Systematic Clinical Approach for Diagnosing Upper Limb Tremor

Total Page:16

File Type:pdf, Size:1020Kb

Systematic Clinical Approach for Diagnosing Upper Limb Tremor Movement disorders J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2019-322676 on 26 May 2020. Downloaded from REVIEW Systematic clinical approach for diagnosing upper limb tremor Jaron van de Wardt,1 A M Madelein van der Stouwe ,2,3 Michiel Dirkx,4 Jan Willem J Elting,2,3,5 Bart Post,4 Marina AJ Tijssen ,2,3 Rick C Helmich 4 1Department of Neurology, ABSTRact While this approach has not been tested yet, it is Canisius Wilhelmina Ziekenhuis, Tremor is the most common movement disorder based on the current literature and in line with the Nijmegen, The Netherlands 2 steps taken at our Expertise Centres for Move- Department of Neurology, worldwide, but diagnosis is challenging. In 2018, the University Medical Centre task force on tremor of the International Parkinson ment Disorders. The first three steps we propose Groningen (UMCG), Groningen, and Movement Disorder Society published a consensus will lead to identification of a clinical syndrome, The Netherlands corresponding to axis 1. The subsequent steps will 3 statement that proposes a tremor classification along Expertise Center Movement two independent axes: a clinical tremor syndrome and help in establishing an aetiology where possible Disorders Groningen, University Medical Center Groningen its underlying aetiology. In line with this statement, we (axis 2). Because of its prevalence and diagnostic (UMCG), Groningen, The here propose a stepwise diagnostic approach that leads complexity, we will focus on visible upper limb Netherlands to the correct clinical and aetiological classification of tremor, and omit discussion of related movement 4 Department of Neurology, upper limb tremor. We also describe the typical clinical disorders such as palatal tremor and orthostatic Donders Institute for Brain, tremor. Our aims are to provide organising princi- Cognition and Behaviour, signs of each clinical tremor syndrome. A key feature Radboud University Nijmegen of our algorithm is the distinction between isolated ples on how to interpret clinical symptoms, and to Medical Center, Nijmegen, The and combined tremor syndromes, in which tremor is provide guidelines for diagnostic testing, in which Netherlands we recommend what is indicated while steering 5 accompanied by bradykinesia, cerebellar signs, dystonia, Department of Clinical peripheral neuropathy or brainstem signs. This distinction clear from unnecessary investigations. We acknowl- Neurophysiology, University Medical Center Groningen subsequently informs the selection of appropriate edge that many of these recommendations are based (UMCG), Groningen, The diagnostic tests, such as neurophysiology, laboratory on expert opinion. This reflects the current state of Netherlands testing, structural and dopaminergic imaging and genetic the field, given that many clinical tremor syndromes copyright. testing. We highlight treatable metabolic causes of lack a gold standard against which clinical signs or Correspondence to tremor, as well as drugs and toxins that can provoke ancillary investigations can be tested. A systematic Dr A M Madelein van der tremor. The stepwise approach facilitates appropriate approach to phenotype patients with upper limb Stouwe, Neurology, University Medical Centre Groningen, diagnostic testing and avoids unnecessary investigations. tremor will, however, make it easier to test and Groningen 9700 RB, The We expect that the approach offered in this article will validate new biomarkers in future research. Our Netherlands; a. m. m. van. der. reduce diagnostic uncertainty and increase the diagnostic stepwise approach to tremor diagnosis is presented stouwe@ umcg. nl yield in patients with tremor. in