Water Or Ice in the Martian Regolith?: Clues from Rampart Craters Seen at Very High Resolution R PETER J

Total Page:16

File Type:pdf, Size:1020Kb

Water Or Ice in the Martian Regolith?: Clues from Rampart Craters Seen at Very High Resolution R PETER J ICARUS 71, 268-286 (1987) Water or Ice in the Martian Regolith?: Clues from Rampart Craters Seen at Very High Resolution r PETER J. MOUGINIS-MARK Hawaii Institute of Geophysics, University of Hawaii, Honolulu , Hawaii 96822 Received October 23, 1986 ; revised March 3, 1987 Very high resolution Viking Orbiter images (8-17 m per pixel) have been used to investigate the morphology of Martian rampart crater ejecta blankets and the crater interiors, with the objective of identifying the fluidizing medium for the ejecta and the physical properties of the target rock. The occurrence of well-preserved, small-scale pressure ridges and scour marks, evidence for subsidence around isolated buried blocks in partially eroded ejecta lobes, and the stability of crater walls and distal ramparts argue for ground ice being the dominant state for volatiles within the target rocks at the time of impact. Rare examples of channels (190-650 m wide) on the surfaces of ejecta blankets, and on the inner walls of the crater Cerulli, indicate that in some instances liquid water was incorporated into the ejecta during its emplacement. No morphological evidence has been found to discount the idea that atmospheric effects were partially responsible for ejecta fluidization, but it is clear that these effects were not the sole reason for the characteristic lobate deposits surrounding at least some rampart craters on Mars. © 1987 Academic Press, Inc. INTRODUCTION laboratory experiments (Schultz and Gault 1981, 1984) have shown that rampart­ From the return of the first Viking bordered ejecta facies and ejecta flow lobes Orbiter images of Martian impact craters it can develop without the presence of water. was evident that the morphology of the Laboratory studies have also demonstrated ejecta blankets surrounding these craters that targets of varying viscosities can be was different from that of their lunar and used to investigate the fluidization of Mar­ Mercurian counterparts insofar as much of tian rampart craters (Gault and Greeley the ejecta appeared to have been emplaced 1978). Decreasing the viscosity of mud tar­ by surface flow (Carr et al. 1977). Over the gets promoted postdepositional flow of the last 10 years, considerable debate has ejecta and increased the radial extent of the focused on the possible cause(s) for this "continuous" ejecta deposit. In several ejecta fluidization and flow. Possible forms instances, these laboratory craters were that the fluidizing medium may have taken also seen to possess multiple flow units include water ice or liquid water within the similar in kind to the multilobed craters on target material (Carr et al. 1977, Boyce Mars (Carr et al. 1977). 1979, Johansen 1979) or atmospheric gases A groundwater system has been pro­ interacting with suitable particle sizes posed for Mars on a global scale (Carr 1979, within the ejecta curtain (Carr et al. 1977, Clifford 1986), and it is believed likely that Schultz and Gault 1979, Schultz 1986). such a system would influence the Indeed, Schultz (1986) draws attention to occurrence and physical state of impact the fact that the fluidized ejecta facies only crater ejecta. A major difficulty in correlat­ indicate fluid-like emplacement, and ing these inferences about ground volatile 268 0019-1035/87$3.00 Copyright © 1987 by Academic Press, In c. All rights of reproduction in any form reserved. MARTIAN CRATERS 269 content with the observed properties of cation (or lack thereof) of meltwater chan­ crater ejecta blankets lies in knowing the nels and small-scale topography on the extent to which the groundwater system surface and edges of the ejecta blankets and (located within the deep megaregolith) was the degree of stability of the ejecta lobes filled. Many of the large outflow channels and parent crater walls (Mouginis-Mark seen on Mars may have formed through the 1986). Diagnostic features are likely to be eruption of groundwater under pressure physically small in size (probably less than from the megaregolith beneath the per­ a kilometer in extent) and so have not mafrost, which is estimated to have been previously been considered in either global about 1 km thick (Carr 1979). Carr (1986) studies of rampart craters (e.g., Johansen concluded that the megaregolith below this 1979, Horner and Greeley 1986) or permafrost layer, planetwide, might con­ cratering models (e.g., Schultz and Gault tain no less than the equivalent of a water 1984, Schultz 1986). This paper therefore layer 350 m thick. Clifford's (1986) cal­ describes morphologic features seen in culations of outgassed H 20 on Mars would very high resolution (8 to 17 m per pixel) suggest that if more than a few percent of Viking Orbiter images of crater ejecta blan­ the quantity of water required to saturate kets and interiors in order to constrain the the pore volume of the cryosphere were most likely target properties at the ti me of present, then a subpermafrost water system