Introduction to Representation Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notes on the Finite Fourier Transform
Notes on the Finite Fourier Transform Peter Woit Department of Mathematics, Columbia University [email protected] April 28, 2020 1 Introduction In this final section of the course we'll discuss a topic which is in some sense much simpler than the cases of Fourier series for functions on S1 and the Fourier transform for functions on R, since it will involve functions on a finite set, and thus just algebra and no need for the complexities of analysis. This topic has important applications in the approximate computation of Fourier series (which we won't cover), and in number theory (which we'll say a little bit about). 2 The group Z(N) What we'll be doing is simplifying the topic of Fourier series by replacing the multiplicative group S1 = fz 2 C : jzj = 1g by the finite subgroup Z(N) = fz 2 C : zN = 1g If we write z = reiθ, then zN = 1 =) rN eiθN = 1 =) r = 1; θN = k2π (k 2 Z) k =) θ = 2π k = 0; 1; 2; ··· ;N − 1 N mod 2π The group Z(N) is thus explicitly given by the set i 2π i2 2π i(N−1) 2π Z(N) = f1; e N ; e N ; ··· ; e N g Geometrically, these are the points on the unit circle one gets by starting at 1 2π and dividing it into N sectors with equal angles N . (Draw a picture, N = 6) The set Z(N) is a group, with 1 identity element 1 (k = 0) inverse 2πi k −1 −2πi k 2πi (N−k) (e N ) = e N = e N multiplication law ik 2π il 2π i(k+l) 2π e N e N = e N One can equally well write this group as the additive group (Z=NZ; +) of inte- gers mod N, with isomorphism Z(N) $ Z=NZ ik 2π e N $ [k]N 1 $ [0]N −ik 2π e N $ −[k]N = [−k]N = [N − k]N 3 Fourier analysis on Z(N) An abstract point of view on the theory of Fourier series is that it is based on exploiting the existence of a particular othonormal basis of functions on the group S1 that are eigenfunctions of the linear transformations given by rotations. -
On Automorphisms and Endomorphisms of Projective Varieties
On automorphisms and endomorphisms of projective varieties Michel Brion Abstract We first show that any connected algebraic group over a perfect field is the neutral component of the automorphism group scheme of some normal pro- jective variety. Then we show that very few connected algebraic semigroups can be realized as endomorphisms of some projective variety X, by describing the structure of all connected subsemigroup schemes of End(X). Key words: automorphism group scheme, endomorphism semigroup scheme MSC classes: 14J50, 14L30, 20M20 1 Introduction and statement of the results By a result of Winkelmann (see [22]), every connected real Lie group G can be realized as the automorphism group of some complex Stein manifold X, which may be chosen complete, and hyperbolic in the sense of Kobayashi. Subsequently, Kan showed in [12] that we may further assume dimC(X) = dimR(G). We shall obtain a somewhat similar result for connected algebraic groups. We first introduce some notation and conventions, and recall general results on automorphism group schemes. Throughout this article, we consider schemes and their morphisms over a fixed field k. Schemes are assumed to be separated; subschemes are locally closed unless mentioned otherwise. By a point of a scheme S, we mean a Michel Brion Institut Fourier, Universit´ede Grenoble B.P. 74, 38402 Saint-Martin d'H`eresCedex, France e-mail: [email protected] 1 2 Michel Brion T -valued point f : T ! S for some scheme T .A variety is a geometrically integral scheme of finite type. We shall use [17] as a general reference for group schemes. -
An Introduction to the Trace Formula
