A Gentle Introduction to Harmonic Functions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Best Subordinant for Differential Superordinations of Harmonic Complex-Valued Functions
mathematics Article Best Subordinant for Differential Superordinations of Harmonic Complex-Valued Functions Georgia Irina Oros Department of Mathematics and Computer Sciences, Faculty of Informatics and Sciences, University of Oradea, 410087 Oradea, Romania; [email protected] or [email protected] Received: 17 September 2020; Accepted: 11 November 2020; Published: 16 November 2020 Abstract: The theory of differential subordinations has been extended from the analytic functions to the harmonic complex-valued functions in 2015. In a recent paper published in 2019, the authors have considered the dual problem of the differential subordination for the harmonic complex-valued functions and have defined the differential superordination for harmonic complex-valued functions. Finding the best subordinant of a differential superordination is among the main purposes in this research subject. In this article, conditions for a harmonic complex-valued function p to be the best subordinant of a differential superordination for harmonic complex-valued functions are given. Examples are also provided to show how the theoretical findings can be used and also to prove the connection with the results obtained in 2015. Keywords: differential subordination; differential superordination; harmonic function; analytic function; subordinant; best subordinant MSC: 30C80; 30C45 1. Introduction and Preliminaries Since Miller and Mocanu [1] (see also [2]) introduced the theory of differential subordination, this theory has inspired many researchers to produce a number of analogous notions, which are extended even to non-analytic functions, such as strong differential subordination and superordination, differential subordination for non-analytic functions, fuzzy differential subordination and fuzzy differential superordination. The notion of differential subordination was adapted to fit the harmonic complex-valued functions in the paper published by S. -
Harmonic Functions
Lecture 1 Harmonic Functions 1.1 The Definition Definition 1.1. Let Ω denote an open set in R3. A real valued function u(x, y, z) on Ω with continuous second partials is said to be harmonic if and only if the Laplacian ∆u = 0 identically on Ω. Note that the Laplacian ∆u is defined by ∂2u ∂2u ∂2u ∆u = + + . ∂x2 ∂y2 ∂z2 We can make a similar definition for an open set Ω in R2.Inthatcase, u is harmonic if and only if ∂2u ∂2u ∆u = + =0 ∂x2 ∂y2 on Ω. Some basic examples of harmonic functions are 2 2 2 3 u = x + y 2z , Ω=R , − 1 3 u = , Ω=R (0, 0, 0), r − where r = x2 + y2 + z2. Moreover, by a theorem on complex variables, the real part of an analytic function on an open set Ω in 2 is always harmonic. p R Thus a function such as u = rn cos nθ is a harmonic function on R2 since u is the real part of zn. 1 2 1.2 The Maximum Principle The basic result about harmonic functions is called the maximum principle. What the maximum principle says is this: if u is a harmonic function on Ω, and B is a closed and bounded region contained in Ω, then the max (and min) of u on B is always assumed on the boundary of B. Recall that since u is necessarily continuous on Ω, an absolute max and min on B are assumed. The max and min can also be assumed inside B, but a harmonic function cannot have any local extrema inside B. -
23. Harmonic Functions Recall Laplace's Equation
23. Harmonic functions Recall Laplace's equation ∆u = uxx = 0 ∆u = uxx + uyy = 0 ∆u = uxx + uyy + uzz = 0: Solutions to Laplace's equation are called harmonic functions. The inhomogeneous version of Laplace's equation ∆u = f is called the Poisson equation. Harmonic functions are Laplace's equation turn up in many different places in mathematics and physics. Harmonic functions in one variable are easy to describe. The general solution of uxx = 0 is u(x) = ax + b, for constants a and b. Maximum principle Let D be a connected and bounded open set in R2. Let u(x; y) be a harmonic function on D that has a continuous extension to the boundary @D of D. Then the maximum (and minimum) of u are attained on the bound- ary and if they are attained anywhere else than u is constant. Euivalently, there are two points (xm; ym) and (xM ; yM ) on the bound- ary such that u(xm; ym) ≤ u(x; y) ≤ u(xM ; yM ) for every point of D and if we have equality then u is constant. The idea of the proof is as follows. At a maximum point of u in D we must have uxx ≤ 0 and uyy ≤ 0. Most of the time one of these inequalities is strict and so 0 = uxx + uyy < 0; which is not possible. The only reason this is not a full proof is that sometimes both uxx = uyy = 0. As before, to fix this, simply perturb away from zero. Let > 0 and let v(x; y) = u(x; y) + (x2 + y2): Then ∆v = ∆u + ∆(x2 + y2) = 4 > 0: 1 Thus v has no maximum in D. -
A Brief Tour of Vector Calculus
A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0. -
Curl, Divergence and Laplacian