crater formation. of substantial proportions would result. After saturation of the pore volume of the PREVIOUS GLOBAL OBSERVATIONS cryosphere, the equivalent of an additional Johansen (1979) and Kargel (1986) have 100 m of H 20 would be sufficient to create suggested that the presence or absence of a an aquifer nearly 4.3 km deep. That this distal ridge on an ejecta flow may be an small volume of water is all that is required indicator of water (ridge present) or ice to produce the aquifer is due to the pre­ (ridge absent) within the target material. dicted low pore volume at depth (Clifford Although there is a predominance of ridged 1986). It is further predicted that much of craters at low latitudes and ridgeless craters the water originally at depths of less than 1 at high latitudes (Kargel 1986), no corrobo­ km would remain in situ for most of Mar­ rating models for ejecta emplacement, or tian history (Fanale et al. 1986), thus con­ theoretical or experimental data, were stituting a possible medium for fluidizing presented by these investigators to support impact crater ejecta. their ideas on ejecta fluidization. On the Because of the importance that the basis of finite-element studies of the stress presence of liquid water, liquid brines, or magnitudes, distributions, and directions in ground ice close to the surface would have hypothetical Martian ejecta blankets, for global models of volatile abundance and Woronow (1981) concluded that rampart physical state (e.g., Fanale and Jakosky craters had water contents between 16 and 1982, Fanale et al. 1986), more precise 72 volume percent soon after emplacement. observational information is needed to help However, Woronow hypothesized that the constrain these theoretical models of fluidized ejecta deposits were formed by volatile distribution and state. One the mechanical failure and subsequent approach to identifying both the former radial flow of lunarlike ejecta deposits; such presence (or absence) and physical state of a mechanism is not believed to be ap­ subsurface volatiles in the Martian past propriate for describing the ejecta comes from their inferred influence in con­ emplacement process for these Martian trolling the morphology of rampart craters craters (Gault and Greeley 1978, Schultz and crater ejecta blankets. Key testable and Singer 1980, Mouginis-Mark 1981, morphologic indicators are the identifi- Wohletz and Sheridan 1983). 270 PETER J. MOUGINIS-MARK At issue is the relative importance of of atmospheric and target properties. atmospheric effects and target volatiles in However, Wohletz and Sheridan (1983) controlling the morphology of ejecta sur­ noted that since the formation of distal rounding Martian impact craters. Schultz rampart ridges around Martian craters is and Gault (1979) demonstrated quantita­ affected by local preexisting topographic tively that, during the emplacement of an obstacles, the formation of the ramparts ejecta cloud, ejecta deposition would be probably resulted from the deposition of controlled by the particle size distribution ejecta as the yield strength of the ejecta of the clasts and that, as a result of the size flow increased above a critical shear stress distribution of particles, a multiphase due to interparticle friction. This suggests emplacement sequence would probably that the morphology of the ejecta blanket result. Subsequent laboratory experiments was strongly related to the initial yield by Schultz and Gault (1981, 1984) have strength of the flow and, hence, the degree shown that under conditions scaled to of ejecta fluidization. simulate the Martian environment, craters A method for assessing the "average" with distal ridges can be produced without rheology, or degree of fluidization, of the any volatiles being present in the target. ejecta flows for crater populations found on These experiments suggest that craters uniform target materials has been the exam­ with contiguous ramparts may represent ination of the mechanical strength of the the products of relatively low-velocity ejecta lobes, based on their topographic impacts into target lithologies pqssessing relief and areal extent. Wohletz and Sheri­ lower volatile contents than the targets dan (1983) observed that the ejecta deposits associated with craters possessing highly appear to be composed of unconsolidated, fluidized ejecta facies. Increased volatile fine-grained particles that can be trans­ contents are predicted to decrease ejecta ported by Martian winds, and that the size by comminution and by aerodynamic thickness of the ejecta material is to­ breakup, thereby increasing the lateral pographically controlled. Ejecta lobe thick­ extent of the rampart. Ifthe impact velocity ness appears to be limited by some physical or volatile content were sufficiently high, aspect of the deposit, inferred to be the the energy trapped in the ejecta cloud maximum shear strength of the fluidized would result in long run-out flows or radial medium (Mutch and Woronow 1980). scouring. Thus, Schultz and Gault (1981 , Based on observations of ejecta flow 1984) concluded that volatiles within the around low topographic obstacles (Carr et Martian regolith were sufficient, but not al.
