Seismic Tomography and Surface Deformation in Krfsuvik, SW Iceland by Jing Liu B.S

Total Page:16

File Type:pdf, Size:1020Kb

Seismic Tomography and Surface Deformation in Krfsuvik, SW Iceland by Jing Liu B.S Seismic Tomography and Surface Deformation in Krfsuvik, SW Iceland by Jing Liu B.S. Geophysics, China University of Geosciences (Wuhan), 2008 Submitted to the Department of Earth, Atmospheric, and Planetary Sciences in Partial Fulfillment of the Requirements for the Degree ACHUES of INS1W Master of Science in Geophysics MSSACHUSMOF TECHNOLOGY at the MAR 0 3 2014 Massachusetts Institute of Technology LIBRARIES February 2014 C 2014 Massachusetts Institute of Technology. All rights reserved. Signature of Author ................... ............................................... Department of Earth, Atmospheric, and Planetary Sciences November. 21, 2013 C ertified by ........ ............................................ Michael C. Fehler Senior Research Scientist-Earth Resources Laboratory Thesis Supervisor /7 J & Certified by. ................................................. Bradford H. Hager Cecil & Ida Green Pro r, Director of Earth Resources Laboratory Thesis Co-Supervisor 7 Accepted by Y Rob Van der Hilst Schlumberger Professor Head, Department of Earth, Atmospheric and Planetary Sciences Seismic Tomography and Surface Deformation in Krfsuvik, SW Iceland by Jing Liu Submitted to the Department of Earth, Atmospheric, and Planetary Sciences On November 21, 2013, in partial fulfillment of the requirements for the Degree of Master of Science in Geophysics Abstract The Krfsuvik region of southwestern Iceland is a region of high potential for geothermal energy that is currently experiencing seismic swarm activity and active surface deformation. Understanding the subsurface structure of the area is of great scientific and practical significance. Using permanent and temporary seismic stations deployed in the region, we captured an earthquake swarm from Nov. 2010 to Feb. 2011 clustered around the center of the Krfsuvik volcanic system. We studied the seismicity and Vp, Vs and Vp/Vs ratio in this region by applying double difference tomography. Our tomography result indicates a low velocity zone at a depth of about 6 kin, directly beneath the earthquake swarm. At the same time, our relocation result delineates strike-slip and dip- slip faults above and around this low velocity zone. Brittle-ductile transition is delineated based on the distribution of the earthquakes in this area. In order to understand the relation between the subsurface structure and the surface deformation, we modeled surface deformation using the input parameters constrained from our tomography results. We found that the main deformation is well captured by a pressure source yielding a volume expansion of about 30x 106 m 3 at the depth of about 6 km, centered on the low velocity zone detected in tomography. And the secondary deformation could be explained by the normal and the right-lateral slip faults, whose patterns are delineated by the earthquake relocations. The combination of the local stress caused by the expanding source and regional stress that yields a combination of left-lateral shear and extension might have triggered the earthquakes. Based on the low Vp, Vs and possibly high Vp/Vs ratio at depth of ~6 km and its expanding property, the possibilities of supercritical water, H2 0-rich partial melting with magma intrusion are discussed. The results of this thesis provide new insights to understand the seismicity and surface deformation in volcanic zones as well as provided important reference in exploration of new geothermal areas. Thesis Supervisors: Michael C. Fehler . Title: Senior Research Scientisph- EarthResouycpe Laboratory Bradford H. Hager Title: Cecil & Ida Green Professor, birector of Earth Resources Laboratory 2 Acknowledgements I would like to thank the people for their help towards the completion of this thesis during my two years of studying in the Earth Resource Laboratory at MIT. First of all, I would like to thank my advisor, Dr. Michael Fehler for his support and guidance throughout my study at MIT. I always feel lucky to meet and work with such a reputable scientist as Dr. Fehler who offered me the chance to enter MIT as well as the field of geophysics. I would also like to thank Prof. Brad Hager for his fruitful and patient suggestions regarding my current as well as future work. I would like to acknowledge the people in Earth Resource Laboratory (Micheal Fehler, Bradford Hager, Maria Zuber, Robert van der Hilst, Alison Malcolm, Anna Shaughnessy, Haijiang Zhang, Yingcai Zheng, Xingding Fang, Qin Cao, Hui Huang, Xuefeng Shang, Chunquan Yu, Di Yang, Haoyue Wang, Lucas Willemsen, Alan Richardson) for many helpful comments and exposure to different aspects of the seismology and geodynamics problems in my work. I would also like to thank my husband, Rong, for his support during difficult times. This work was funded by US DOE, Iceland GEORG Program, Iceland & Swedish National Science Foundations. 3 Contents Chapter 1................................................................................................................................. 8 Introduction.............................................................................................................................. 9 1.1 Plate Boundary of Iceland .......................................................................................... 9 1.2 Reykjanes Peninsula, SW Iceland .................................................................................. 10 1.3 Previous Study of Seismicity, Deformation and Structure in Krfsuvik........12 1.4 Surface Manifestations of Krysuvik Geotherm al Field ....................................... 