Curl, Divergence and Laplacian What to know: 1. The definition of curl and it two properties, that is, theorem 1, and be able to predict qualitatively how the curl of a vector field behaves from a picture. 2. The definition of divergence and it two properties, that is, if div F~ 6= 0 then F~ can't be written as the curl of another field, and be able to tell a vector field of clearly nonzero,positive or negative divergence from the picture. 3. Know the definition of the Laplace operator 4. Know what kind of objects those operator take as input and what they give as output. The curl operator Let's look at two plots of vector fields: Figure 1: The vector field Figure 2: The vector field h−y; x; 0i: h1; 1; 0i We can observe that the second one looks like it is rotating around the z axis. We'd like to be able to predict this kind of behavior without having to look at a picture. We also promised to find a criterion that checks whether a vector field is conservative in R3. Both of those goals are accomplished using a tool called the curl operator, even though neither of those two properties is exactly obvious from the definition we'll give. Definition 1. Let F~ = hP; Q; Ri be a vector field in R3, where P , Q and R are continuously differentiable. We define the curl operator: @R @Q @P @R @Q @P curl F~ = − ~i + − ~j + − ~k: (1) @y @z @z @x @x @y Remarks: 1. -
Harmonic Forms, Minimal Surfaces and Norms on Cohomology of Hyperbolic 3-Manifolds
Harmonic Forms, Minimal Surfaces and Norms on Cohomology of Hyperbolic 3-Manifolds Xiaolong Hans Han Abstract We bound the L2-norm of an L2 harmonic 1-form in an orientable cusped hy- perbolic 3-manifold M by its topological complexity, measured by the Thurston norm, up to a constant depending on M. It generalizes two inequalities of Brock and Dunfield. We also study the sharpness of the inequalities in the closed and cusped cases, using the interaction of minimal surfaces and harmonic forms. We unify various results by defining two functionals on orientable closed and cusped hyperbolic 3-manifolds, and formulate several questions and conjectures. Contents 1 Introduction2 1.1 Motivation and previous results . .2 1.2 A glimpse at the non-compact case . .3 1.3 Main theorem . .4 1.4 Topology and the Thurston norm of harmonic forms . .5 1.5 Minimal surfaces and the least area norm . .5 1.6 Sharpness and the interaction between harmonic forms and minimal surfaces6 1.7 Acknowledgments . .6 2 L2 Harmonic Forms and Compactly Supported Cohomology7 2.1 Basic definitions of L2 harmonic forms . .7 2.2 Hodge theory on cusped hyperbolic 3-manifolds . .9 2.3 Topology of L2-harmonic 1-forms and the Thurston Norm . 11 2.4 How much does the hyperbolic metric come into play? . 14 arXiv:2011.14457v2 [math.GT] 23 Jun 2021 3 Minimal Surface and Least Area Norm 14 3.1 Truncation of M and the definition of Mτ ................. 16 3.2 The least area norm and the L1-norm . 17 4 L1-norm, Main theorem and The Proof 18 4.1 Bounding L1-norm by L2-norm . -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
Complex Analysis
Complex Analysis Andrew Kobin Fall 2010 Contents Contents Contents 0 Introduction 1 1 The Complex Plane 2 1.1 A Formal View of Complex Numbers . .2 1.2 Properties of Complex Numbers . .4 1.3 Subsets of the Complex Plane . .5 2 Complex-Valued Functions 7 2.1 Functions and Limits . .7 2.2 Infinite Series . 10 2.3 Exponential and Logarithmic Functions . 11 2.4 Trigonometric Functions . 14 3 Calculus in the Complex Plane 16 3.1 Line Integrals . 16 3.2 Differentiability . 19 3.3 Power Series . 23 3.4 Cauchy's Theorem . 25 3.5 Cauchy's Integral Formula . 27 3.6 Analytic Functions . 30 3.7 Harmonic Functions . 33 3.8 The Maximum Principle . 36 4 Meromorphic Functions and Singularities 37 4.1 Laurent Series . 37 4.2 Isolated Singularities . 40 4.3 The Residue Theorem . 42 4.4 Some Fourier Analysis . 45 4.5 The Argument Principle . 46 5 Complex Mappings 47 5.1 M¨obiusTransformations . 47 5.2 Conformal Mappings . 47 5.3 The Riemann Mapping Theorem . 47 6 Riemann Surfaces 48 6.1 Holomorphic and Meromorphic Maps . 48 6.2 Covering Spaces . 52 7 Elliptic Functions 55 7.1 Elliptic Functions . 55 7.2 Elliptic Curves . 61 7.3 The Classical Jacobian . 67 7.4 Jacobians of Higher Genus Curves . 72 i 0 Introduction 0 Introduction These notes come from a semester course on complex analysis taught by Dr. Richard Carmichael at Wake Forest University during the fall of 2010. The main topics covered include Complex numbers and their properties Complex-valued functions Line integrals Derivatives and power series Cauchy's Integral Formula Singularities and the Residue Theorem The primary reference for the course and throughout these notes is Fisher's Complex Vari- ables, 2nd edition. -
The Divergence of a Vector Field.Doc 1/8