Recommended publications
  • Thermal Studies of Martian Channels and Valleys Using Termoskan Data
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. El, PAGES 1983-1996, JANUARY 25, 1994 Thermal studiesof Martian channelsand valleys using Termoskan data BruceH. Betts andBruce C. Murray Divisionof Geologicaland PlanetarySciences, California Institute of Technology,Pasadena The Tennoskaninstrument on boardthe Phobos '88 spacecraftacquired the highestspatial resolution thermal infraredemission data ever obtained for Mars. Included in thethermal images are 2 km/pixel,midday observations of severalmajor channel and valley systems including significant portions of Shalbatana,Ravi, A1-Qahira,and Ma'adimValles, the channelconnecting Vailes Marineris with HydraotesChaos, and channelmaterial in Eos Chasma.Tennoskan also observed small portions of thesouthern beginnings of Simud,Tiu, andAres Vailes and somechannel material in GangisChasma. Simultaneousbroadband visible reflectance data were obtainedfor all but Ma'adimVallis. We find thatmost of the channelsand valleys have higher thermal inertias than their surroundings,consistent with previousthermal studies. We show for the first time that the thermal inertia boundariesclosely match flat channelfloor boundaries.Also, butteswithin channelshave inertiassimilar to the plainssurrounding the channels,suggesting the buttesare remnants of a contiguousplains surface. Lower bounds ontypical channel thermal inertias range from 8.4 to 12.5(10 -3 cal cm-2 s-1/2 K-I) (352to 523 in SI unitsof J m-2 s-l/2K-l). Lowerbounds on inertia differences with the surrounding heavily cratered plains range from 1.1 to 3.5 (46 to 147 sr). Atmosphericand geometriceffects are not sufficientto causethe observedchannel inertia enhancements.We favornonaeolian explanations of the overall channel inertia enhancements based primarily upon the channelfloors' thermal homogeneity and the strongcorrelation of thermalboundaries with floor boundaries. However,localized, dark regions within some channels are likely aeolian in natureas reported previously.