Clay Mathematics Proceedings Volume 4, 2005 An Introduction to the Trace Formula James Arthur Contents Foreword 3 Part I. The Unrefined Trace Formula 7 1. The Selberg trace formula for compact quotient 7 2. Algebraic groups and adeles 11 3. Simple examples 15 4. Noncompact quotient and parabolic subgroups 20 5. Roots and weights 24 6. Statement and discussion of a theorem 29 7. Eisenstein series 31 8. On the proof of the theorem 37 9. Qualitative behaviour of J T (f) 46 10. The coarse geometric expansion 53 11. Weighted orbital integrals 56 12. Cuspidal automorphic data 64 13. A truncation operator 68 14. The coarse spectral expansion 74 15. Weighted characters 81 Part II. Refinements and Applications 89 16. The first problem of refinement 89 17. (G, M)-families 93 18. Localbehaviourofweightedorbitalintegrals 102 19. The fine geometric expansion 109 20. Application of a Paley-Wiener theorem 116 21. The fine spectral expansion 126 22. The problem of invariance 139 23. The invariant trace formula 145 24. AclosedformulaforthetracesofHeckeoperators 157 25. Inner forms of GL(n) 166 Supported in part by NSERC Discovery Grant A3483. c 2005 Clay Mathematics Institute 1 2 JAMES ARTHUR 26. Functoriality and base change for GL(n) 180 27. The problem of stability 192 28. Localspectraltransferandnormalization 204 29. The stable trace formula 216 30. Representationsofclassicalgroups 234 Afterword: beyond endoscopy 251 References 258 Foreword These notes are an attempt to provide an entry into a subject that has not been very accessible. The problems of exposition are twofold. It is important to present motivation and background for the kind of problems that the trace formula is designed to solve. -
Hook Formulas for Skew Shapes Iii. Multivariate and Product Formulas
HOOK FORMULAS FOR SKEW SHAPES III. MULTIVARIATE AND PRODUCT FORMULAS ALEJANDRO H. MORALES?, IGOR PAK?, AND GRETA PANOVAy Abstract. We give new product formulas for the number of standard Young tableaux of certain skew shapes and for the principal evaluation of certain Schubert polynomials. These are proved by utilizing symmetries for evaluations of factorial Schur functions, extensively studied in the first two papers in the series [MPP1, MPP2]. We also apply our technology to obtain determinantal and product formulas for the partition function of certain weighted lozenge tilings, and give various probabilistic and asymptotic applications. 1. Introduction 1.1. Foreword. It is a truth universally acknowledged, that a combinatorial theory is often judged not by its intrinsic beauty but by the examples and applications. Fair or not, this attitude is historically grounded and generally accepted. While eternally challenging, this helps to keep the area lively, widely accessible, and growing in unexpected directions. There are two notable types of examples and applications one can think of: artistic and scientific (cf. [Gow]). The former are unexpected results in the area which are both beautiful and mysterious. The fact of their discovery is the main application, even if they can be later shown by a more direct argument. The latter are results which represent a definitive progress in the area, unattainable by other means. To paraphrase Struik, this is \something to take home", rather than to simply admire (see [Rota]). While the line is often blurred, examples of both types are highly desirable, with the best examples being both artistic and scientific. This paper is a third in a series and continues our study of the Naruse hook-length for- mula (NHLF), its generalizations and applications. -
Modules and Lie Semialgebras Over Semirings with a Negation Map 3
MODULES AND LIE SEMIALGEBRAS OVER SEMIRINGS WITH A NEGATION MAP GUY BLACHAR Abstract. In this article, we present the basic definitions of modules and Lie semialgebras over semirings with a negation map. Our main example of a semiring with a negation map is ELT algebras, and some of the results in this article are formulated and proved only in the ELT theory. When dealing with modules, we focus on linearly independent sets and spanning sets. We define a notion of lifting a module with a negation map, similarly to the tropicalization process, and use it to prove several theorems about semirings with a negation map which possess a lift. In the context of Lie semialgebras over semirings with a negation map, we first give basic definitions, and provide parallel constructions to the classical Lie algebras. We prove an ELT version of Cartan’s criterion for semisimplicity, and provide a counterexample for the naive version of the PBW Theorem. Contents Page 0. Introduction 2 0.1. Semirings with a Negation Map 2 0.2. Modules Over Semirings with a Negation Map 3 0.3. Supertropical Algebras 4 0.4. Exploded Layered Tropical Algebras 4 1. Modules over Semirings with a Negation Map 5 1.1. The Surpassing Relation for Modules 6 1.2. Basic Definitions for Modules 7 1.3. -morphisms 9 1.4. Lifting a Module Over a Semiring with a Negation Map 10 1.5. Linearly Independent Sets 13 1.6. d-bases and s-bases 14 1.7. Free Modules over Semirings with a Negation Map 18 2. -