15 1.5 Our Study of the Krf'suvik Geotherm al Field ............................... ...................... 16 Chapter 2 .................................................. ......................................................................... 19 Seism ic Event Relocation and Tom ography............................................................. 19 2.1 Seism ic Data and Stations ............................................................................................. 19 2.2 Theory of Event Relocation and Tom ography...................................................... 21 2.3 Results of Event Relocation and Tom ography...................................................... 22 2.3.1 Travel times used in this study.......................................................................................... 22 2.3.2 Event Relocation Results ........................................................................................................... 23 2.3.3 Checkerboard Test ....................................................................................................................... 26 2.3.4 Tom ography Results.................................................................................................................... 31 Chapter 3 .................................... ................................. ...... ............................. 36 Surface Deform ation Observation and M odeling................................................... 36 3.1 Geodetic Observation ..................................................................................................... 36 3.2 Surface Deform ation Modeling................................................................................... 40 Chapter 4 ............................................................................................................................... 45 Discussion..... ............................................ ........ .................. ..................... 45 4.1 Brittle-ductile Transition ................... ............................. ..................................... 45 4.2 Possibilities of the low velocity zone..................................................................... 48 Chapter 5 . ........................ ... ............................................. ............................. 54 Conclusion .......................................... ............... ........................................................... 54 Appendix A .......................... ................................................................................ 56 Geotherm al M anifestation in Krysuvik..................................................................... 56 Appendix B ..................................................................... ..................................................... 57 GPS m easurem ents in Krysuvik ................................................................................... 57 References ......................... .... ................... ... ............ ..... ........................... 59 4 List of Figures Figure 1-1: Iceland plate boundary. (Hjaltadottir, 2010). Fissure swarms are shown as grey areas and central volcanoes enclosed with grey, thin circles. The black dotted lines are the transform zones. HM: Hreppar micro-plate................. 10 Figure 1-2: Tectonic map of Reykjanes Peninsula and its location in SW Iceland (inset). The blue lines are the plate boundary (solid-axial rifts, long dashed line-propagating rift, dotted line-fracture zones). The hatched areas indicate the high-temperature geothermal fields. Fissure swarms are shown as grey areas in the inset, along the NE-SW direction. RR, Reykjanes Ridge; H, Hengill volcano zone; WVZ, west Volcanic Zone; SISZ, South Iceland Seismic Zone. M odified after Keiding et al., (2009) ................................................ 12 Figure 1-3: Historical earthquakes in Krfsuvik from 1997 to 2006 (Keiding et al., 2009). The two stars indicated the
Recommended publications
  • Iceland Can Be Considered Volcanologist “Heaven”
    Iceland can be considered volcanologist “heaven” 1) Sub-aerial continuation of the Mid-Atlantic Ridge 2) Intersection of a mantle plume with a spreading ocean ridge 3) Volcanism associated with tectonic rifting 4) Sub-glacial volcanism 5) Tertiary flood (plateau) basalts 6) Bi-modal volcanism 7) Submarine volcanism 8) 18 historically active volcanoes 9) Eruptions roughly every 5 years 1. The North Atlantic opened about 54 Ma separating Greenland from Europe. 2. Spreading was initially along the now extinct Agir ridge (AER). 3. The Icelandic plume was under Greenland at that time. 4. The Greenland – Faeroe ridge represents the plume track during the history of the NE Atlantic. Kolbeinsey ridge (KR) 5. During the last 20 Ma the Reykjanes Ridge (RR) Icelandic rift zones have migrated eastward, stepwise, maintaining their position near the plume 6. The plume center is thought to be beneath Vatnajökull 1 North Rift Zone – currently active East Rift Zone – currently active West Rift Zone – last erupted about 1000-1300 AD [Also eastern (Oræfajökull) and western (Snæfellsnese) flank zones] Rift zones comprise en-echelon basaltic fissure swarms 5-15 km wide and up to 200 km long. Over time these fissures swarms develop a volcanic center, eventually maturing into a central volcano with a caldera and silicic Tertiary volcanics > 3.1 Ma volcanism Late Tertiary to Early Quaternary 3.1 – 0.7 Ma Neo-volcanic zone <0.7 - present Schematic representation of Iceland’s mantle plume. The crust is about 35 – 40 km thick Iceland’s mantle plume has been tomographically imaged down to 400 km. Some claim even deeper, through the transition zone, and down to the core – mantle boundary.
