Neuroleptic Malignant Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Neuroleptic Malignant Syndrome Archives ofDisease in Childhood 1991; 66: 91-92 91 Arch Dis Child: first published as 10.1136/adc.66.1.91 on 1 January 1991. Downloaded from Neuroleptic malignant syndrome Neuroleptic malignant syndrome is one of a number of com- acting drugs such as bromocryptine and curare. Laboratory plications of treatment with neuroleptic medication. While investigation often demonstrates raised creatine phosphoki- common side effects include sedation, irritability, and nase and serum potassium concentrations indicative of apathy, the most worrying disorders are the extrapyramidal skeletal muscle necrosis, although absence of positive labor- dystonic reactions. These reactions may broadly be classi- atory indices is compatible with the diagnosis, as these are fied as acute, late onset, and withdrawal emergent.' secondary or non-specific.6 There are two common acute reactions: parkinsonism and Neuroleptic malignant syndrome occurs in 05-1% of akathisia. Parkinsonism is produced by neuroleptic action patients on antipsychotic treatment, can strike at any age, on nigrostriatal dopamine receptors with characteristic and can be rapidly fatal.7 Such reactions have been reported involuntary tremor, skeletal muscle rigidity, and bradykine- as being commoner in infants, particularly with associated sia. Features are similar to those of Parkinson's disease, exhaustion, dehydration, or fever.8 Brain damaged indi- where depletion of pigmented cells in the substantia nigra viduals are thought to be more susceptible to the results in reduced dopaminergic activity, and imbalance syndrome.9 Anticholinergics are of little use.6 The syn- between dopaminergic and cholinergic neuronal systems. drome's development is unrelated to dosage or duration of Benztropine, and to a lesser extent benzhexol and orphenad- medication.7 Piperazine and butyrophenone are major tran- rine, inhibit neuronal reuptake of dopamine and block cho- quillisers that are particularly associated with the neurolep- linergic muscarinic receptors, thereby alleviating these par- tic malignant syndrome in childhood, although any anti- kinsonian symptoms. psychotic medication may precipitate the condition.7 Akathisia is the other common and troublesome acute Symptoms of neuroleptic malignant syndrome may sponta- extrapyramidal side effect. It consists of a subjective sensa- neously remit despite continued neuroleptic medication, tion of overwhelming restlessness that frequently manifests with later fatal recurrence.'0 It is particularly important to as repeated pacing about.2 differentiate between commoner extrapyramidal side The main late onset reaction to neuroleptic medication, effects, which characteristically respond to anticholinergic tardive dyskinesia, consists of rhythmic spontaneous move- medication, and neuroleptic malignant syndrome which ments of mouth and tongue, occasionally with choreiform may be worsened by antiparkinsonian agents but is helped movements in the limbs. It is irreversible once established. by dopamine-2 agonists like bromocriptine. http://adc.bmj.com/ Risk of this complication is related to the patient's age, Treatment consists of stopping medication, rehydration, duration of treatment and dose, presence of brain damage, measures to reduce fever, adequate monitoring, and support and the chronic use ofantiparkinsonian drugs. The mechan- of cardiovascular, respiratory, renal and other vital func- ism is not fully understood, but may be due to dopaminergic tions, and specific antidote medications-for example, dan- hypersensitivity in the nigrostriatal system with relative trolene or bromocriptine." reduction in cholinergic functioning. Medication should be Successful simultaneous administration of the neuroleptic stopped if possible. Increased dosage will decrease dopami- and bromocriptine has been undertaken, thereby circum- nergic activity but is more harmful in the long term.3 venting the 'catch 22' situation of an individual with inca- on September 27, 2021 by guest. Protected copyright. Withdrawal emergent symptoms are adverse drug reac- pacitating psychosis as well as neuroleptic malignant tions which manifest only when medication has been with- syndrome. 