    [Show full text]
  • Morphology and Geometry of Valles Marineris Landslides Cathy Quantin, Pascal Allemand, Christophe Delacourt
    Morphology and geometry of Valles Marineris landslides Cathy Quantin, Pascal Allemand, Christophe Delacourt To cite this version: Cathy Quantin, Pascal Allemand, Christophe Delacourt. Morphology and geometry of Valles Marineris landslides. Planetary and Space Science, Elsevier, 2004, 52 (11), pp.1011-1022. 10.1016/j.pss.2004.07.016. hal-00102264 HAL Id: hal-00102264 https://hal.archives-ouvertes.fr/hal-00102264 Submitted on 17 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Morphology and geometry of Valles Marineris landslides C. QuantinÃ, P. Allemand, C. Delacourt Universite´ Claude Bernard Lyon-1 & ENS Lyon, Laboratoire Sciences de la Terre, UMR 5570 CNRS, Bat ge´ode-6e e´tage, 2 rue Raphae¨l Dubois, 69622 Villeurbanne Cedex, France The walls of the Valles Marineris canyons are affected by about 45 landslides. The study of these landslides provides a test of the hypothesis of processes having affected Martian wallslopes after their formation. The dynamics of Valles Marineris landslides are controversial : either the landslides are interpreted as large debris flows or as dry rock avalanches. Their morphology and their topography are basic parameters to understand their dynamics. From topographic MOLA data and remote sensing images acquired with different spatial resolutions (Viking, THEMIS, MOC), the 3D geometry of 45 landslides of Valles Marineris has been studied.
    [Show full text]
  • Curiosity's Candidate Field Site in Gale Crater, Mars
    Curiosity’s Candidate Field Site in Gale Crater, Mars K. S. Edgett – 27 September 2010 Simulated view from Curiosity rover in landing ellipse looking toward the field area in Gale; made using MRO CTX stereopair images; no vertical exaggeration. The mound is ~15 km away 4th MSL Landing Site Workshop, 27–29 September 2010 in this view. Note that one would see Gale’s SW wall in the distant background if this were Edgett, 1 actually taken by the Mastcams on Mars. Gale Presents Perhaps the Thickest and Most Diverse Exposed Stratigraphic Section on Mars • Gale’s Mound appears to present the thickest and most diverse exposed stratigraphic section on Mars that we can hope access in this decade. • Mound has ~5 km of stratified rock. (That’s 3 miles!) • There is no evidence that volcanism ever occurred in Gale. • Mound materials were deposited as sediment. • Diverse materials are present. • Diverse events are recorded. – Episodes of sedimentation and lithification and diagenesis. – Episodes of erosion, transport, and re-deposition of mound materials. 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 2 Gale is at ~5°S on the “north-south dichotomy boundary” in the Aeolis and Nepenthes Mensae Region base map made by MSSS for National Geographic (February 2001); from MOC wide angle images and MOLA topography 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 3 Proposed MSL Field Site In Gale Crater Landing ellipse - very low elevation (–4.5 km) - shown here as 25 x 20 km - alluvium from crater walls - drive to mound Anderson & Bell
    [Show full text]
  • Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars 2 3 4 Joseph
    EMBARGOED BY NATURE 1 1 Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars 2 3 4 Joseph. R. Michalski 1,2 5 1Planetary Science Institute, Tucson, Arizona 85719, [email protected] 6 2Dept. of Earth Sciences, Natural History Museum, London, United Kingdom 7 8 Jacob E. Bleacher3 9 3NASA Goddard Space Flight Center, Greenbelt, MD, USA. 10 11 12 Summary: 13 14 Several irregularly shaped craters located within Arabia Terra, Mars represent a 15 new type of highland volcanic construct and together constitute a previously 16 unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these 17 low-relief paterae display a range of geomorphic features related to structural 18 collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to 19 the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur 20 and erupted fine-grained pyroclastics from these calderas likely fed the formation of 21 altered, layered sedimentary rocks and fretted terrain found throughout the 22 equatorial region. Discovery of a new type of volcanic construct in the Arabia 23 volcanic province fundamentally changes the picture of ancient volcanism and 24 climate evolution on Mars. Other eroded topographic basins in the ancient Martian 25 highlands that have been dismissed as degraded impact craters should be 26 reconsidered as possible volcanic constructs formed in an early phase of 27 widespread, disseminated magmatism on Mars. 28 29 30 EMBARGOED BY NATURE 2 31 The source of fine-grained, layered deposits1,2 detected throughout the equatorial 32 region of Mars3 remains unresolved, though the deposits are clearly linked to global 33 sedimentary processes, climate change, and habitability of the surface4.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • The 1997 Mars Pathfinder Spacecraft Landing Site: Spillover Deposits