figure 1. JvdW and AMMvdS are joint first authors. Step 1: is the movement disorder really tremor? http://jnnp.bmj.com/ Received 19 December 2019 INTRODUCTION The first step in diagnosing tremor is the identifi- Revised 19 March 2020 Although tremor is the most common movement cation of hyperkinetic movements as ‘tremulous’. Accepted 22 March 2020 disorder and therefore frequently encountered by Tremor is defined as an involuntary, rhythmic, neurologists,1 diagnosing tremor accurately can be oscillatory movement of a body part.2 The most challenging. The clinical presentation of a patient important alternative diagnosis is myoclonus, with tremor can range from a relatively isolated especially high frequency cortical myoclonus (e in symptom to a complex syndrome, incorporating familial cortical myoclonus), polyminimyoclonus multiple signs and symptoms. In 2018, the task (eg, in multiple system atrophy), peripheral myoc- on September 28, 2021 by guest. Protected force on tremor of the International Parkinson and lonus (which sometimes occurs in inflammatory Movement Disorder Society published a consensus neuropathies or radiculopathies) or asterixis (a nega- ► http:// dx. doi. org/ 10. 1136/ jnnp- 2020- 323189 statement in which a tremor classification along tive myoclonus that looks like a flapping tremor of two independent axes is proposed2: determination the hands when the wrists are extended).4 5 More- of a clinical syndrome based on clinical features over, the rhythmic, low-frequency jerks in ongoing (axis 1), and determination of an aetiology (axis focal epilepsy (epilepsia partialis continua) can © Author(s) (or their 2). For example, a bilateral upper limb action be misinterpreted as unilateral jerky rest tremor.4 employer(s)) 2020. Re- use tremor without other neurological signs is classi- Generally, a ‘jerky’ aspect ought to raise suspicion permitted under CC BY. Published by BMJ. fied as essential tremor (ET) on axis 1. The same of myoclonus as the movement disorder in ques- patient may have a mutation in a gene that often tion, rather than tremor. However, the distinction To cite: Wardt Jv, van der causes dystonia; this is classified as the aetiology on between high frequency myoclonus and tremor on Stouwe AMM, Dirkx M, et al. axis 2. However, the axis 1 diagnosis of ET is not the basis of ‘rhythmicity’ is complicated by the fact J Neurol Neurosurg Psychiatry 3 Epub ahead of print: [please changed until dystonia develops (if it ever does). In that tremor is almost never perfectly rhythmic. In include Day Month Year]. the current paper, we propose a practical approach fact, a jerky or irregular aspect is part of the char- doi:10.1136/jnnp-2019- in line with the consensus statement, to aid prac- acteristic phenotype of some tremor syndromes, 322676 tising clinicians in diagnosing patients with tremor. such as dystonic tremor or Holmes tremor.6 When Wardt Jv, et al. J Neurol Neurosurg Psychiatry 2020;0:1–9. doi:10.1136/jnnp-2019-322676 1 Movement disorders J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2019-322676 on 26 May 2020. Downloaded from a contralateral finger tapping task), distractibility (cessation of tremor on distraction by a mental or contralateral movement task) and temporary arrest of tremor during a ballistic pointing test of the other hand (‘pointing test’). Inability to perform a simple cognitive task can also be a sign of a functional movement disorder, as well as a sudden onset of the tremor.8 Sometimes marked fluctuations of the frequency of a functional tremor (between different contexts or spontaneously) can be noticed by visual inspection alone, otherwise polymyography can be used (step 3). Finally, the examiner may influence the co-contraction pattern by moving the patient’s hand passively and note whether or not the tremor fluctuates in