Master's Thesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems Xinzhe Wu, Serge Petiton
A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems Xinzhe Wu, Serge Petiton To cite this version: Xinzhe Wu, Serge Petiton. A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems. HPC Asia 2018 - International Conference on High Performance Computing in Asia-Pacific Region, Jan 2018, Tokyo, Japan. 10.1145/3149457.3154481. hal-01677110 HAL Id: hal-01677110 https://hal.archives-ouvertes.fr/hal-01677110 Submitted on 8 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Distributed and Parallel Asynchronous Unite and Conquer Method to Solve Large Scale Non-Hermitian Linear Systems Xinzhe WU Serge G. Petiton Maison de la Simulation, USR 3441 Maison de la Simulation, USR 3441 CRIStAL, UMR CNRS 9189 CRIStAL, UMR CNRS 9189 Université de Lille 1, Sciences et Technologies Université de Lille 1, Sciences et Technologies F-91191, Gif-sur-Yvette, France F-91191, Gif-sur-Yvette, France [email protected] [email protected] ABSTRACT the iteration number. These methods are already well implemented Parallel Krylov Subspace Methods are commonly used for solv- in parallel to profit from the great number of computation cores ing large-scale sparse linear systems. -
Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations
NASA Contractor Report 198342 /" ICASE Report No. 96-40 J ICA IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen NASA Contract No. NASI-19480 May 1996 Institute for Computer Applications in Science and Engineering NASA Langley Research Center Hampton, VA 23681-0001 Operated by Universities Space Research Association National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen 1 Department of Computational and Applied Mathematics Rice University Houston, TX 77251 sorensen@rice, edu ABSTRACT Eigenvalues and eigenfunctions of linear operators are important to many areas of ap- plied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fu- eled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now avail- able, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly. The purpose of this article is to provide an overview of the numerical solution of large- scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class. The Arnoldi method generalizes the Lanczos method to the nonsymmetric case. -
Krylov Subspaces
Lab 1 Krylov Subspaces Lab Objective: Discuss simple Krylov Subspace Methods for finding eigenvalues and show some interesting applications. One of the biggest difficulties in computational linear algebra is the amount of memory needed to store a large matrix and the amount of time needed to read its entries. Methods using Krylov subspaces avoid this difficulty by studying how a matrix acts on vectors, making it unnecessary in many cases to create the matrix itself. More specifically, we can construct a Krylov subspace just by knowing how a linear transformation acts on vectors, and with these subspaces we can closely approximate eigenvalues of the transformation and solutions to associated linear systems. The Arnoldi iteration is an algorithm for finding an orthonormal basis of a Krylov subspace. Its outputs can also be used to approximate the eigenvalues of the original matrix. The Arnoldi Iteration The order-N Krylov subspace of A generated by x is 2 n−1 Kn(A; x) = spanfx;Ax;A x;:::;A xg: If the vectors fx;Ax;A2x;:::;An−1xg are linearly independent, then they form a basis for Kn(A; x). However, this basis is usually far from orthogonal, and hence computations using this basis will likely be ill-conditioned. One way to find an orthonormal basis for Kn(A; x) would be to use the modi- fied Gram-Schmidt algorithm from Lab TODO on the set fx;Ax;A2x;:::;An−1xg. More efficiently, the Arnold iteration integrates the creation of fx;Ax;A2x;:::;An−1xg with the modified Gram-Schmidt algorithm, returning an orthonormal basis for Kn(A; x). -
Iterative Methods for Linear System
Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline ●Basics: Matrices and their properties Eigenvalues, Condition Number ●Iterative Methods Direct and Indirect Methods ●Krylov Subspace Methods Ritz Galerkin: CG Minimum Residual Approach : GMRES/MINRES Petrov-Gaelerkin Method: BiCG, QMR, CGS 1st April JASS 2009 2 Basics ●Linear system of equations Ax = b ●A Hermitian matrix (or self-adjoint matrix ) is a square matrix with complex entries which is equal to its own conjugate transpose, 3 2 + i that is, the element in the ith row and jth column is equal to the A = complex conjugate of the element in the jth row and ith column, for 2 − i 1 all indices i and j • Symmetric if a ij = a ji • Positive definite if, for every nonzero vector x XTAx > 0 • Quadratic form: 1 f( x) === xTAx −−− bTx +++ c 2 ∂ f( x) • Gradient of Quadratic form: ∂x 1 1 1 f' (x) = ⋮ = ATx + Ax − b ∂ 2 2 f( x) ∂xn 1st April JASS 2009 3 Various quadratic forms Positive-definite Negative-definite matrix matrix Singular Indefinite positive-indefinite matrix matrix 1st April JASS 2009 4 Various quadratic forms 1st April JASS 2009 5 Eigenvalues and Eigenvectors For any n×n matrix A, a scalar λ and a nonzero vector v that satisfy the equation Av =λv are said to be the eigenvalue and the eigenvector of A. ●If the matrix is symmetric , then the following properties hold: (a) the eigenvalues of A are real (b) eigenvectors associated with distinct eigenvalues are orthogonal ●The matrix A is positive definite (or positive semidefinite) if and only if all eigenvalues of A are positive (or nonnegative). -
The Generalized Triangular Decomposition
MATHEMATICS OF COMPUTATION Volume 77, Number 262, April 2008, Pages 1037–1056 S 0025-5718(07)02014-5 Article electronically published on October 1, 2007 THE GENERALIZED TRIANGULAR DECOMPOSITION YI JIANG, WILLIAM W. HAGER, AND JIAN LI Abstract. Given a complex matrix H, we consider the decomposition H = QRP∗,whereR is upper triangular and Q and P have orthonormal columns. Special instances of this decomposition include the singular value decompo- sition (SVD) and the Schur decomposition where R is an upper triangular matrix with the eigenvalues of H on the diagonal. We show that any diag- onal for R can be achieved that satisfies Weyl’s multiplicative majorization conditions: k k K K |ri|≤ σi, 1 ≤ k<K, |ri| = σi, i=1 i=1 i=1 i=1 where K is the rank of H, σi is the i-th largest singular value of H,andri is the i-th largest (in magnitude) diagonal element of R. Given a vector r which satisfies Weyl’s conditions, we call the decomposition H = QRP∗,whereR is upper triangular with prescribed diagonal r, the generalized triangular decom- position (GTD). A direct (nonrecursive) algorithm is developed for computing the GTD. This algorithm starts with the SVD and applies a series of permu- tations and Givens rotations to obtain the GTD. The numerical stability of the GTD update step is established. The GTD can be used to optimize the power utilization of a communication channel, while taking into account qual- ity of service requirements for subchannels. Another application of the GTD is to inverse eigenvalue problems where the goal is to construct matrices with prescribed eigenvalues and singular values. -
CSE 275 Matrix Computation
CSE 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 13 1 / 22 Overview Eigenvalue problem Schur decomposition Eigenvalue algorithms 2 / 22 Reading Chapter 24 of Numerical Linear Algebra by Llyod Trefethen and David Bau Chapter 7 of Matrix Computations by Gene Golub and Charles Van Loan 3 / 22 Eigenvalues and eigenvectors Let A 2 Cm×m be a square matrix, a nonzero x 2 Cm is an eigenvector of A, and λ 2 C is its corresponding eigenvalue if Ax = λx Idea: the action of a matrix A on a subspace S 2 Cm may sometimes mimic scalar multiplication When it happens, the special subspace S is called an eigenspace, and any nonzero x 2 S is an eigenvector The set of all eigenvalues of a matrix A is the spectrum of A, a subset of C denoted by Λ(A) 4 / 22 Eigenvalues and eigenvectors (cont'd) Ax = λx Algorithmically: simplify solutions of certain problems by reducing a coupled system to a collection of scalar problems Physically: give insight into the behavior of evolving systems governed by linear equations, e.g., resonance (of musical instruments when struck or plucked or bowed), stability (of fluid flows with small perturbations) 5 / 22 Eigendecomposition An eigendecomposition (eigenvalue decomposition) of a square matrix A is a factorization A = X ΛX −1 where X is a nonsingular and Λ is diagonal Equivalently, AX = X Λ 2 3 λ1 6 λ2 7 A x x ··· x = x x ··· x 6 7 1 2 m 1 2 m 6 . -
The Schur Decomposition Week 5 UCSB 2014