12 drawn. Clinical presentation is characterised by involuntary movements and ataxia that may only remit once medication has been reintroduced.4 Conclusion Clinicians must be alert to the possibility of rare but serious side effects to neuroleptic medication in childhood and ado- Neuroleptic malignant syndrome lescence. Certain factors, including the individual's age and The most serious of the adverse reactions to neuroleptic coexisting brain damage, may predispose to the conditions. medication is the neuroleptic malignant syndrome. This Clinical presentation is similar to adulthood, but may more comprises an idiosyncratic reaction to the neuroleptic recog- readily be misattributed to non-organic or other physical nised by its characteristic clinical features of altered sensor- causes. ium, muscular rigidity, hyperpyrexia of unknown origin, Early accurate diagnosis is essential in order to ensure and autonomic dysfunction. The extreme peripheral appropriate treatment and the individual's physical safety. muscle spasm had once been considered sufficient to generate the dramatic rise in body temperature. This view JEREMY TURK was supported by in vitro muscle biopsy studies and benefi- BRYAN LASK cial effects of dantrolene. However it is now thought more Department of Psychological Medicine, Hospital for Sick Children, likely that, at least in the early stages, the hyperpyrexia has a Great Ormond Street, central origin arising from sudden disturbance of dopa- London WCIN 3J7H minergic pathways within hypothalamic thermoregulatory centres. In support of this view is work demonstrating pro- Dr Turk is currently funded as a Wellcome Research Training Fellow longed hyperthermia following phenothiazine injection into in the department of child psychiatry, Institute of Child Health, animal rostral hypothalamus, and the usefulness of centrally London. 92 Turk, Lask 1 Campbell M, Green WH, Deutsch SI. Child and adolescent psychopharmaco- 7 Knight ME, Roberts RJ. Phenothiazine and butyrophenone intoxication in logy. London: Sage Publications, 1985. children. Pediatr Clin North Am 1986;33:299-309. 2 Kolb LC. Pharmacological therapy. Modern clinicalpsychiatry. London: Saun- 8 Corless JD, Buchanan DS. Phenothiazine intoxication in children. JAMA Arch Dis Child: first published as 10.1136/adc.66.1.91 on 1 January 1991. Downloaded from ders, 1977:829-54. 1%5;194:565-7. 3 Bird J, Harrison G. Drug therapy. Examination notes in psychiatry. Bristol: 9 Diamond JM, Hayes DD. A case of neuroleptic malignant syndrome in a Wright, 1984:209-31. mentally retarded adolescent. J Adolesc Health Care 1986;7:419-422. 4 Polizos P, Engelhardt DM, Hoffman SP, Waizer J. Neurological conse- 10 McCarthy A, Bourke S, Fahy J, Binchy I, Fitzgerald MX. Fatal recurrence of quences ofpsychotropic drug withdrawal in schizophrenic children. Jowunal neuroleptic malignant syndrome. Br J Psychiatry 1988;152:558-9. of Autism and Childhood Schizophrenia 1973;3:247-53. 11 Granato JE, Stern BJ, Ringel A, et al. Neuroleptic malignant syndrome: suc- 5 Caroff SN. The neuroleptic malignant syndrome. J Clin Psychiaty 1980;41: cesful treaunent with dantrolene and bromocryptine. Ann Neurol 1983;14: 79-83. 89-90. 6 Abbott RJ, Loizou LA. Neuroleptic malignant syndrome. Br i Psychiatry 12 Goldwasser HG, Hooper JF, Spears NM. Concomitant treatment ofneurolep- 1986;148:47-51. tic malignant syndrome and psychosis. Br I Psychiatry 1989;154:102-4. http://adc.bmj.com/ on September 27, 2021 by guest. Protected copyright..