parallel to the muscle tone.9 This can be done during clinical assessment or during polymyography (allowing a quantification of muscle contraction and tremor amplitude). An important pitfall is that functional movement disorders may occur in patients who also have an organic move- ment disorder. Second, we suggest looking for so-called ‘prominent additional signs’. This distinction is important, because tremor can occur in isolation (isolated tremor syndromes) or together with other neurological signs (combined tremor syndromes). A distinction is made between ‘prominent additional signs’ and so- called ‘signs of uncertain significance’.2 The first are clear neurological signs, used to define a combined tremor syndrome, such as bradyki- nesia, cerebellar signs, dystonic posturing, signs of peripheral neuropathy and brainstem signs. Examples of ‘signs of uncertain significance’ include a mildly unsteady tandem gait, questionably abnormal posturing of a body part, mild cognitive impairment, questionable bradykinesia or rigidity and other mild neurological signs that do not suffice to make an additional syndrome classifi- copyright. cation.2 As can be seen in the algorithm, the weight placed by the clinician on an additional symptom (such as dystonic posturing of a limb) determines whether a tremor is called dystonic tremor or ET ‘plus’. This can be difficult, as outlined under ‘Isolated tremor syndromes’ section. Combined tremor syndromes In the right column of the algorithm, the combined tremor syndromes are depicted. In classifying a combined tremor http://jnnp.bmj.com/ Figure 1 Eight- step diagnostic approach to upper limb tremor. DT, syndrome, there are five prominent additional signs to look for. dystonic tremor; EPT, enhanced physiological tremor; ET, essential tremor. Bradykinesia points to a parkinsonism- associated tremor syndrome, such as Parkinson’s disease (PD) or atypical parkin- in doubt, polymyography can be used to differentiate between sonism (progressive supranuclear palsy (PSP), multiple system myoclonus
Recommended publications
  • Physiology of Basal Ganglia Disorders: an Overview
    LE JOURNAL CANADIEN DES SCIENCES NEUROLOGIQUES SILVERSIDES LECTURE Physiology of Basal Ganglia Disorders: An Overview Mark Hallett ABSTRACT: The pathophysiology of the movement disorders arising from basal ganglia disorders has been uncer­ tain, in part because of a lack of a good theory of how the basal ganglia contribute to normal voluntary movement. An hypothesis for basal ganglia function is proposed here based on recent advances in anatomy and physiology. Briefly, the model proposes that the purpose of the basal ganglia circuits is to select and inhibit specific motor synergies to carry out a desired action. The direct pathway is to select and the indirect pathway is to inhibit these synergies. The clinical and physiological features of Parkinson's disease, L-DOPA dyskinesias, Huntington's disease, dystonia and tic are reviewed. An explanation of these features is put forward based upon the model. RESUME: La physiologie des affections du noyau lenticulaire, du noyau caude, de I'avant-mur et du noyau amygdalien. La pathophysiologie des desordres du mouvement resultant d'affections du noyau lenticulaire, du noyau caude, de l'avant-mur et du noyau amygdalien est demeuree incertaine, en partie parce qu'il n'existe pas de bonne theorie expliquant le role de ces structures anatomiques dans le controle du mouvement volontaire normal. Nous proposons ici une hypothese sur leur fonction basee sur des progres recents en anatomie et en physiologie. En resume, le modele pro­ pose que leurs circuits ont pour fonction de selectionner et d'inhiber des synergies motrices specifiques pour ex£cuter Taction desiree. La voie directe est de selectionner et la voie indirecte est d'inhiber ces synergies.