    www.nature.com/scientificreports OPEN The 1997 Mars Pathfnder Spacecraft Landing Site: Spillover Deposits from an Early Mars Inland Sea Received: 13 June 2018 J. A. P. Rodriguez1, V. R. Baker2, T. Liu 2, M. Zarroca3, B. Travis1, T. Hui2, G. Komatsu 4, Accepted: 22 January 2019 D. C. Berman1, R. Linares3, M. V. Sykes1, M. E. Banks1,5 & J. S. Kargel1 Published: xx xx xxxx The Martian outfow channels comprise some of the largest known channels in the Solar System. Remote-sensing investigations indicate that cataclysmic foods likely excavated the channels ~3.4 Ga. Previous studies show that, in the southern circum-Chryse region, their fooding pathways include hundreds of kilometers of channel foors with upward gradients. However, the impact of the reversed channel-foor topography on the cataclysmic foods remains uncertain. Here, we show that these channel foors occur within a vast basin, which separates the downstream reaches of numerous outfow channels from the northern plains. Consequently, foods propagating through these channels must have ponded, producing an inland sea, before reaching the northern plains as enormous spillover discharges. The resulting paleohydrological reconstruction reinterprets the 1997 Pathfnder landing site as part of a marine spillway, which connected the inland sea to a hypothesized northern plains ocean. Our food simulation shows that the presence of the sea would have permitted the propagation of low-depth foods beyond the areas of reversed channel-foor topography. These results explain the formation at the landing site of possible fuvial features indicative of fow depths at least an order of magnitude lower than those apparent from the analyses of orbital remote-sensing observations.
    [Show full text]
  • Crater Geometry and Ejecta Thickness of the Martian Impact Crater Tooting
    Meteoritics & Planetary Science 42, Nr 9, 1615–1625 (2007) Abstract available online at http://meteoritics.org Crater geometry and ejecta thickness of the Martian impact crater Tooting Peter J. MOUGINIS-MARK and Harold GARBEIL Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i, Honolulu, Hawai‘i 96822, USA (Received 25 October 2006; revision accepted 04 March 2007) Abstract–We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ~29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/ diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ~8120 km2 ejecta blanket. Because the pre-impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre-impact terrain) is ~380 km3 and the volume of materials above the pre-impact terrain is ~425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ~100 m of additional ejecta thickness being deposited down-range compared to the up-range value at the same radial distance from the rim crest.
    [Show full text]
  • Martian Subsurface Properties and Crater Formation Processes Inferred from Fresh Impact Crater Geometries
    Martian Subsurface Properties and Crater Formation Processes Inferred From Fresh Impact Crater Geometries The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Stewart, Sarah T., and Gregory J. Valiant. 2006. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries. Meteoritics and Planetary Sciences 41: 1509-1537. Published Version http://meteoritics.org/ Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4727301 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Meteoritics & Planetary Science 41, Nr 10, 1509–1537 (2006) Abstract available online at http://meteoritics.org Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries Sarah T. STEWART* and Gregory J. VALIANT Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA *Corresponding author. E-mail: [email protected] (Received 22 October 2005; revision accepted 30 June 2006) Abstract–The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements.
    [Show full text]
  • 16. Ice in the Martian Regolith
    16. ICE IN THE MARTIAN REGOLITH S. W. SQUYRES Cornell University S. M. CLIFFORD Lunar and Planetary Institute R. O. KUZMIN V.I. Vernadsky Institute J. R. ZIMBELMAN Smithsonian Institution and F. M. COSTARD Laboratoire de Geographie Physique Geologic evidence indicates that the Martian surface has been substantially modified by the action of liquid water, and that much of that water still resides beneath the surface as ground ice. The pore volume of the Martian regolith is substantial, and a large amount of this volume can be expected to be at tem- peratures cold enough for ice to be present. Calculations of the thermodynamic stability of ground ice on Mars suggest that it can exist very close to the surface at high latitudes, but can persist only at substantial depths near the equator. Impact craters with distinctive lobale ejecta deposits are common on Mars. These rampart craters apparently owe their morphology to fluidhation of sub- surface materials, perhaps by the melting of ground ice, during impact events. If this interpretation is correct, then the size frequency distribution of rampart 523 524 S. W. SQUYRES ET AL. craters is broadly consistent with the depth distribution of ice inferred from stability calculations. A variety of observed Martian landforms can be attrib- uted to creep of the Martian regolith abetted by deformation of ground ice. Global mapping of creep features also supports the idea that ice is present in near-surface materials at latitudes higher than ± 30°, and suggests that ice is largely absent from such materials at lower latitudes. Other morphologic fea- tures on Mars that may result from the present or former existence of ground ice include chaotic terrain, thermokarst and patterned ground.