Chapter 1 BASICS of GROUP REPRESENTATIONS
Chapter 1 BASICS OF GROUP REPRESENTATIONS 1.1 Group representations A linear representation of a group G is identi¯ed by a module, that is by a couple (D; V ) ; (1.1.1) where V is a vector space, over a ¯eld that for us will always be R or C, called the carrier space, and D is an homomorphism from G to D(G) GL (V ), where GL(V ) is the space of invertible linear operators on V , see Fig. ??. Thus, we ha½ve a is a map g G D(g) GL(V ) ; (1.1.2) 8 2 7! 2 with the linear operators D(g) : v V D(g)v V (1.1.3) 2 7! 2 satisfying the properties D(g1g2) = D(g1)D(g2) ; D(g¡1 = [D(g)]¡1 ; D(e) = 1 : (1.1.4) The product (and the inverse) on the righ hand sides above are those appropriate for operators: D(g1)D(g2) corresponds to acting by D(g2) after having appplied D(g1). In the last line, 1 is the identity operator. We can consider both ¯nite and in¯nite-dimensional carrier spaces. In in¯nite-dimensional spaces, typically spaces of functions, linear operators will typically be linear di®erential operators. Example Consider the in¯nite-dimensional space of in¯nitely-derivable functions (\functions of class 1") Ã(x) de¯ned on R. Consider the group of translations by real numbers: x x + a, C 7! with a R. This group is evidently isomorphic to R; +. As we discussed in sec ??, these transformations2 induce an action D(a) on the functions Ã(x), de¯ned by the requirement that the transformed function in the translated point x + a equals the old original function in the point x, namely, that D(a)Ã(x) = Ã(x a) : (1.1.5) ¡ 1 Group representations 2 It follows that the translation group admits an in¯nite-dimensional representation over the space V of 1 functions given by the di®erential operators C d d a2 d2 D(a) = exp a = 1 a + + : : : : (1.1.6) ¡ dx ¡ dx 2 dx2 µ ¶ In fact, we have d a2 d2 dà a2 d2à D(a)Ã(x) = 1 a + + : : : Ã(x) = Ã(x) a (x) + (x) + : : : = Ã(x a) : ¡ dx 2 dx2 ¡ dx 2 dx2 ¡ · ¸ (1.1.7) In most of this chapter we will however be concerned with ¯nite-dimensional representations. -
LECTURE 12: LIE GROUPS and THEIR LIE ALGEBRAS 1. Lie
LECTURE 12: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups Definition 1.1. A Lie group G is a smooth manifold equipped with a group structure so that the group multiplication µ : G × G ! G; (g1; g2) 7! g1 · g2 is a smooth map. Example. Here are some basic examples: • Rn, considered as a group under addition. • R∗ = R − f0g, considered as a group under multiplication. • S1, Considered as a group under multiplication. • Linear Lie groups GL(n; R), SL(n; R), O(n) etc. • If M and N are Lie groups, so is their product M × N. Remarks. (1) (Hilbert's 5th problem, [Gleason and Montgomery-Zippin, 1950's]) Any topological group whose underlying space is a topological manifold is a Lie group. (2) Not every smooth manifold admits a Lie group structure. For example, the only spheres that admit a Lie group structure are S0, S1 and S3; among all the compact 2 dimensional surfaces the only one that admits a Lie group structure is T 2 = S1 × S1. (3) Here are two simple topological constraints for a manifold to be a Lie group: • If G is a Lie group, then TG is a trivial bundle. n { Proof: We identify TeG = R . The vector bundle isomorphism is given by φ : G × TeG ! T G; φ(x; ξ) = (x; dLx(ξ)) • If G is a Lie group, then π1(G) is an abelian group. { Proof: Suppose α1, α2 2 π1(G). Define α : [0; 1] × [0; 1] ! G by α(t1; t2) = α1(t1) · α2(t2). Then along the bottom edge followed by the right edge we have the composition α1 ◦ α2, where ◦ is the product of loops in the fundamental group, while along the left edge followed by the top edge we get α2 ◦ α1. -
Automorphism Groups of Free Groups, Surface Groups and Free Abelian Groups