    [Show full text]
  • Clinical Rating Scale for Pantothenate Kinase-Associated Neurodegeneration: a Pilot Study
    RESEARCH ARTICLE Clinical Rating Scale for Pantothenate Kinase-Associated Neurodegeneration: A Pilot Study Alejandra Darling, MD,1 Cristina Tello, PhD,2 Marı´a Josep Martı´, MD, PhD,3 Cristina Garrido, MD,4 Sergio Aguilera-Albesa, MD, PhD,5 Miguel Tomas Vila, MD,6 Itziar Gaston, MD,7 Marcos Madruga, MD,8 Luis Gonzalez Gutierrez, MD,9 Julio Ramos Lizana, MD,10 Montserrat Pujol, MD,11 Tania Gavilan Iglesias, MD,12 Kylee Tustin,13 Jean Pierre Lin, MD, PhD,13 Giovanna Zorzi, MD, PhD,14 Nardo Nardocci, MD, PhD,14 Loreto Martorell, PhD,15 Gustavo Lorenzo Sanz, MD,16 Fuencisla Gutierrez, MD,17 Pedro J. Garcı´a, MD,18 Lidia Vela, MD,19 Carlos Hernandez Lahoz, MD,20 Juan Darı´o Ortigoza Escobar, MD,1 Laura Martı´ Sanchez, 1 Fradique Moreira, MD ,21 Miguel Coelho, MD,22 Leonor Correia Guedes,23 Ana Castro Caldas, MD,24 Joaquim Ferreira, MD,22,23 Paula Pires, MD,24 Cristina Costa, MD,25 Paulo Rego, MD,26 Marina Magalhaes,~ MD,27 Marı´a Stamelou, MD,28,29 Daniel Cuadras Palleja, MD,30 Carmen Rodrı´guez-Blazquez, PhD,31 Pablo Martı´nez-Martı´n, MD, PhD,31 Vincenzo Lupo, PhD,2 Leonidas Stefanis, MD,28 Roser Pons, MD,32 Carmen Espinos, PhD,2 Teresa Temudo, MD, PhD,4 and Belen Perez Duenas,~ MD, PhD1,33* 1Unit of Pediatric Movement Disorders, Hospital Sant Joan de Deu, Barcelona, Spain 2Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigacion Prı´ncipe Felipe, Valencia, Spain 3Neurology Department, Hospital Clı´nic de Barcelona, Institut d’Investigacions Biomediques IDIBAPS.
    [Show full text]
  • Vet Oracle Teleneurology: Client Factsheet
    Client Factsheet Paroxysmal Dyskinesia Paroxysmal Dyskinesia: A little bit of background Paroxysmal dyskinesias (PDs) are episodic movement disorders in which abnormal movements are present only during attacks. Although increasingly being recognised, they are often poorly characterised in veterinary literature and are commonly mistaken for an epileptic seizure, both by owners and by vets. The term ‘paroxysmal’ indicates that the signs occur suddenly against a background of normality. The term ‘dyskinesia’ broadly refers to a movement of the body that is involuntary, which means that the animal has no control over the movement and remains fully aware of its surroundings. Between attacks, affected animals are totally normal and there is no loss of consciousness during the attacks, though some animals may find the episodes disconcerting and do not respond normally. The attacks can last anything from a few minutes to a couple of hours and can sometime occur multiple times in a day. What causes Paroxysmal Dyskinesia? Most neurologists consider that PD results from dysfunction an area of the brain called the basal nuclei (often call the basal ganglia) and the cerebellum which is a fundamental part of the brain that involves in coordinating movement. Nerve cells in the basal nuclei play an important role in initiating and controlling movement. It is thought that abnormal signal from the cerebellum causes abnormal activity of the basal nuclei, which results in spontaneous and uncontrolled muscle activity and, therefore, movement and posture. The underlying cause of many PDs is unknown, with the majority being described as idiopathic (meaning of unknown cause) and presumed to be related to abnormal brain signalling between different parts involved with movement or its feedback control.
    [Show full text]
  • Rest Tremor Revisited: Parkinson's Disease and Other Disorders
    Chen et al. Translational Neurodegeneration (2017) 6:16 DOI 10.1186/s40035-017-0086-4 REVIEW Open Access Rest tremor revisited: Parkinson’s disease and other disorders Wei Chen1,2, Franziska Hopfner2, Jos Steffen Becktepe2 and Günther Deuschl1,2* Abstract Tremor is the most common movement disorder characterized by a rhythmical, involuntary oscillatory movement of a body part. Since distinct diseases can cause similar tremor manifestations and vice-versa,itischallengingtomakean accurate diagnosis. This applies particularly for tremor at rest. This entity was only rarely studied in the past, although a multitude of clinical studies on prevalence and clinical features of tremor in Parkinson’s disease (PD), essential tremor and dystonia, have been carried out. Monosymptomatic rest tremor has been further separated from tremor-dominated PD. Rest tremor is also found in dystonic tremor, essential tremor with a rest component, Holmes tremor and a few even rarer conditions. Dopamine transporter imaging and several electrophysiological methods provide additional clues for tremor differential diagnosis. New evidence from neuroimaging and electrophysiological studies has broadened our knowledge on the pathophysiology of Parkinsonian and non-Parkinsonian tremor. Large cohort studies are warranted in future to explore the nature course and biological basis of tremor in common tremor related disorders. Keywords: Tremor, Parkinson’s disease, Essential tremor, Dystonia, Pathophysiology Background and clinical correlates of tremor in common tremor re- Tremor is defined as a rhythmical, involuntary oscillatory lated disorders. Some practical clinical cues and ancillary movement of a body part [1]. Making an accurate diagnosis tests for clinical distinction are found [3]. Besides, accu- of tremor disorders is challenging, since similar clinical mulating structural and functional neuroimaging, as well entities may be caused by different diseases.