    [Show full text]
  • For Irn on Schooner
    '• ■ i.C; i-k'Jr: ■•rtb ' ' '•■,'■ / o ) i > /jriUrt »• ‘ • yf< . r f 11r<‘» ‘if'i'ff'!• i « I'l < t ■> j 1 v i * ' ’ ■ > ■ • '•i ' A VA AC B DAILY OmODLAflOM •for Ihii MoBtk<«f iu u w y , IMS ' ■— .... ' « ^ .......... 5> of > tbo 2 7Andlt 0 o f CtaoalotioBO. (CtaMUtod Adforllilag oa flMra U .) VOL. U L , NO. 118 . SOUTH BIAN,CHESTER, CONN., FRH)AY, FEBRUARY 1 0 ,1 9 8 8 . (8i:m EN RAGES) PRICE THREE CENt^ PRESm ENT-ELECT ROOSETVSliT VISITS BAHAMAS 18 REBELS KILLED i — ON DUTCH CRUISER a - FOR IRN ON SCHOONER Twenty-ire hjiired When HHTAlirS ENVOY M rio e e n On Stolen SAIUIDESDAY Japanese to Refuse E j ^ Men and Two W o n n Crnisor Refnse To Obey Who b d Started Ont To Ordera— Later Snrrender. Sr RonaU Unkay Will Request of League Look For Misflig Yorth, Brins Rqnrt On War Tokyo, Feb. 10.— (A P )—^An offi-^ maintaining that Japaneie-spon- A re ThemadTes Losfa Not Batavia, Java, Peb. 10.— (A P ) — dal statement that Japan wlU rei sored government in Manchuria, a EIgbteen men were killed and 25 In- ply with an emphatic "no" to a government spokesman said today Heard From For Over 40 juxod aboard the rebeDioua Dutch Debts To hreadent-HecL and that Chinese -u)verelgnty to League of Nations’ request for a Manchuria is ended forever, not­ cruiser de Zeven Provinden when a statement of Japan’s attitude to­ withstanding reports that toe b iB R — Yonth Sonfdd Ro* naval fighting plane dropped a London, Feb.
    [Show full text]
  • A Study About the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation
    remote sensing Article A Study about the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation Jia Liu 1,2 , Zongyu Yue 1,3,*, Kaichang Di 1,3 , Sheng Gou 1,4 and Shengli Niu 4 1 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (J.L.); [email protected] (K.D.); [email protected] (S.G.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 CAS Center for Excellence in Comparative Planetology, Hefei 230026, China 4 State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-64889553 Abstract: The age of Mars yardangs is significant in studying their development and the evolution of paleoclimate conditions. For planetary surface or landforms, a common method for dating is based on the frequency and size distribution of all the superposed craters after they are formed. However, there is usually a long duration for the yardangs’ formation, and they will alter the superposed craters, making it impossible to give a reliable dating result with the method. An indirect method by analyzing the ages of the superposed layered ejecta was devised in the research. First, the layered ejecta that are superposed on and not altered by the yardangs are identified and mapped. Then, the ages of the layered ejecta are derived according to the crater frequency and size distribution on them. These ages indicate that the yardangs ceased development by these times, and the ages are valuable for studying the evolution of the yardangs.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]