Recommended publications
  • Free PDF Download
    European Review for Medical and Pharmacological Sciences 2021; 25: 4746-4756 Pathophysiology and management of Akathisia 70 years after the introduction of the chlorpromazine, the first antipsychotic N. ZAREIFOPOULOS1, M. KATSARAKI1, P. STRATOS1, V. VILLIOTOU, M. SKALTSA1, A. DIMITRIOU1, M. KARVELI1, P. EFTHIMIOU2, M. LAGADINOU2, D. VELISSARIS3 1Department of Psychiatry, General Hospital of Nikea and Pireus Hagios Panteleimon, Athens, Greece 2Emergency Department, University General Hospital of Patras, Athens, Greece 3Department of Internal Medicine, University of Patras School of Medicine, Athens, Greece Abstract. – OBJECTIVE: Akathisia is among CONCLUSIONS: Pharmacological manage- the most troubling effects of psychiatric drugs ment may pose a challenge in chronic akathi- as it is associated with significant distress on sia. Rotation between different pharmacologi- behalf of the patients, and it limits treatment ad- cal management strategies may be optimal in re- herence. Though it most commonly presents sistant cases. Discontinuation of the causative during treatment with antipsychotic drugs which drug and use of b-blockers, mirtazapine, benzo- block dopamine D2 receptors, Akathisia has al- diazepines or gabapentinoids for symptomatic so been reported during treatment with selec- relief is the basis of management. tive serotonin reuptake inhibitors (SSRIs), se- rotonin norepinephrine reuptake inhibitors (SN- Key Words: RIs), stimulants, mirtazapine, tetrabenazine and Aripiprazole, Extrapyramidal symptoms, Haloperi- other drugs. dol,
    [Show full text]
  • Managing Migraine
    NEUROLOGY/EXPERT CLINICAL MANAGEMENT Managing Migraine Benjamin W. Friedman, MD, MS* *Corresponding Author. E-mail: [email protected], Twitter: @benjaminbwf. 0196-0644/$-see front matter Copyright © 2016 by the American College of Emergency Physicians. http://dx.doi.org/10.1016/j.annemergmed.2016.06.023 A podcast for this article is available at www.annemergmed.com. alertness, and appetite. Allodynia, an alteration of Continuing Medical Education exam for this article is available at nociception that causes typically non-noxious sensory http://www.acep.org/ACEPeCME/. stimuli (such as brushing one’s hair or shaving one’s face) to be perceived as painful, develops as acute migraine duration [Ann Emerg Med. 2017;69:202-207.] increases. This is thought to indicate involvement of higher-order central nervous system sensory relay stations, Editor’s Note: The Expert Clinical Management series notably, the thalamus. consists of shorter, practical review articles focused on the optimal approach to a specific sign, symptom, disease, Migraine was once believed to be a vascular headache. procedure, technology, or other emergency department Advanced imaging studies do not support this description challenge. These articles–typically solicited from and indicate that migraine is a neurologic disorder involving recognized experts in the subject area–will summarize the dysfunctional nociceptive processing.3 Abnormally activated best available evidence relating to the topic while including sensory pathways turn non-noxious stimuli into headache, practical recommendations where the evidence is photophobia, phonophobia, and osmophobia. Cortical incomplete or conflicting. spreading depression, a slow wave of brain depolarization, underlies migraine aura but has not been demonstrated clearly in migraine patients without aura.
    [Show full text]
  • Aggression and Agitation in Dementia, None of Which Are Approved by the US Food and Drug Administration
    REVIEW ARTICLE 07/09/2018 on SruuCyaLiGD/095xRqJ2PzgDYuM98ZB494KP9rwScvIkQrYai2aioRZDTyulujJ/fqPksscQKqke3QAnIva1ZqwEKekuwNqyUWcnSLnClNQLfnPrUdnEcDXOJLeG3sr/HuiNevTSNcdMFp1i4FoTX9EXYGXm/fCfl4vTgtAk5QA/xTymSTD9kwHmmkNHlYfO by https://journals.lww.com/continuum from Downloaded Aggression and Agitation CONTINUUM AUDIO Downloaded INTERVIEW AVAILABLE in Dementia ONLINE from By M. Uri Wolf, MD, FRCPC; Yael Goldberg, PhD, CPsych; https://journals.lww.com/continuum Morris Freedman, MD, FRCPC, FAAN CITE AS: CONTINUUM (MINNEAP MINN) 2018;24(3,BEHAVIORALNEUROLOGY AND PSYCHIATRY):783–803. ABSTRACT Address correspondence to by Dr M. Uri Wolf, Baycrest Health