    [Show full text]
  • Radiologic-Clinical Correlation Hemiballismus
    Radiologic-Clinical Correlation Hemiballismus James M. Provenzale and Michael A. Schwarzschild From the Departments of Radiology (J.M.P.), Duke University Medical Center, Durham, and f'leurology (M.A.S.), Massachusetts General Hospital, Boston Clinical History derived from the Greek word meaning "to A 65-year-old recently retired surgeon in throw," because the typical involuntary good health developed disinhibited behavior movements of the affected limbs resemble over the course of a few months, followed by the motions of throwing ( 1) . Such move­ onset of unintentional, forceful flinging move­ ments usually involve one side of the body ments of his right arm and leg. Magnetic res­ (hemiballismus) but may involve one ex­ onance imaging demonstrated a 1-cm rim­ tremity (monoballism), both legs (parabal­ enhancing mass in the left subthalamic lism), or all the extremities (biballism) (2, 3). region, which was of high signal intensity on The motions are centered around the shoul­ T2-weighted images (Figs 1A-E). Positive der and hip joints and have a forceful, flinging serum human immunodeficiency virus anti­ quality. Usually either the arm or the leg is gen and antibody titers were found, with predominantly involved. Although at least mildly elevated cerebrospinal fluid toxo­ some volitional control over the affected plasma titers. Anti-toxoplasmosis treatment limbs is still maintained, the involuntary with sulfadiazine and pyrimethamine was be­ movements typically can be checked by the gun, with resolution of the hemiballistic patient for only a few moments ( 1). The movements within a few weeks and decrease movements are usually continuous but may in size of the lesion.
    [Show full text]
  • THE MANAGEMENT of TREMOR Peter G Bain
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.72.suppl_1.i3 on 1 March 2002. Downloaded from THE MANAGEMENT OF TREMOR Peter G Bain *i3 J Neurol Neurosurg Psychiatry 2002;72(Suppl I):i3–i9 remor is defined as a rhythmical, involuntary oscillatory movement of a body part.1 The Tformulation of a clinical diagnosis for an individual’s tremor involves two discrete steps2: c The observed tremor is classified on phenomenological grounds c An attempt is made to find the cause of the tremor by looking for aetiological clues in the patient’s history and physical examination and also, in some cases, by investigation. c PHENOMENOLOGICAL CLASSIFICATION OF TREMOR The phenomenological classification of tremor is determined by finding out: c which parts of the patient’s body are affected by tremor? c what types (or components) of tremor, classified by state of activity, are present at those anatomical sites? The following definitions are used to describe the various tremor components evident on exam- ination1: c Rest tremor is a tremor present in a body part that is not voluntarily activated and is completely supported against gravity (ideally resting on a couch) copyright. c Action tremor is any tremor that is produced by voluntary contraction of a muscle. It includes pos- tural, kinetic, intention, task specific, and isometric tremor: – Postural tremor is present while voluntarily maintaining a position against gravity – Kinetic tremor is tremor occurring during any voluntary movement. Simple kinetic tremor occurs during voluntary movements that are not target directed – Intention tremor or tremor during target directed movement is present when tremor amplitude increases during visually guided movements towards a target at the termination of that movement, when the possibility of position specific tremor or postural tremor produced at the beginning and end of a movement has been excluded – Task specific kinetic tremor—kinetic tremor may appear or become exacerbated during specific activities.