Math 108B Professor: Padraic Bartlett Lecture 5: The Schur Decomposition Week 5 UCSB 2014 Repeatedly through the past three weeks, we have taken some matrix A and written A in the form A = UBU −1; where B was a diagonal matrix, and U was a change-of-basis matrix. However, on HW #2, we saw that this was not always possible: in particular, you proved 1 1 in problem 4 that for the matrix A = , there was no possible basis under which A 0 1 would become a diagonal matrix: i.e. you proved that there was no diagonal matrix D and basis B = f(b11; b21); (b12; b22)g such that b b b b −1 A = 11 12 · D · 11 12 : b21 b22 b21 b22 This is a bit of a shame, because diagonal matrices (for reasons discussed earlier) are pretty fantastic: they're easy to raise to large powers and calculate determinants of, and it would have been nice if every linear transformation was diagonal in some basis. So: what now? Do we simply assume that some matrices cannot be written in a \nice" form in any basis, and that we should assume that operations like matrix exponentiation and finding determinants is going to just be awful in many situations? The answer, as you may have guessed by the fact that these notes have more pages after this one, is no! In particular, while diagonalization1 might not always be possible, there is something fairly close that is - the Schur decomposition. Our goal for this week is to prove this, and study its applications. -
Finite-Dimensional Spectral Theory Part I: from Cn to the Schur Decomposition
Finite-dimensional spectral theory part I: from Cn to the Schur decomposition Ed Bueler MATH 617 Functional Analysis Spring 2020 Ed Bueler (MATH 617) Finite-dimensional spectral theory Spring 2020 1 / 26 linear algebra versus functional analysis these slides are about linear algebra, i.e. vector spaces of finite dimension, and linear operators on those spaces, i.e. matrices one definition of functional analysis might be: “rigorous extension of linear algebra to 1-dimensional topological vector spaces” ◦ it is important to understand the finite-dimensional case! the goal of these part I slides is to prove the Schur decomposition and the spectral theorem for matrices good references for these slides: ◦ L. Trefethen & D. Bau, Numerical Linear Algebra, SIAM Press 1997 ◦ G. Strang, Introduction to Linear Algebra, 5th ed., Wellesley-Cambridge Press, 2016 ◦ G. Golub & C. van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press 2013 Ed Bueler (MATH 617) Finite-dimensional spectral theory Spring 2020 2 / 26 the spectrum of a matrix the spectrum σ(A) of a square matrix A is its set of eigenvalues ◦ reminder later about the definition of eigenvalues ◦ σ(A) is a subset of the complex plane C ◦ the plural of spectrum is spectra; the adjectival is spectral graphing σ(A) gives the matrix a personality ◦ example below: random, nonsymmetric, real 20 × 20 matrix 6 4 2 >> A = randn(20,20); ) >> lam = eig(A); λ 0 >> plot(real(lam),imag(lam),’o’) Im( >> grid on >> xlabel(’Re(\lambda)’) -2 >> ylabel(’Im(\lambda)’) -4 -6 -6 -4 -2 0 2 4 6 Re(λ) Ed Bueler (MATH 617) Finite-dimensional spectral theory Spring 2020 3 / 26 Cn is an inner product space we use complex numbers C from now on ◦ why? because eigenvalues can be complex even for a real matrix ◦ recall: if α = x + iy 2 C then α = x − iy is the conjugate let Cn be the space of (column) vectors with complex entries: 2v13 = 6 . -
Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations
https://ntrs.nasa.gov/search.jsp?R=19960048075 2020-06-16T03:31:45+00:00Z NASA Contractor Report 198342 /" ICASE Report No. 96-40 J ICA IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen NASA Contract No. NASI-19480 May 1996 Institute for Computer Applications in Science and Engineering NASA Langley Research Center Hampton, VA 23681-0001 Operated by Universities Space Research Association National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS Danny C. Sorensen 1 Department of Computational and Applied Mathematics Rice University Houston, TX 77251 sorensen@rice, edu ABSTRACT Eigenvalues and eigenfunctions of linear operators are important to many areas of ap- plied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fu- eled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now avail- able, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly. The purpose of this article is to provide an overview of the numerical solution of large- scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class. -
The Influence of Orthogonality on the Arnoldi Method
