhuo-Jia Fu a,b, Wen Chen a,n, Qing-Hua Qin b a Center for Numerical Simulation Software in Engineering and Sciences, Department of Engineering Mechanics, Hohai University, Nanjing, Jiangsu, PR China b School of Engineering, Building 32, Australian National University, Canberra ACT 0200, Australia article info abstract Article history: This paper firstly derives the nonsingular general solution of heat conduction in nonlinear functionally Received 13 August 2010 graded materials (FGMs), and then presents boundary knot method (BKM) in conjunction with Kirchhoff Accepted 11 December 2010 transformation and various variable transformations in the solution of nonlinear FGM problems. The proposed BKM is mathematically simple, easy-to-program, meshless, high accurate and integration-free, Keywords: and avoids the controversial fictitious boundary in the method of fundamental solution (MFS). Numerical Boundary knot method experiments demonstrate the efficiency and accuracy of the present scheme in the solution of heat Kirchhoff transformation conduction in two different types of nonlinear FGMs. Nonlinear functionally graded material & 2010 Elsevier Ltd. All rights reserved. Heat conduction Meshless 1. Introduction MLPG belong to the category of weak-formulation, and MFS belongs to the category of strong-formulation. Functionally graded materials (FGMs) are a new generation of This study focuses on strong-formulation meshless methods composite materials whose microstructure varies from one mate- due to their inherent merits on easy-to-program and integration- rial to another with a specific gradient.
    [Show full text]
  • Symmetric Boundary Knot Method
    Symmetric boundary knot method W. Chen* Simula Research Laboratory, P. O. Box. 134, 1325 Lysaker, Norway E-mail: [email protected] (submitted 28 Sept. 2001, revised 25, Feb. 2002) Abstract The boundary knot method (BKM) is a recent boundary-type radial basis function (RBF) collocation scheme for general PDE’s. Like the method of fundamental solution (MFS), the RBF is employed to approximate the inhomogeneous terms via the dual reciprocity principle. Unlike the MFS, the method uses a non-singular general solution instead of a singular fundamental solution to evaluate the homogeneous solution so as to circumvent the controversial artificial boundary outside the physical domain. The BKM is meshfree, super-convergent, integration-free, very easy to learn and program. The original BKM, however, loses symmetricity in the presence of mixed boundary. In this study, by analogy with Fasshauer’s Hermite RBF interpolation, we developed a symmetric BKM scheme. The accuracy and efficiency of the symmetric BKM are also numerically validated in some 2-D and 3-D Helmholtz and diffusion-reaction problems under complicated geometries. Keyword: boundary knot method; radial basis function; meshfree; method of fundamental solution; dual reciprocity BEM; symmetricity * This research is supported by Norwegian Research Council. 1 1.Introduction In recent years much effort has been devoted to developing a variety of meshfree schemes for the numerical solution of partial differential equations (PDE’s). The driving force behind the scene is that the mesh-based methods such as the standard FEM and BEM often require prohibitive computational effort to mesh or remesh in handling high- dimensional, moving boundary, and complex-shaped boundary problems.
    [Show full text]
  • A Self-Singularity-Capturing Scheme for Fractional Differential Equations
    A Self-Singularity-Capturing Scheme for Fractional Differential Equations Jorge L. Suzukia,b and Mohsen Zayernouria,c aDepartment of Mechanical Engineering, Michigan State University, East Lansing, MI, USA bDepartment of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA cDepartment of Probability and Statistics, Michigan State University, East Lansing, MI, USA ARTICLE HISTORY Compiled April 30, 2020 ABSTRACT We develop a two-stage computational framework for robust and accurate time- integration of multi-term linear/nonlinear fractional differential equations. In the first stage, we formulate a self-singularity-capturing scheme, given avail- able/observable data for diminutive time, experimentally obtained or sampled from an approximate numerical solution utilizing a fine grid nearby the initial time. The fractional differential equation provides the necessary knowledge/insight on how the hidden singularity can bridge between the initial and the subsequent short-time so- lution data. In the second stage, we utilize the multi-singular behavior of solution in a variety of numerical methods, without resorting to making any ad-hoc/uneducated guesses for the solution singularities. Particularly, we employed an implicit finite- difference method, where the captured singularities, in the first stage, are taken into account through some Lubich-like correction terms, leading to an accuracy of order O(∆t3−α). We show that this novel framework can control the error even in the presence of strong multi-singularities.