SruuCyaLiGD/095xRqJ2PzgDYuM98ZB494KP9rwScvIkQrYai2aioRZDTyulujJ/fqPksscQKqke3QAnIva1ZqwEKekuwNqyUWcnSLnClNQLfnPrUdnEcDXOJLeG3sr/HuiNevTSNcdMFp1i4FoTX9EXYGXm/fCfl4vTgtAk5QA/xTymSTD9kwHmmkNHlYfO PURPOSEOFREVIEW: This article reviews the treatment of aggression and Sciences, 3560 Bathurst St, agitation in dementia. Both nonpharmacologic and pharmacologic Toronto, ON M6A 2E1, Canada, approaches to responsive behaviors are discussed. Practical treatment [email protected]. strategies are applied to common behavioral symptoms. RELATIONSHIP DISCLOSURE: Drs Wolf and Goldberg report no disclosures. Dr Freedman serves RECENT FINDINGS: Aggressive and agitated behavior is common in dementia. as a trustee for the World Behavioral symptoms lead to reduced quality of life and distress for both Federation of Neurology and on patients and caregivers. They can also lead to poor outcomes and are the editorial boards
    [Show full text]
  • A Brief Overview of Iatrogenic Akathisia Claire Advokat 1
    Comprehensive Reviews A Brief Overview of Iatrogenic Akathisia Claire Advokat 1 Abstract Akathisia is a significant and serious neurological side effect of many antipsychotic and antidepressant medications. It is most often expressed as a subjective, uncomfortable, inner restlessness, which produces a constant compulsion to be in motion, although that activity is often not able to relieve the distress. Because it can be extremely upsetting to the patient, akathisia is a common cause of nonadherence to psychotropic treatment. Unfortunately, its subjective nature makes quantitative assessment difficult. Although its pathophysiology is not well-established, a decrease in dopami- nergic activity appears to be an important etiological factor. In addition to reducing the dose of the offending drug, the most effective treatment of akathisia includes administration of either a beta-adrenergic antagonist or a serotonergic 5HT2 receptor antagonist. The therapeutic effect of monoaminergic antagonists is believed to result from blockade of inhibitory noradrenergic and serotonergic inputs onto dopaminergic pathways in the striatum and limbic system. If so, medications with intrinsic beta-adrenergic and 5HT2 receptor antagonism might produce less akathisia, and dopa- minergic (but not adrenergic) agents, (e.g., the antidepressant bupropion, or the dopamine agonist ropinirole) might reduce akathisia. To evaluate these hypotheses, better treatments—as well as more precise ways of detecting akathi- sia—are needed. Currently, akathisia is inadequately
    [Show full text]
  • Physical and Occupational Therapy
    Physical and Occupational Therapy Huntington’s Disease Family Guide Series Physical and Occupational Therapy Family Guide Series Reviewed by: Suzanne Imbriglio, PT Edited by Karen Tarapata Deb Lovecky HDSA Printing of this publication was made possible through an educational grant provided by The Bess Spiva Timmons Foundation Disclaimer Statements and opinions in this book are not necessarily those of the Huntington’s Disease Society of America, nor does HDSA promote, endorse, or recommend any treatment mentioned herein. The reader should consult a physician or other appropriate healthcare professional concerning any advice, treatment or therapy set forth in this book. © 2010, Huntington’s Disease Society of America All Rights Reserved Printed in the United States No portion of this publication may be reproduced in any way without the expressed written permission of HDSA. Contents Introduction Movement Disorders in HD 4 Cognitive Disorders 8 The Movement Disorder and Nutrition 9 Physical Therapy in Early Stage HD Pre-Program Evaluation 11 General Physical Conditioning for Early Stage HD 14 Cognitive Functioning and Physical Therapy 16 Physical Therapy in Mid-Stage HD Assessment in Mid-Stage HD 17 Functional Strategies for Balance and Seating 19 Physical Therapy in Later Stage HD Restraints and Specialized Seating 23 Accommodating the Cognitive Disorder in Later Stage HD 24 Occupational Therapy in Early Stage HD Addressing the Cognitive Disability 26 Safety in the Home 28 Occupational Therapy in Mid-Stage HD Problems and Strategies 29 Occupational Therapy in Later Stage HD Contractures 33 Hope for the Future 34 Introduction Understanding Huntington’s Disease Huntington’s Disease (HD) is a hereditary neurological disorder that leads to severe physical and mental disabilities.