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 309 (2000) 307±323 www.elsevier.com/locate/laa The in¯uence of orthogonality on the Arnoldi method T. Braconnier *, P. Langlois, J.C. Rioual IREMIA, Universite de la Reunion, DeÂpartement de Mathematiques et Informatique, BP 7151, 15 Avenue Rene Cassin, 97715 Saint-Denis Messag Cedex 9, La Reunion, France Received 1 February 1999; accepted 22 May 1999 Submitted by J.L. Barlow Abstract Many algorithms for solving eigenproblems need to compute an orthonormal basis. The computation is commonly performed using a QR factorization computed using the classical or the modi®ed Gram±Schmidt algorithm, the Householder algorithm, the Givens algorithm or the Gram±Schmidt algorithm with iterative reorthogonalization. For the eigenproblem, although textbooks warn users about the possible instability of eigensolvers due to loss of orthonormality, few theoretical results exist. In this paper we prove that the loss of orthonormality of the computed basis can aect the reliability of the computed eigenpair when we use the Arnoldi method. We also show that the stopping criterion based on the backward error and the value computed using the Arnoldi method can dier because of the loss of orthonormality of the computed basis of the Krylov subspace. We also give a bound which quanti®es this dierence in terms of the loss of orthonormality. Ó 2000 Elsevier Science Inc. All rights reserved. Keywords: QR factorization; Backward error; Eigenvalues; Arnoldi method 1. Introduction The aim of the most commonly used eigensolvers is to approximate a basis of an invariant subspace associated with some eigenvalues. -
Power Method and Krylov Subspaces
Power method and Krylov subspaces Introduction When calculating an eigenvalue of a matrix A using the power method, one starts with an initial random vector b and then computes iteratively the sequence Ab, A2b,...,An−1b normalising and storing the result in b on each iteration. The sequence converges to the eigenvector of the largest eigenvalue of A. The set of vectors 2 n−1 Kn = b, Ab, A b,...,A b , (1) where n < rank(A), is called the order-n Krylov matrix, and the subspace spanned by these vectors is called the order-n Krylov subspace. The vectors are not orthogonal but can be made so e.g. by Gram-Schmidt orthogonalisation. For the same reason that An−1b approximates the dominant eigenvector one can expect that the other orthogonalised vectors approximate the eigenvectors of the n largest eigenvalues. Krylov subspaces are the basis of several successful iterative methods in numerical linear algebra, in particular: Arnoldi and Lanczos methods for finding one (or a few) eigenvalues of a matrix; and GMRES (Generalised Minimum RESidual) method for solving systems of linear equations. These methods are particularly suitable for large sparse matrices as they avoid matrix-matrix opera- tions but rather multiply vectors by matrices and work with the resulting vectors and matrices in Krylov subspaces of modest sizes. Arnoldi iteration Arnoldi iteration is an algorithm where the order-n orthogonalised Krylov matrix Qn of a matrix A is built using stabilised Gram-Schmidt process: • start with a set Q = {q1} of one random normalised vector q1 • repeat for k =2 to n : – make a new vector qk = Aqk−1 † – orthogonalise qk to all vectors qi ∈ Q storing qi qk → hi,k−1 – normalise qk storing qk → hk,k−1 – add qk to the set Q By construction the matrix Hn made of the elements hjk is an upper Hessenberg matrix, h1,1 h1,2 h1,3 ··· h1,n h2,1 h2,2 h2,3 ··· h2,n 0 h3,2 h3,3 ··· h3,n Hn = , (2) . -
The Non–Symmetric Eigenvalue Problem
Chapter 4 of Calculus++: The Non{symmetric Eigenvalue Problem by Eric A Carlen Professor of Mathematics Georgia Tech c 2003 by the author, all rights reserved 1-1 Table of Contents Overview ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1-3 Section 1: Schur factorization 1.1 The non{symmetric eigenvalue problem :::::::::::::::::::::::::::::::::::::: 1-4 1.2 What is the Schur factorization? ::::::::::::::::::::::::::::::::::::::::::::: 1-4 1.3 The 2 × 2 case ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1-5 Section 2: Complex eigenvectors and the geometry of Cn 2.1 Why get complicated? ::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1-8 2.2 Algebra and geometry in Cn ::::::::::::::::::::::::::::::::::::::::::::::::: 1-8 2.3 Unitary matrices :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1-11 2.4 Schur factorization in general ::::::::::::::::::::::::::::::::::::::::::::::: 1-11 Section: 3 Householder reflections 3.1 Reflection matrices ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::1-15 3.2 The n × n case ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::1-17 3.3 Householder reflection matrices and the QR factorization :::::::::::::::::::: 1-19 3.4 The complex case ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1-23 Section: 4 The QR iteration 4.1 What the QR iteration is ::::::::::::::::::::::::::::::::::::::::::::::::::: 1-25 4.2 When and how QR iteration works :::::::::::::::::::::::::::::::::::::::::: 1-28 4.3 What to do when QR iteration