    [Show full text]
  • Singular Boundary Method for Heat Conduction in Layered Materials
    Copyright © 2011 Tech Science Press CMC, vol.24, no.1, pp.1-14, 2011 Singular Boundary Method for Heat Conduction in Layered Materials H. Htike1;2, W. Chen1;2;3 and Y. Gu1;2 Abstract: In this paper, we investigate the application of the singular boundary method (SBM) to two-dimensional problems of steady-state heat conduction in isotropic bimaterials. A domain decomposition technique is employed where the bimaterial is decomposed into two subdomains, and in each subdomain, the solu- tion is approximated separately by an SBM-type expansion. The proposed method is tested and compared on several benchmark test problems, and its relative merits over the other boundary discretization methods, such as the method of fundamental solution (MFS) and the boundary element method (BEM), are also discussed. Keywords: Singular boundary method, origin intensity factor, heat conduction, bimaterials, meshless. 1 Introduction During machining processes, heat is a source that strongly influences the tool per- formance, such as tool wear, tool life, surface quality as well as process quality. The layers of material provide a barrier for the intensive heat flow from the con- tact area into the substrate material. Thus, a clear understanding of the temperature distribution in layered materials is very useful and important [Atluri (2005); Atluri, Liu, and Han (2006);Chang, Liu, and Chang (2010);Chen and Liu (2001)]. The method of fundamental solutions (MFS) [Karageorghis (1992);Fairweather and Karageorghis (1998);Chen, Golberg, and Hon (1998)] is a successful technique for the solution of some elliptic boundary value problems in engineering applica- tions. It is applicable when a fundamental solution of the operator of the governing equation is known.
    [Show full text]
  • Fast Boundary Knot Method for Solving Axisymmetric Helmholtz Problems with High Wave Number
    Copyright © 2013 Tech Science Press CMES, vol.94, no.6, pp.485-505, 2013 Fast Boundary Knot Method for Solving Axisymmetric Helmholtz Problems with High Wave Number J. Lin1, W. Chen 1;2, C. S. Chen3, X. R. Jiang4 Abstract: To alleviate the difficulty of dense matrices resulting from the bound- ary knot method, the concept of the circulant matrix has been introduced to solve axi-symmetric Helmholtz problems. By placing the collocation points in a circular form on the surface of the boundary, the resulting matrix of the BKM has the block structure of a circulant matrix, which can be decomposed into a series of smaller matrices and solved efficiently. In particular, for the Helmholtz equation with high wave number, a large number of collocation points is required to achieve desired accuracy. In this paper, we present an efficient circulant boundary knot method algorithm for solving Helmholtz problems with high wave number. Keywords: boundary knot method, Helmholtz problem, circulant matrix, ax- isymmetric. 1 Introduction The boundary knot method (BKM) [Chen and Tanaka (2002); Chen (2002); Chen and Hon (2003); Wang, Ling, and Chen (2009); Wang, Chen, and Jiang (2010); Zhang and Wang (2012); Zheng, Chen, and Zhang (2013)] has been widely ap- plied for solving certain classes of boundary value problems. Instead of using the singular fundamental solution as the basis function in the method of funda- mental solutions (MFS) [Fairweather and Karageorghis (1998); Fairweather, Kara- georghis, and Martin (2003); Alves and Antunes (2005); Chen, Cho, and Golberg (2009); Drombosky, Meyer, and Ling (2009); Gu, Young, and Fan (2009); Lin, Gu, and Young (2010); Lin, Chen, and Wang (2011)], the BKM uses the non-singular general solution for the approximation of the solution.
    [Show full text]
  • Effective Condition Number for Boundary Knot Method
    Copyright © 2009 Tech Science Press CMC, vol.12, no.1, pp.57-70, 2009 Effective Condition Number for Boundary Knot Method F.Z. Wang1, L. Ling2 and W. Chen1;3 Abstract: This study makes the first attempt to apply the effective condition number (ECN) to the stability analysis of the boundary knot method (BKM). We find that the ECN is a superior criterion over the traditional condition number. The main difference between ECN and the traditional condition numbers is in that the ECN takes into account the right hand side vector to estimates system stability. Numerical results show that the ECN is roughly inversely proportional to the nu- merical accuracy. Meanwhile, using the effective condition number as an indicator, one can fine-tune the user-defined parameters (without the knowledge of exact so- lution) to ensure high numerical accuracy from the BKM. Keywords: boundary knot method, effective condition number, traditional con- dition number. 1 Introduction In recent years, a variety of boundary meshless methods have been introduced, such as the method of fundamental solutions (MFS)[Fairweather and Karageorghis (1998);Young, Tsai, Lin, and Chen (2006);Chen, Karageorghis, and Smyrlis (2008)], boundary knot method (BKM) [Chen and Tanaka (2002);Chen and Hon (2003);Wang, Chen, and Jiang (2009)], boundary collocation method [Chen, Chang, Chen, and Lin (2002);Chen, Chen, Chen, and Yeh (2004)], boundary node method [Mukher- jee and Mukherjee (1997);Zhang, Yao, and Li (2002)], and regularized meshless method [Young, Chen, and Lee (2005);Young, Chen, Chen, and Kao (2007);Chen, Kao, and Chen (2009)]. All these methods are of the boundary type numerical technique in which only the boundary knots are required in the numerical solution of homogeneous problems.