    [Show full text]
  • At-A-Glance: Psychotropic Drug Information for Children and Adolescents
    At-A-Glance: Psychotropic Drug Information for Children and Adolescents Pediatric Dosage/ Drug Generic FDA Approval Serum Level Name Age/Indication when applicable Warnings and Precautions/Black Box Warnings Combination Antipsychotic/Antidepressant fluoxetine & 18 and older N/A: Pediatric Black Box Warning for fluoxetine/olanzapine olanzapine dosing is currently combination formula (marketed as Symbyax): Usage unavailable or not increased the risk of suicidal thinking and behaviors in applicable for this children and adolescents with major depressive disorder drug. and other psychiatric disorders. Other precautions for fluoxetine/olanzapine combination: Possibly unsafe during lactation. Avoid abrupt withdrawal. Antipsychotic Medications *Precautions which apply to all atypical or second generation antipsychotics (SGA): Neuroleptic Malignant Syndrome/Tardive Dyskinesia/ Hyperglycemia/ Diabetes Mellitus/ Weight Gain/ Akathisia/Dyslipidemia †Precautions which apply to all typical or first generation antipsychotics (FGA): Extrapyramidal symptoms/Tardive Dyskinesia aripiprazole * (SGA) 10 and older for 2-10 mg/kg/day Black Box Warning for aripiprazole: Not approved for bipolar disorder, depression in under age 18. Increased risk of suicidal manic, or mixed thinking and behavior in short-term studies in children episodes; 13 to 17 and adolescents with major depressive disorder and for schizophrenia other psychiatric conditions. and bipolar; 6 to 17 for irritability associated with autistic disorder asenapine* 18 and older N/A Black Box Warning for asenapine: Not approved for dementia-related psychosis. Increased mortality risk for elderly dementia patients due to cardiovascular or infectious events. chlorpromazine† 18 and older 0.25 mg/kg tid Other precautions for chlorpromazine: May alter cardiac (FGA) conduction; sedation; Neuroleptic Malignant Syndrome; weight gain. Use caution with renal disease, seizure disorders, and respiratory disease and in acute illness.
    [Show full text]
  • The Neuroleptic Malignant Syndrome: Do We Know Enough?
    Jefferson Journal of Psychiatry Volume 3 Issue 2 Article 8 July 1985 The Neuroleptic Malignant Syndrome: Do we Know Enough? Ali Hassan M. Ali, MD Thomas Jefferson University Hospital Follow this and additional works at: https://jdc.jefferson.edu/jeffjpsychiatry Part of the Psychiatry Commons Let us know how access to this document benefits ouy Recommended Citation Ali, MD, Ali Hassan M. (1985) "The Neuroleptic Malignant Syndrome: Do we Know Enough?," Jefferson Journal of Psychiatry: Vol. 3 : Iss. 2 , Article 8. DOI: https://doi.org/10.29046/JJP.003.2.004 Available at: https://jdc.jefferson.edu/jeffjpsychiatry/vol3/iss2/8 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Jefferson Journal of Psychiatry by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. THE NEUROLEPTIC MALIGNANT SYNDROME: DO WE KNOW ENOUGH? ALI HASSAN M. ALI , M.D. The Neuroleptic Malignant Syndrome (NMS) is a potent ially grave adverse reaction to oral or parenteral neuroleptic therapy that may be an underdiagnosed and easily overlooked clinical problem. NMS is characterized by hypertherm ia, hyperten­ sion, diaphoresis, muscular rigidity, and altered mentation.