Automorphism groups of free groups, surface groups and free abelian groups Martin R. Bridson and Karen Vogtmann The group of 2 × 2 matrices with integer entries and determinant ±1 can be identified either with the group of outer automorphisms of a rank two free group or with the group of isotopy classes of homeomorphisms of a 2-dimensional torus. Thus this group is the beginning of three natural sequences of groups, namely the general linear groups GL(n, Z), the groups Out(Fn) of outer automorphisms of free groups of rank n ≥ 2, and the map- ± ping class groups Mod (Sg) of orientable surfaces of genus g ≥ 1. Much of the work on mapping class groups and automorphisms of free groups is motivated by the idea that these sequences of groups are strongly analogous, and should have many properties in common. This program is occasionally derailed by uncooperative facts but has in general proved to be a success- ful strategy, leading to fundamental discoveries about the structure of these groups. In this article we will highlight a few of the most striking similar- ities and differences between these series of groups and present some open problems motivated by this philosophy. ± Similarities among the groups Out(Fn), GL(n, Z) and Mod (Sg) begin with the fact that these are the outer automorphism groups of the most prim- itive types of torsion-free discrete groups, namely free groups, free abelian groups and the fundamental groups of closed orientable surfaces π1Sg. In the ± case of Out(Fn) and GL(n, Z) this is obvious, in the case of Mod (Sg) it is a classical theorem of Nielsen. -
DIFFERENTIAL GEOMETRY FINAL PROJECT 1. Introduction for This
DIFFERENTIAL GEOMETRY FINAL PROJECT KOUNDINYA VAJJHA 1. Introduction For this project, we outline the basic structure theory of Lie groups relating them to the concept of Lie algebras. Roughly, a Lie algebra encodes the \infinitesimal” structure of a Lie group, but is simpler, being a vector space rather than a nonlinear manifold. At the local level at least, the Fundamental Theorems of Lie allow one to reconstruct the group from the algebra. 2. The Category of Local (Lie) Groups The correspondence between Lie groups and Lie algebras will be local in nature, the only portion of the Lie group that will be of importance is that portion of the group close to the group identity 1. To formalize this locality, we introduce local groups: Definition 2.1 (Local group). A local topological group is a topological space G, with an identity element 1 2 G, a partially defined but continuous multiplication operation · :Ω ! G for some domain Ω ⊂ G × G, a partially defined but continuous inversion operation ()−1 :Λ ! G with Λ ⊂ G, obeying the following axioms: • Ω is an open neighbourhood of G × f1g Sf1g × G and Λ is an open neighbourhood of 1. • (Local associativity) If it happens that for elements g; h; k 2 G g · (h · k) and (g · h) · k are both well-defined, then they are equal. • (Identity) For all g 2 G, g · 1 = 1 · g = g. • (Local inverse) If g 2 G and g−1 is well-defined in G, then g · g−1 = g−1 · g = 1. A local group is said to be symmetric if Λ = G, that is, every element g 2 G has an inverse in G.A local Lie group is a local group in which the underlying topological space is a smooth manifold and where the associated maps are smooth maps on their domain of definition. -
SCHUR-WEYL DUALITY Contents Introduction 1 1. Representation
SCHUR-WEYL DUALITY JAMES STEVENS Contents Introduction 1 1. Representation Theory of Finite Groups 2 1.1. Preliminaries 2 1.2. Group Algebra 4 1.3. Character Theory 5 2. Irreducible Representations of the Symmetric Group 8 2.1. Specht Modules 8 2.2. Dimension Formulas 11 2.3. The RSK-Correspondence 12 3. Schur-Weyl Duality 13 3.1. Representations of Lie Groups and Lie Algebras 13 3.2. Schur-Weyl Duality for GL(V ) 15 3.3. Schur Functors and Algebraic Representations 16 3.4. Other Cases of Schur-Weyl Duality 17 Appendix A. Semisimple Algebras and Double Centralizer Theorem 19 Acknowledgments 20 References 21 Introduction. In this paper, we build up to one of the remarkable results in representation theory called Schur-Weyl Duality. It connects the irreducible rep- resentations of the symmetric group to irreducible algebraic representations of the general linear group of a complex vector