    [Show full text]
  • Arxiv:1808.04585V2 [Math.NA]
    OPTIMAL ADDITIVE SCHWARZ PRECONDITIONING FOR ADAPTIVE 2D IGA BOUNDARY ELEMENT METHODS THOMAS FUHRER,¨ GREGOR GANTNER, DIRK PRAETORIUS, AND STEFAN SCHIMANKO Abstract. We define and analyze (local) multilevel diagonal preconditioners for isogeo- metric boundary elements on locally refined meshes in two dimensions. Hypersingular and weakly-singular integral equations are considered. We prove that the condition number of the preconditioned systems of linear equations is independent of the mesh-size and the re- finement level. Therefore, the computational complexity, when using appropriate iterative solvers, is optimal. Our analysis is carried out for closed and open boundaries and numerical examples confirm our theoretical results. 1. Introduction In the last decade, the isogeometric analysis (IGA) had a strong impact on the field of scientific computing and numerical analysis. We refer, e.g., to the pioneering work [HCB05] and to [CHB09, BdVBSV14] for an introduction to the field. The basic idea is to utilize the same ansatz functions for approximations as are used for the description of the geometry by some computer aided design (CAD) program. Here, we consider the case, where the geometry is represented by rational splines. For certain problems, where the fundamental solution is known, the boundary element method (BEM) is attractive since CAD programs usually only provide a parametrization of the boundary ∂Ω and not of the volume Ω itself. Isogeometric BEM (IGABEM) has first been considered for 2D BEM in [PGK+09] and for 3D BEM in [SSE+13]. We refer to [SBTR12, PTC13, SBLT13, NZW+17] for numerical experiments, to [HR10, TM12, MZBF15, DHP16, DHK+18, DKSW18] for fast IGABEM based on wavelets, fast multipole, -matrices resp.
    [Show full text]
  • Potential Problems by Singular Boundary Method Satisfying Moment Condition
    Copyright © 2009 Tech Science Press CMES, vol.54, no.1, pp.65-85, 2009 Potential Problems by Singular Boundary Method Satisfying Moment Condition Wen Chen1;2, Zhuojia Fu1 and Xing Wei1 Abstract: This study investigates the singular boundary method (SBM), a novel boundary-type meshless method, in the numerical solution of potential problems. Our finding is that the SBM can not obtain the correct solution in some tested cases, in particular, in the cases whose solution includes a constant term. To rem- edy this drawback, this paper presents an improved SBM formulation which is a linear sum of the fundamental solution adding in a constant term. It is stressed that this SBM approximation with the additional constant term has to satisfy the so-called moment condition in order to guarantees the uniqueness of the solution. The efficiency and accuracy of the present SBM scheme are demonstrated through detailed comparisons with the exact solution, the method of fundamental solutions and the regularized meshless method. Keywords: Singular boundary method, fundamental solution, singularity at the origin, moment condition, potential problem 1 Introduction Without a need of harassing mesh generation in the traditional FEM [Zienkiewicz and Taylor (1991)] and BEM [Ong and Lim (2005)], meshless methods [Li and Liu (2002)] have attracted much attention in recent years. This study focuses on the boundary-type meshless numerical techniques, for instance, method of funda- mental solutions (MFS) [Chen, Golberg and Hon (1998); Cheng, Young and Tsai (2000); Fairweather and Karageorghis (1998); Karageorghis (1992); Liu (2008); Marin (2008,2010a,2010b); Poullikkas, Karageorghis and Georgiou (1998); Reut- skiy (2005); Smyrlis and Karageorghis (2001)], boundary knot method (BKM) by Chen and Tanaka (2002), boundary particle method [Chen and Fu (2009): Fu, Chen 1 Center for Numerical Simulation Software in Engineering and Sciences, Department of Engineer- ing Mechanics, College of Civil Engineering, Hohai University, Nanjing, Jiangsu, P.R.China 2 Corresponding author.
    [Show full text]
  • Annual Report 2014
    ANNUAL REPORT 2014 www.svf.stuba.sk Table of Content 2014 ANNUAL REPOrt of the Faculty of Civil Engineering Bratislava © Faculty of Civil Engineering, Slovak University of Technology in Bratislava, 2015 Authorized contributions from the departments Introduction translation by Dagmar Špildová, Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Languages Language consultant: Debra Gambrill JD, Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Languages Editor: Jozef Urbánek Layout: Ivan Pokrývka TABLE OF CONTENT Introduction .....................................................................................................5 Bodies of The Faculty ........................................................................................8 Departments Department of Concrete Structures and Bridges ..................................................14 Department of Transportation Engineering .........................................................22 Department of Theoretical Geodesy ...................................................................26 Department of Surveying ..................................................................................33 Department of Geotechnics ..............................................................................39 Department of Land and Water Resources Management ........................................45 Department of Hydraulic Engineering .................................................................53 Department
    [Show full text]