    [Show full text]
  • FF #282 Akathisia. 3Rd Ed
    FAST FACTS AND CONCEPTS #282 AKATHISIA Elizabeth Durkin MD, J Andrew Probolus MD, Coleen Kayden R Ph Background Antipsychotics and other common psychoactive medications can cause neuropsychiatric complications such as akathisia. Akathisia is an extrapyramidal symptom characterized by an uncomfortable sensation of internal restlessness and need to move. This Fast Fact discusses risk factors, pathophysiology, presentations, and management of akathisia. Extrapyramidal Symptoms (EPS) EPS encompass several acute/reversible and chronic/irreversible side effects of psychoactive medications. They are believed to be caused by blockade of dopamine receptors (D2) or depletion of dopamine in the basal ganglia. Acute EPS include akathisia and dystonias. Chronic EPS include tardive dyskinesia and focal perioral tremor. Older (‘typical’ or ‘first generation antipsychotics’) have a higher propensity for producing EPS because of strong binding to dopamine receptors (D2). Newer (‘atypical,’ or second generation antipsychotics) have a lower risk of EPS, in part due to blockage of serotonin receptors (1). Continued untreated akathisia is risk factor for developing chronic akathisia, but currently it is not known if a single episode of akathisia increases the risk for developing chronic EPS. Incidence and Risk Factors The incidence of akathisia with strong dopamine blockers such as haloperidol is 30% and 5-15% with drugs with weaker blocking (1). Elevated risk occurs with higher potency D2 binding, parenteral administration, and rapid dose escalation (1). Haloperidol has a particularly high risk of akathisia due to its strong affinity for D2 receptors. Additional drugs known to cause akathisia include: metoclopramide, prochlorperazine, promethazine, tricyclic antidepressants, selective serotonin reuptake inhibitors, and serotonin norepinephrine reuptake inhibitors (3).
    [Show full text]
  • Pain in Parkinson's Disease
    Global Journal of Medical Research: A Neurology and Nervous System Volume 20 Issue 1 Version 1.0 Year 2020 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Online ISSN: 2249-4618 & Print ISSN: 0975-5888 Pain in Parkinson's Disease: From the Pathogenetic Basics to Treatment Principles By Alenikova Olga Abstract- Pain syndromes are quite common in Parkinson's disease, in addition to the motor defect, can significantly worsen the quality of life. Various types of pain related to PD have been described. Different clinical characteristics of the pain, variable relationship with motor symptoms, and variable response to dopaminergic drugs, as well as, in some cases, the dependence its appearance in a specific time of the day, suggest that pain in PD has a complex mechanism with the widespread impairment of the sensory information transmission at different levels of the CNS. In addition to the dopaminergic systems of the brain and spinal cord, non- dopaminergic systems (nor epinephrine, serotonin, gamma-amino butyric acid, glutamate, endorphin, melatonin) are also involved in the development pain syndromes in PD. A neurodegenerative process associated with PD establishes a new dynamic balance between the nociceptive and antinociceptive systems, which ultimately determines the level of pain susceptibility and the pain experience characteristics. Basal ganglia along with amygdala, intralaminar nuclei of the thalamus, insula, prefrontal cortex, anterior and posterior cingulate cortex determine the motor, emotional, autonomic and cognitive responses to pain. Keywords: pain, parkinson's disease, nociceptive pathway, basal ganglia, non motor symptoms, noradrenergic system. GJMR-A Classification: NLMC Code: WL 359 PaininParkinsonsDiseaseFromthePathogeneticBasicstoTreatmentPrinciples Strictly as per the compliance and regulations of: © 2020.
    [Show full text]
  • The Clinical Phenomenon of Akathisia
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.49.8.861 on 1 August 1986. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1986;49:861-866 The clinical phenomenon of akathisia WRG GIBB, AJ LEES From the National Hospitalsfor Nervous Diseases, Maida Vale, London UK SUMMARY The subjective and motor phenomena of neuroleptic-induced akathisia were studied in two different populations of psychiatric patients. Thirty nine (41 %) of 95 patients attending com- munity psychiatric centres and psychiatric day hospitals experienced a compulsion to move about, and 52 (55%) complained of restlessness of the body. Of 842 psychiatric in-patients 159 found to have marked hyperkinesis were divided into three groups; group 1 with motor restlessness, and a subjective desire to move about or marching on the spot (27 patients), group 2 with choreo-athetotic movements and motor restlessness (79 patients) and an indeterminate group 3 (53), bearing more similarities to group 1 than group 2. Motor disturbances associated with akathisia were repeated leg crossing, swinging of one leg, lateral knee movements, sliding of the feet and rapid walking. Akathisia was a term initially used by Haskovec to components. Some investigators have restricted the describe an unusual mental state in which there is an term to a subjective feeling of restlessness,7 others be- Protected by copyright. inability to remain seated and a compulsion to move lieve this aspect to be of major importance,8 whereas about.' He considered this to be due to psychological most have considered objective evidence of restless- causes, and anxiety and hysteria were postulated as ness to be the prime feature.