    [Show full text]
  • Itinerary Route: Reykjavik, Iceland to Reykjavik, Iceland
    ICELAND AND GREENLAND: WILD COASTS AND ICY SHORES Itinerary route: Reykjavik, Iceland to Reykjavik, Iceland 13 Days Expeditions in: Aug Call us at 1.800.397.3348 or call your Travel Agent. In Australia, call 1300.361.012 • www.expeditions.com DAY 1: Reykjavik, Iceland / Embark padding Special Offers Arrive in Reykjavík, the world’s northernmost capital, which lies only a fraction below the Arctic Circle and receives just four hours of sunlight in FREE BAR TAB AND CREW winter and 22 in summer. Check in to our group TIPS INCLUDED hotel in the morning and take time to rest and We will cover your bar tab and all tips for refresh before lunch. In the afternoon, take a the crew on all National Geographic panoramic drive through the city’s Old Town Resolution, National Geographic before embarking National Explorer, National Geographic Geographic Endurance. (B,L,D) Endurance, and National Geographic Orion voyages. DAY 2: Flatey Island padding Explore Iceland’s western frontier by Zodiac cruise, visiting Flatey Island, a trading post for many centuries. In the afternoon, sail past the wild and scenic coast of Iceland’s Westfjords region. (B,L,D) DAY 3: Arnafjörður and Dynjandi Waterfall padding In the early morning our ship will glide into beautiful Arnafjörður along the northwest coast of Iceland. For a more active experience, disembark early and hike several miles along the base of the fjord to visit spectacular Dynjandi Waterfall. Alternatively, join our expedition staff on the bow of the ship as we venture ever deeper into the fjord and then go ashore by Zodiac to walk up to the base of the waterfall.
    [Show full text]
  • NE Iceland) Owing to Drone-Based Structure-From-Motion Photogrammetry
    applied sciences Article Reconstruction of Late Pleistocene-Holocene Deformation through Massive Data Collection at Krafla Rift (NE Iceland) Owing to Drone-Based Structure-from-Motion Photogrammetry Fabio Luca Bonali 1,2,*, Alessandro Tibaldi 1,2, Noemi Corti 1 , Luca Fallati 1 and Elena Russo 1,2 1 Department of Earth and Environmental Sciences, University of Milan-Bicocca, I-20126 Milan, Italy; [email protected] (A.T.); [email protected] (N.C.); [email protected] (L.F.); [email protected] (E.R.) 2 CRUST-Interuniversity Center for 3D Seismotectonics with Territorial Applications, I-66100 Chieti Scalo, Italy * Correspondence: [email protected]; Tel.: +39-0264482015 Received: 25 August 2020; Accepted: 24 September 2020; Published: 27 September 2020 Abstract: In the present work, we demonstrate how drone surveys coupled with structure-from-motion (SfM) photogrammetry can help to collect huge amounts of very detailed data even in rough terrains where logistics can affect classical field surveys. The area of study is located in the NW part of the Krafla Fissure Swarm (NE Iceland), a volcanotectonic rift composed of eruptive centres, extension fractures, and normal faults. The surveyed sector is characterized by the presence of a hyaloclastite ridge composed of deposits dated, on a stratigraphic basis, to the Weichselian High Glacial (29.1–12.1 ka BP), and a series of lava flows mostly dating back to 11–12 ka BP. The integration of remotely sensed surveys and field inspections enabled us to recognize that this segment of the Krafla rift is made of grabens arranged en-échelon with a left-stepping geometry.