space. We do so in three sections: (1) In Section 1, we develop some of the general theory of representations of finite groups. In particular, we have a subsection on character theory. We will see that the simple notion of a character has tremendous consequences that would be very difficult to show otherwise. Also, we introduce the group algebra which will be vital in Section 2. (2) In Section 2, we narrow our focus down to irreducible representations of the symmetric group. We will show that the irreducible representations of Sn up to isomorphism are in bijection with partitions of n via a construc- tion through certain elements of the group algebra. -
Map Composition Generalized to Coherent Collections of Maps
Front. Math. China 2015, 10(3): 547–565 DOI 10.1007/s11464-015-0435-5 Map composition generalized to coherent collections of maps Herng Yi CHENG1, Kang Hao CHEONG1,2 1 National University of Singapore High School of Mathematics and Science, Singapore 129957, Singapore 2 Tanglin Secondary School, Singapore 127391, Singapore c Higher Education Press and Springer-Verlag Berlin Heidelberg 2015 Abstract Relation algebras give rise to partial algebras on maps, which are generalized to partial algebras on polymaps while preserving the properties of relation union and composition. A polymap is defined as a map with every point in the domain associated with a special set of maps. Polymaps can be represented as small subcategories of Set∗, the category of pointed sets. Map composition and the counterpart of relation union for maps are generalized to polymap composition and sum. Algebraic structures and categories of polymaps are investigated. Polymaps present the unique perspective of an algebra that can retain many of its properties when its elements (maps) are augmented with collections of other elements. Keywords Relation algebra, partial algebra, composition MSC 08A02 1 Introduction This paper considers partial algebras on maps (similar to those defined in [15]), constructed in analogy to relation algebras [5,12,16]. The sum of two maps f0 : X0 → Y0 and f1 : X1 → Y1 is defined if the union of their graphs is a functional binary relation R ⊆ (X0 ∪ X1) × (Y0 ∪ Y1), in which case the sum is the map (f0 + f1): X0 ∪ X1 → Y0 ∪ Y1 with graph R. This is defined similarly to the union operation + from [10]. -
LOW-DIMENSIONAL UNITARY REPRESENTATIONS of B3 1. Introduction Unitary Braid Representations Have Been Constructed in Several
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 9, Pages 2597{2606 S 0002-9939(01)05903-2 Article electronically published on March 15, 2001 LOW-DIMENSIONAL UNITARY REPRESENTATIONS OF B3 IMRE TUBA (Communicated by Stephen D. Smith) Abstract. We characterize all simple unitarizable representations of the braid group B3 on complex vector spaces of dimension d ≤ 5. In particular, we prove that if σ1 and σ2 denote the two generating twists of B3,thenasimple representation ρ : B3 ! GL(V )(fordimV ≤ 5) is unitarizable if and only if the eigenvalues λ1,λ2;::: ;λd of ρ(σ1) are distinct, satisfy jλij =1and (d) ≤ ≤ (d) µ1i > 0for2 i d,wheretheµ1i are functions of the eigenvalues, explicitly described in this paper. 1. Introduction Unitary braid representations have been constructed in several ways using the representation theory of Kac-Moody algebras and quantum groups (see e.g. [1], [2], and [4]), and specializations of the reduced Burau and Gassner representations in [5]. Such representations easily lead to representations of PSL(2; Z)=B3=Z ,where Z is the center of B3,andPSL(2; Z)=SL(2; Z)={1g,where{1g is the center of SL(2; Z). We give a complete classification of simple unitary representations of B3 of dimension d ≤ 5 in this paper. In particular, the unitarizability of a braid rep- resentation depends only on the the eigenvalues λ1,λ2;::: ,λd of the images of the two generating twists of B3. The condition for unitarizability is a set of linear in- equalities in the logarithms of these eigenvalues. In other words, the representation is unitarizable if and only if the (arg λ1; arg λ2;::: ;arg λd) is a point inside a poly- hedron in (R=2π)d, where we give the equations of the hyperplanes that bound this polyhedron.