    [Show full text]
  • Movement Disorders Program & the Murray Center for Research on Parkinson's Disease & Related Disorders
    Movement Disorders Medical University of South Carolina MUSC Health Movement DisordersMovement Disorders Program Program Program & The Murray 96 Jonathan Lucas Street, and the Murray Center for Research on Parkinson’sSuite Disease 301 CSB, MSC and 606 Related Disorders Center for Research on Charleston, SC 29425 Parkinson’s Disease & Related Disorders muschealth.org 843-792-3221 Changing What’s Possible “Our focus is providing patients with the best care possible, from treatment options to the latest technology and research. We have an amazing team of experts that provides compassionate care to each individual that we see.” — Dr. Vanessa Hinson Getting help from the MUSC Health Movement Disorders Program Millions of Americans suffer from movement disorders. These are typically characterized by involuntary movements, shaking, slowness of movement, or uncontrollable muscle contractions. As a result, day to day activities like walking, dressing, dining, or writing can become challenging. The MUSC Health Movement Disorders Program offers a comprehensive range of services, from diagnostic testing and innovative treatments to rehabilitation and follow-up support. Our team understands that Parkinson’s disease and other movement disorders can significantly impact quality of life. Our goal is to provide you and your family continuity of care with empathy and compassion throughout the treatment experience. Please use this guide to learn more about Diseases Treated – information about the disorders and symptoms you might feel Specialty Procedures – treatments that show significant improvement for many patients Research – opportunities to participate in clinical trials at the MUSC Health Movement Disorders Program Profiles – MUSC Health movement disorder specialists We are dedicated to finding the cure for disabling movement disorders and to help bring about new treatments that can improve our patients’ lives.
    [Show full text]
  • Hunting Down a Case of Progressive Movement Disorder, Dementia, and Genetic Anticipation – a Case Report on Huntington’S Disease
    Madhavi et al (2020): r A case report of Huntington’s disease Nov 2020 Vol. 23 Issue 21 HUNTING DOWN A CASE OF PROGRESSIVE MOVEMENT DISORDER, DEMENTIA, AND GENETIC ANTICIPATION – A CASE REPORT ON HUNTINGTON’S DISEASE 1*Dr. K.Vani Madhavi, 2Dr. Anand Acharya, 3Dr Vijaya Vishnu 1,3Department of SPM, 2Department of Pharmacology , 1,2,3Konaseema Institute of medical Sciences Research Foundation, Amalapuram, Andhra Pradesh, India *corresponding author: 1Dr. K.Vani Madhavi E-Mail: [email protected] Abstract The Huntington Disease HD is a progressive, fatal, highly penetrant autosomal dominant disease considered by involuntary choreiform movements. A developing number of reformists generative conditions mirror the introduction of Huntington's ailment (HD). Separating between these HD-like conditions is vital once a patient by blend of development problems, psychological decrease, social irregularities and infection course demonstrates negative to the hereditary testing for HD causative transformations, that is, IT15 quality trinucleotide-rehash extension. The disparity finding of HD-like conditions is intricate and might prompt superfluous and exorbitant examinations. We suggest guidelines for this differential determination zeroing in on a predetermined number of clinical highlights ('warnings') that can be distinguished over precise clinical assessment, assortment of recorded information and a couple of routine auxiliary examinations. Present highlights incorporate the traditional foundation of the patient, the contribution of the facio-bucco-lingual and cervical region with development problem, the co-event of cerebellar highlights and seizures, the occurrence of exceptional stride examples and eye development irregularities, and an atypical movement of ailment. Extra assistance may get from the intellectual social introduction of the patient, just as by a limited amount of subordinate examinations, chiefly MRI and routine blood tests.