    [Show full text]
  • Lava Shields and Fissure Eruptions of the Western
    Journal of Volcanology and Geothermal Research 186 (2009) 331–348 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Lava shields and fissure eruptions of the Western Volcanic Zone, Iceland: Evidence for magma chambers and crustal interaction Deborah E. Eason ⁎, John M. Sinton Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, 1680 East–West Road, University of Hawaii, Honolulu, HI 96822, United States article info abstract Article history: Volcanic eruptions in Iceland occur either from fissures or central vents (lava shields). Within the post-glacial Received 19 December 2008 Western Volcanic Zone, the Thjófahraun fissure-fed lava field and Lambahraun lava shield were both erupted Accepted 30 June 2009 ~4000 yrs B.P. with eruptive centers separated by only ~25 km. Thjófahraun erupted ~1 km3 of pāhoehoe and Available online 5 July 2009 'a'ā lava from a 9-km long fissure, whereas the Lambahraun lava shield erupted N7km3 of low effusion-rate pāhoehoe. Thjófahraun lavas contain higher K, Rb, Y and Zr, and lower CaO than Lambahraun lavas at the same Keywords: MgO, with variations broadly consistent with evolution by low-pressure crystal fractionation. Lambahraun Iceland mid-ocean ridge spans a larger range of MgO, which generally decreases over time during the eruption. Lambahraun samples fl magma chambers with high Al2O3 and low TiO2 and FeO likely re ect up to 15% plagioclase accumulation. In addition, all samples crustal interaction from Lambahraun exhibit increasing CaO and Nb/Zr with decreasing MgO and overall incompatible-element MORB enrichments greater than predicted by crystal fractionation alone.
    [Show full text]
  • A CIRCUMNAVIGATION of ICELAND 2022 Route: Reykjavik, Iceland to Reykjavik, Iceland
    A CIRCUMNAVIGATION OF ICELAND 2022 route: Reykjavik, Iceland to Reykjavik, Iceland 11 Days NG Explorer - 148 Guests National Geographic Resolution - 126 Guests Expeditions in: Jul/Aug From $11,920 to $29,610 * Iceland’s geology in all its manifestations––glaciers, geysers, thundering waterfalls, immense cliffs, geothermal springs, boiling mud pots, and rock and lava-scapes of unearthly beauty––is world-class. It alone makes a circumnavigation a very compelling idea. And when you add in the other itinerary components––Iceland’s people, their unique cultural heritage and contemporary character, the island’s geography and birdlife––seeing it all in one 360º expedition is irresistible. Call us at 1.800.397.3348 or call your Travel Agent. In Australia, call 1300.361.012 • www.expeditions.com DAY 1: Reykjavik / Embark padding Arrive in Reykjavík, the world’s northernmost capital, which lies only a fraction below the Arctic Circle and receives just four hours of sunlight in 2022 Departure Dates: winter and 22 in summer. Have a panoramic overview of the Old Town, including 21 Jun Hallgrímskirkja Cathedral with its 210-foot tower, 13 Jul, 22 Jul and perhaps shed some light on Nordic culture at 2023 Departure Dates: the National Museum, with its Viking treasures, artifacts, and unusual whalebone carvings on 3 Jul, 12 Jul, 21 Jul display. Embark National Geographic Resolution. (L,D) Important Flight Information Please confirm arrival and departure dates prior to booking flights. DAY 2: Flatey Island padding Explore Iceland’s western frontier, visiting Flatey Advance Payment: Island, a trading post for many centuries, for walks around the charming little hamlet that grew here, $1,500 and take a Zodiac cruise along the coast.