    [Show full text]
  • Antipsychotics for Migraines, Cluster Headaches, and Nausea
    Web extra Antipsychotics for migraines, cluster headaches, and nausea Evidence of efficacy for these conditions is limited, and risk of side effects may inhibit use ost evidence supporting antipsychotics as a treat- ment for migraine headaches and cluster head- Maches is based on small studies and chart reviews. Some research suggests antipsychotics may effectively treat nausea but side effects such as akathisia may limit their use. Migraine headaches Antipsychotic treatment of migraines is supported by the theory that dopaminergic hyperactivity leads to migraine headaches (Table 1, page E2). Antipsychotics have been used off-label in migraine patients who do not tolerate triptans or have status migrainosus—intense, debilitating migraine JON KRAUSE FOR CURRENT PSYCHIATRY lasting >72 hours.1 Primarily a result of D2 receptor block- ade, the serotonergic effects of some second-generation anti- Aveekshit Tripathi, MD psychotics (SGAs) may prevent migraine recurrence. The Senior Resident Psychiatry and Behavioral Sciences first-generation antipsychotics (FGAs) prochlorperazine, droperidol, haloperidol, and chlorpromazine have been Matthew Macaluso, DO Assistant Professor, Psychiatry and Behavioral Sciences 1-27 used for migraine headaches (Table 2, page E3). Associate Director, Residency Training Prochlorperazine may be an effective treatment of acute • • • • headaches9 and refractory chronic daily headache.10 Studies show that buccal prochlorperazine is more effective than oral University of Kansas School of Medicine-Wichita Wichita, KS ergotamine tartrate11 and IV prochlorperazine is more effective than IV ketorolac12 or valproate28 for treating acute headache. Evidence suggests that chlorpromazine administered IM2 or IV3 is better than placebo for managing migraine pain. In a study comparing IV chlorpromazine, lidocaine, and dihydroergotamine, patients treated with chlorproma- zine showed more persistent headache relief 12 to 24 hours post-dose.4 In another study, IV chlorpromazine, 25 mg, Current Psychiatry was as effective as IM ketorolac, 60 mg.5 Vol.
    [Show full text]
  • Sensory Phenomena in Movement Disorders
    Sensory Phenomena in Movement Disorders Muhammad M. Nashatizadeh, M.D. Neurology/Neurosurgery Grand Rounds KU School of Medicine Friday, January 27, 2017 Disclosures • I have not received any financial, professional or personal benefit from any third-party entity regarding any of the topics I will be discussing today. • Some of the treatments discussed today are considered off-label usage by the Food and Drug Administration (FDA). Objectives • Increase awareness of sensory disturbances found in various movement disorders to offer appropriate treatment. • Demonstrate familiarity with treatment options of sensory phenomena relevant to movement disorders. Outline • Review of somatosensory input • Feedback from sensory input to motor output • Examples of sensory disturbance in movement disorders • Assessment and rating scales • Treatment of akathisia, tics and restless legs syndrome Somatosensory Input Courtesy: Clinicalgate.com • first order neuron • trigeminal nerve ganglion, dorsal root ganglion of spinal nerve • connects peripheral face and body with second order neuron Somatosensory Input Courtesy: Clinicalgate.com • second order neuron • brainstem nuclei, spinal nuclei • connects first order neuron with ventral posterior nucleus (VPN) of the thalamus Somatosensory Input Courtesy: Clinicalgate.com • third order neuron • connects VPN to the post-central gyrus (parietal lobe) Sensorimotor Integration Patel N et al. (2014) Lancet Neurol 13:100-112. Sensorimotor Integration • patients with Parkinson’s disease depend on external sensory cues to initiate and execute movement especially visual and kinesthetic input • impairment in proprioception likely plays a role in postural instability and limited body awareness in Parkinson’s disease • when moving both arms simultaneously, there is a tendency for a patient with Parkinson’s disease to overestimate affected limb movement Georgiou N et al.
    [Show full text]