    [Show full text]
  • Characteristics of Tremor Induced by Lesions of the Cerebellum
    The Cerebellum (2019) 18:705–720 https://doi.org/10.1007/s12311-019-01027-3 ORIGINAL PAPER Characteristics of Tremor Induced by Lesions of the Cerebellum Andrea Kovács1,2 & Máté Kiss3 & Nándor Pintér4 & Imre Szirmai5 & Anita Kamondi1,5 Published online: 8 April 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract It is a clinical experience that acute lesions of the cerebellum induce pathological tremor, which tends to improve. However, quantitative characteristics, imaging correlates, and recovery of cerebellar tremor have not been systematically investigated. We studied the prevalence, quantitative parameters measured with biaxial accelerometry, and recovery of pathological tremor in 68 patients with lesions affecting the cerebellum. We also investigated the correlation between the occurrence and characteristics of tremor and lesion localization using 3D T1-weighted MRI images which were normalized and segmented according to a spatially unbiased atlas template for the cerebellum. Visual assessment detected pathological tremor in 19% while accelerometry in 47% of the patients. Tremor was present both in postural and intentional positions, but never at rest. Two types of pathological tremor were distinguished: (1) low-frequency tremor in 36.76% of patients (center frequency 2.66 ± 1.17 Hz) and (2) normal frequency– high-intensity tremor in 10.29% (center frequency 8.79 ± 1.43 Hz). The size of the lesion did not correlate with the presence or severity of tremor. Involvement of the anterior lobe and lobule VI was related to high tremor intensity. In all followed up patients with acute cerebellar ischemia, the tremor completely recovered within 8 weeks. Our results indicate that cerebellar lesions might induce pathological postural and intentional tremor of 2–3 Hz frequency.
    [Show full text]
  • Traumatic Brain Injury(Tbi)
    TRAUMATIC BRAIN INJURY(TBI) B.K NANDA, LECTURER(PHYSIOTHERAPY) S. K. HALDAR, SR. OCCUPATIONAL THERAPIST CUM JR. LECTURER What is Traumatic Brain injury? Traumatic brain injury is defined as damage to the brain resulting from external mechanical force, such as rapid acceleration or deceleration impact, blast waves, or penetration by a projectile, leading to temporary or permanent impairment of brain function. Traumatic brain injury (TBI) has a dramatic impact on the health of the nation: it accounts for 15–20% of deaths in people aged 5–35 yr old, and is responsible for 1% of all adult deaths. TBI is a major cause of death and disability worldwide, especially in children and young adults. Males sustain traumatic brain injuries more frequently than do females. Approximately 1.4 million people in the UK suffer a head injury every year, resulting in nearly 150 000 hospital admissions per year. Of these, approximately 3500 patients require admission to ICU. The overall mortality in severe TBI, defined as a post-resuscitation Glasgow Coma Score (GCS) ≤8, is 23%. In addition to the high mortality, approximately 60% of survivors have significant ongoing deficits including cognitive competency, major activity, and leisure and recreation. This has a severe financial, emotional, and social impact on survivors left with lifelong disability and on their families. It is well established that the major determinant of outcome from TBI is the severity of the primary injury, which is irreversible. However, secondary injury, primarily cerebral ischaemia, occurring in the post-injury phase, may be due to intracranial hypertension, systemic hypotension, hypoxia, hyperpyrexia, hypocapnia and hypoglycaemia, all of which have been shown to independently worsen survival after TBI.