    [Show full text]
  • Monitoring Volcanoes in Iceland and Their Current Status
    Monitoring volcanoes in Iceland and their current status Sara Barsotti Coordinator for Volcanic Hazards, [email protected] Overview • Volcanoes and volcanic eruption styles in Iceland • Monitoring volcanoes and volcanic eruptions • Current status at • Hekla • Katla • Bárðarbunga • Grímsvötn • Öræfajökull 2 The catalogue of Icelandic Volcanoes – icelandicvolcanoes.is It includes historical activity, current seismicity, possible hazards and scenarios, GIS-based map layers to visualize eruption product extensions (lava flows, ash deposits) – ICAO project 3 Explosive vs. Effusive eruption Eyjafjallajökull 2010 Bárðarbunga - Holuhraun 2014-2015 • Volcanic cloud (possibly up to • Lava flow the stratosphere) • Volcanic gas into the • Tephra fallout atmosphere (hardly higher • Lightning than the tropopause) • Floods (if from ice-capped volcano) • Pyroclastic flows 4 Volcanic ash hazards from Icelandic volcanoes All these volcanoes have volcanic ash as one of the principal hazards 5 Eruption in Iceland since 1913 Year Volcano VEI Note Stile of activity 2014 Holuhraun (Bárðarbunga) 1 Effusive 2011 Grímsvötn 4 Ice Explosive 2010 Eyjafjallajökull 3 Ice Explosive/effusive 2004 Grímsvötn 3 Ice Explosive 2000 Hekla 3 Effusive/explosive 1998 Grímsvötn 3 Ice Explosive 1996 Gjálp (Grímsvötn) 3 Ice Subglacial-explosive 1991 Hekla 3 Effusive/explosive 1983 Grímsvötn 2 Ice Explosive 1980-81 Hekla 3 Effusive/explosive 1975-84 Krafla fires (9 eruptions) 1 Effusive 1973 Heimaey 2 Effusive/explosive 1970 Hekla 3 Effusive/explosive Instrumental monitoring 1963-67
    [Show full text]
  • The Fissure Swarm of the Askja Central Volcano
    University of Iceland – Faculty of Science – Department of Geosciences The fissure swarm of the Askja central volcano by Ásta Rut Hjartardóttir A thesis submitted to the University of Iceland for the degree of Master of Science in Geophysics Supervisors: Páll Einarsson, University of Iceland Haraldur Sigurðsson, University of Rhode Island May, 2008 The fissure swarm of the Askja central volcano ©2008 Ásta Rut Hjartardóttir ISBN 978-9979-9633-5-6 Printed by Nón ii Hér með lýsi ég því yfir að ritgerð þessi er samin af mér og að hún hefur hvorki að hluta né í heild verið lögð fram áður til hærri prófgráðu. _______________________________ Ásta Rut Hjartardóttir iii iv Abstract The Askja volcanic system forms one of the 5-6 volcanic systems of the Northern Volcanic Zone, that divides the North-American and the Eurasian plates. Historical eruptions have occurred both within the central volcano and in its fissure swarm. As an example, repeated fissure eruptions occurred in the fissure swarm, and a Plinian eruption occurred within the volcano itself in 1875. This led to the formation of the youngest caldera in Iceland, which now houses the Lake Öskjuvatn. Six eruptions occurred in the 1920„s and one in 1961 in Askja. No historical accounts have, however, been found of eruptive activity of Askja before 1875, likely due to its remote location. To improve the knowledge of historic and prehistoric activity of Askja, we mapped volcanic fissures and tectonic fractures within and north of the Askja central volcano. The 1800 km2 area included as an example Mt. Herðubreið, Mt.
    [Show full text]
  • The Eruption on Heimaey, Vestmannaeyjar, Iceland
    Man Against Volcano: The Eruption on Heimaey, Vestmannaeyjar, Iceland This booklet was originally published in 1976 under the title "Man Against Volcano: The Eruption on Heimaey, Vestmann Islands, Iceland." The revised second edition was published in 1983. This PDF file is a recreation of the 1983 booklet. Cover photograph: View looking southeast along streets covered by tephra (volcanic ash) in Vestmannaeyjar: Eldfell volcano (in background) is erupting and fountaining lava. View of Heimaey before the eruption: Town of Vestmannaeyjar with Helgafell in the right back- ground (photo courtesy of Sólarfilma). Man Against Volcano: The Eruption on Heimaey, Vestmannaeyjar, Iceland by Richard S. Williams, Jr., and James G. Moore Preface The U.S. Geological Survey carries out scientific studies in the geological, hydrological, and cartographic sciences generally within the 50 States and its territories or trusteeships, but also in cooperation with scientific organizations in many foreign countries for the investigation of unusual earth sciences phenome- na throughout the world. In 1983, the U.S. Geological Survey had 57 active sci- entific exchange agreements with 24 foreign countries, and 47 scientific exchange agreements were pending with 30 foreign countries. The following material discusses the impact of the 1973 volcanic eruption of Eldfell on the fishing port of Vestmannaeyjar on the island of Heimaey, Vestmannaeyjar, Iceland. Before the eruption was over, approximately one-third of the town of Vestmannaeyjar had been obliterated, but, more importantly, the potential damage probably was reduced by the spraying of seawater onto the advancing lava flows, causing them to be slowed, stopped, or diverted from the undamaged portion of the town.
    [Show full text]
  • Iceland Volcano Unleashes Third Lava Stream 7 April 2021
    Iceland volcano unleashes third lava stream 7 April 2021 about halfway between the two sites of the earlier eruptions, gushing lava in small spurts and belching smoke. The new river of bright orange magma flowed down the slope to join an expanding field of lava at the base, now covering more than 33 hectares (81 acres), according to the last press briefing by the Icelandic Meteorological Office late Tuesday. The volcano is about 40 kilometres (25 miles) from the capital Reykjavik Lava is flowing from a third fissure that opened overnight in Iceland's nearly three-week-old volcanic eruption near the capital Reykjavik, officials said Wednesday. Tens of thousands of people have ventured to the site The spectacular eruption began on March 19 when a first fissure disgorged a steady stream of lava, flowing into the Geldingadalir valley of Mount The site had been closed to the public Monday Fagradalsfjall on Iceland's southwestern tip. because of the new activity, then reopened early Wednesday. The new split comes two days after two fissures opened around 700 metres (yards) from the initial Icelandic experts, who initially thought the eruption eruption, creating a long molten rivulet flowing into would be a short-lived affair, now think it could last a neighbouring valley. several weeks or more. The third lava stream, about a metre deep and 150 © 2021 AFP metres (490 feet) long, is a new draw for tens of thousands of gawkers taking advantage of the site's relatively easy access, just 40 kilometres (25 miles) from Reykjavik. It is about half a kilometre from the craters of the initial eruption.
    [Show full text]
  • Temporal Seismic Velocity Changes During the 2020 Rapid Inflation at Mt
    RESEARCH LETTER Temporal Seismic Velocity Changes During the 2020 10.1029/2020GL092265 Rapid Inflation at Mt. Þorbjörn-Svartsengi, Iceland, Key Points: Using Seismic Ambient Noise • Ambient noise-based temporal seismic wave velocity variations Yesim Cubuk-Sabuncu1 , Kristín Jónsdóttir1 , Corentin Caudron2 , provide insights into volcanic unrest Thomas Lecocq3 , Michelle Maree Parks1 , Halldór Geirsson4 , and Aurélien Mordret2 in the Reykjanes Peninsula • Seismic velocity drops to −1% during 1Icelandic Meteorological Office, Reykjavik, Iceland, 2University of Grenoble Alpes, University Savoie Mont Blanc, repeated magma intrusions 3 • The evolution of dv/v (%) correlates CNRS, IRD, University Gustave Eiffel, ISTerre, Grenoble, France, Royal Observatory of Belgium, Brussels, Belgium, 4 with deformation data University of Iceland, Reykjavik, Iceland Supporting Information: Abstract Repeated periods of inflation-deflation in the vicinity of Mt. Þorbjörn-Svartsengi, SW- Supporting Information may be found Iceland, were detected in January–July, 2020. We used seismic ambient noise and interferometry to in the online version of this article. characterize temporal variations of seismic velocities (dv/v, %). This is the first time in Iceland that dv/v variations are monitored in near real-time during volcanic unrest. The seismic station closest to Correspondence to: the inflation source center ( 1 km) showed the largest velocity drop ( 1%). Different frequency range Y. Cubuk-Sabuncu, [email protected] measurements, from 0.1 to 2 Hz,∼ show dv/v variations, which we interpret∼ in terms of varying depth sensitivity. The dv/v correlates with deformation measurements (GPS, InSAR), over the unrest period, Citation: indicating sensitivity to similar crustal processes. We interpret the velocity drop to be caused by crack Cubuk-Sabuncu, Y., Jónsdóttir, K., opening triggered by intrusive magmatic activity.