    [Show full text]
  • Tremor in X-Linked Recessive Spinal and Bulbar Muscular Atrophy (Kennedy’S Disease)
    CLINICS 2011;66(6):955-957 DOI:10.1590/S1807-59322011000600006 CLINICAL SCIENCE Tremor in X-linked recessive spinal and bulbar muscular atrophy (Kennedy’s disease) Francisco A. Dias,I Renato P. Munhoz,I Salmo Raskin,II Lineu Ce´sar Werneck,I He´lio A. G. TeiveI I Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clı´nicas, Federal University of Parana´ , Curitiba, PR, Brazil. II Genetika Laboratory, Curitiba, PR, Brazil. OBJECTIVE: To study tremor in patients with X-linked recessive spinobulbar muscular atrophy or Kennedy’s disease. METHODS: Ten patients (from 7 families) with a genetic diagnosis of Kennedy’s disease were screened for the presence of tremor using a standardized clinical protocol and followed up at a neurology outpatient clinic. All index patients were genotyped and showed an expanded allele in the androgen receptor gene. RESULTS: Mean patient age was 37.6 years and mean number of CAG repeats 47 (44-53). Tremor was present in 8 (80%) patients and was predominantly postural hand tremor. Alcohol responsiveness was detected in 7 (88%) patients with tremor, who all responded well to treatment with a b-blocker (propranolol). CONCLUSION: Tremor is a common feature in patients with Kennedy’s disease and has characteristics similar to those of essential tremor. KEYWORDS: Kennedy’s disease; X-linked recessive bulbospinal neuronopathy; Spinal and bulbar muscular atrophy; Motor neuron disease; Tremor. Dias FA, Munhoz RP, Raskin S, Werneck LC, Teive HAG. Tremor in X-linked recessive spinal and bulbar muscular atrophy (Kennedy’s disease). Clinics. 2011;66(6):955-957. Received for publication on December 24, 2010; First review completed on January 18, 2011; Accepted for publication on February 25, 2011 E-mail: [email protected] Tel.: 55 41 3019-5060 INTRODUCTION compatible with a long life.
    [Show full text]
  • Differential Changes in Arteriolar Cerebral Blood Volume Between Parkinson's Disease Patients with Normal and Impaired Cogniti
    RESEARCH ARTICLE Differential Changes in Arteriolar Cerebral Blood Volume between Parkinson’s Disease Patients with Normal and Impaired Cognition and Mild Cognitive Impairment (MCI) Patients without Movement Disorder – An Exploratory Study Adrian G. Paez1,2, Chunming Gu1,2,3, Suraj Rajan4,5, Xinyuan Miao1,2, Di Cao1,2,3, Vidyulata Kamath5, Arnold Bakker5, Paul G. Unschuld6, Alexander Y. Pantelyat4, Liana S. Rosenthal4, and Jun Hua1,2 1F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD; 2Neurosection, Division of MR Research, Department of Radiology, 3Department of Biomedical Engineering; 4Department of Neurology; and 5Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; and 6Department of Psychogeriatric Medicine, Psychiatric University Hospital Zurich, Zurich, Switzerland Corresponding Author: Key Words: Dementia, blood vessel, perfusion, iVASO, MRI Jun Hua, PhD Abbreviations: Parkinson’s disease (PD), mild cognitive impairment (MCI), arteriolar Department of Radiology, Johns Hopkins University School of Medicine, cerebral blood volume (CBVa), PD dementia (PDD), cerebral blood flow (CBF), F.M. Kirby Research Center for Functional Brain Imaging, Kennedy presupplementary motor area (preSMA), inflow-based vascular-space-occupancy Krieger Institute, 707 N Broadway, Baltimore, MD, 21205, (iVASO), gray matter (GM), time of repetition (TR), time of inversion (TI), statistical E-mail: [email protected] parametric mapping (SPM), signal-to-noise ratio (SNR), magnetic resonance imaging (MRI), Unified Parkinson’s Disease Rating Scale (UPRDS) Cognitive impairment amongst Parkinson’s disease (PD) patients is highly prevalent and associated with an increased risk of dementia. There is growing evidence that altered cerebrovascular functions contribute to cognitive impairment.
    [Show full text]