    [Show full text]
  • Sampling and Analyses of Geothermal Steam and Geothermometer Applications in Krafla, Theistareykir, Reykjanes and Svartsengi, Iceland
    GEOTHERMAL TRAINING PROGRAMME Reports 2006 Orkustofnun, Grensásvegur 9, Number 13 IS-108 Reykjavík, Iceland SAMPLING AND ANALYSES OF GEOTHERMAL STEAM AND GEOTHERMOMETER APPLICATIONS IN KRAFLA, THEISTAREYKIR, REYKJANES AND SVARTSENGI, ICELAND Jorge Isaac Cisne Altamirano Universidad Nacional Autonoma de Nicaragua – UNAN-León Edificio de Ciencias Básicas, Frente al Edificio Central León NICARAGUA C.A. [email protected] ABSTRACT Krafla, Theistareykir, Reykjanes and Svartsengi are high-temperature geothermal areas in Iceland. In this report the results of sampling and analyses of fumaroles in Krafla, Theistareykir, and wells and fumaroles in Reykjanes and Svartsengi are presented. The results of the chemical gas analyses of samples from fumaroles and wells in these fields were used to estimate the temperature of reservoirs using selected gas geothermometers. Gas geothermometer temperatures were also calculated for wells in Reykjanes and Svartsengi. The estimated reservoir temperature for the Krafla sample is 315°C. The gas geothermometers predicted temperatures ranging between 227 and 406°C with a median value of about 290°C. The estimated reservoir temperature for Theistareykir is 280°C. The gas geothermometers predicted temperatures ranging between 220 and 395°C with a median value of about 310°C. The estimated reservoir temperature for the Reykjanes fumarole samples is 295°C. The gas geothermometers predicted temperatures ranging between 240 and 430°C with a median value of about 280°C. Geothermometer results for wells in Svartsengi (SV-11, 14, 19) range between 122 and 430°C whereas the measured well temperature is 240°C. The median of the geothermometer results for the Svartsengi wells ranges from 229°C for well 19 to 289°C for well 14.
    [Show full text]
  • The Iceland Palaeomagnetism Database (ICEPMAG V1.0)
    The Iceland Palaeomagnetism Database (ICEPMAG v1.0) Justin A. D. Tonti-Filippini FacultyFaculty of of Earth Earth Sciences Sciences UniversityUniversity of of Iceland Iceland 20182018 THE ICELAND PALAEOMAGNETISM DATABASE (ICEPMAG V1.0) Justin A. D. Tonti-Filippini 60 ECTS thesis submitted in partial fulfilment of a Magister Scientiarum degree in Geophysics Supervisor Maxwell Christopher Brown Faculty Coordinator Páll Einarsson Faculty of Earth Sciences School of Engineering and Natural Sciences University of Iceland Reykjavík, October 2018 The Iceland Palaeomagnetism Database (ICEPMAG v1.0) 60 ECTS thesis submitted in partial fulfilment of a M.Sc. degree in Geophysics Copyright © 2018 Justin A. D. Tonti-Filippini All rights reserved Faculty of Earth Sciences School of Engineering and Natural Sciences University of Iceland Sturlugata 7 101, Reykjavík, Reykjavík Iceland Telephone: 525 4000 Bibliographic information: Justin A. D. Tonti-Filippini, 2018, The Iceland Palaeomagnetism Database (ICEPMAG v1.0), M.Sc. thesis, Faculty of Earth Sciences, University of Iceland. Printing: Háskólaprent, Fálkagata 2, 107 Reykjavík Reykjavík, Iceland, October 2018 For Mary and Nicholas Abstract Iceland’s lavas preserve a unique record of Earth’s magnetic field for the past sixteen million years, and were used by early pioneers of palaeomagnetism to test several concepts which became crucial to modern geoscience. Iceland represents one of very few high latitude (>60◦) locations where long sequences of lavas suitable for palaeo- magnetic research are accessible. Since the early 1950s, research in Iceland has produced a large collection of palaeomagnetic data which has not previously been collected into a comprehensive database. ICEPMAG (http://icepmag.org/) com- piles palaeomagnetic data published in journal articles, academic theses and other databases from over 9,200 sampling sites in Iceland - one of the world’s largest col- lections of palaeomagnetic data from a single location.
    [Show full text]