9/16/2005 The Divergence of a Vector Field.doc 1/8 The Divergence of a Vector Field The mathematical definition of divergence is: w∫∫ A(r )⋅ds ∇⋅A()rlim = S ∆→v 0 ∆v where the surface S is a closed surface that completely surrounds a very small volume ∆v at point r , and where ds points outward from the closed surface. From the definition of surface integral, we see that divergence basically indicates the amount of vector field A ()r that is converging to, or diverging from, a given point. For example, consider these vector fields in the region of a specific point: ∆ v ∆v ∇⋅A ()r0 < ∇ ⋅>A (r0) Jim Stiles The Univ. of Kansas Dept. of EECS 9/16/2005 The Divergence of a Vector Field.doc 2/8 The field on the left is converging to a point, and therefore the divergence of the vector field at that point is negative. Conversely, the vector field on the right is diverging from a point. As a result, the divergence of the vector field at that point is greater than zero. Consider some other vector fields in the region of a specific point: ∇⋅A ()r0 = ∇ ⋅=A (r0) For each of these vector fields, the surface integral is zero. Over some portions of the surface, the normal component is positive, whereas on other portions, the normal component is negative. However, integration over the entire surface is equal to zero—the divergence of the vector field at this point is zero. * Generally, the divergence of a vector field results in a scalar field (divergence) that is positive in some regions in space, negative other regions, and zero elsewhere. -
THE IMPACT of RIEMANN's MAPPING THEOREM in the World
THE IMPACT OF RIEMANN'S MAPPING THEOREM GRANT OWEN In the world of mathematics, scholars and academics have long sought to understand the work of Bernhard Riemann. Born in a humble Ger- man home, Riemann became one of the great mathematical minds of the 19th century. Evidence of his genius is reflected in the greater mathematical community by their naming 72 different mathematical terms after him. His contributions range from mathematical topics such as trigonometric series, birational geometry of algebraic curves, and differential equations to fields in physics and philosophy [3]. One of his contributions to mathematics, the Riemann Mapping Theorem, is among his most famous and widely studied theorems. This theorem played a role in the advancement of several other topics, including Rie- mann surfaces, topology, and geometry. As a result of its widespread application, it is worth studying not only the theorem itself, but how Riemann derived it and its impact on the work of mathematicians since its publication in 1851 [3]. Before we begin to discover how he derived his famous mapping the- orem, it is important to understand how Riemann's upbringing and education prepared him to make such a contribution in the world of mathematics. Prior to enrolling in university, Riemann was educated at home by his father and a tutor before enrolling in high school. While in school, Riemann did well in all subjects, which strengthened his knowl- edge of philosophy later in life, but was exceptional in mathematics. He enrolled at the University of G¨ottingen,where he learned from some of the best mathematicians in the world at that time. -
21 Laplace's Equation and Harmonic Func- Tions
21 Laplace's Equation and Harmonic Func- tions 21.1 Introductory Remarks on the Laplacian operator Given a domain Ω ⊂ Rd, then r2u = div(grad u) = 0 in Ω (1) is Laplace's equation defined in Ω. If d = 2, in cartesian coordinates @2u @2u r2u = + @x2 @y2 or, in polar coordinates 1 @ @u 1 @2u r2u = r + : r @r @r r2 @θ2 If d = 3, in cartesian coordinates @2u @2u @2u r2u = + + @x2 @y2 @z2 while in cylindrical coordinates 1 @ @u 1 @2u @2u r2u = r + + r @r @r r2 @θ2 @z2 and in spherical coordinates 1 @ @u 1 @2u @u 1 @2u r2u = ρ2 + + cot φ + : ρ2 @ρ @ρ ρ2 @φ2 @φ sin2 φ @θ2 We deal with problems involving most of these cases within these Notes. Remark: There is not a universally accepted angle notion for the Laplacian in spherical coordinates. See Figure 1 for what θ; φ mean here. (In the rest of these Notes we will use the notation r for the radial distance from the origin, no matter what the dimension.) 1 Figure 1: Coordinate angle definitions that will be used for spherical coordi- nates in these Notes. Remark: In the math literature the Laplacian is more commonly written with the symbol ∆; that is, Laplace's equation becomes ∆u = 0. For these Notes we write the equation as is done in equation (1) above. The non-homogeneous version of Laplace's equation, namely r2u = f(x) (2) is called Poisson's equation. Another important equation that comes up in studying electromagnetic waves is Helmholtz's equation: r2u + k2u = 0 k2 is a real, positive parameter (3) Again, Poisson's equation is a non-homogeneous Laplace's equation; Helm- holtz's equation is not. -
Part IA — Vector Calculus
Part IA | Vector Calculus Based on lectures by B. Allanach Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine. 3 Curves in R 3 Parameterised curves and arc length, tangents and normals to curves in R , the radius of curvature. [1] 2 3 Integration in R and R Line integrals. Surface and volume integrals: definitions, examples using Cartesian, cylindrical and spherical coordinates; change of variables. [4] Vector operators Directional derivatives. The gradient of a real-valued function: definition; interpretation as normal to level surfaces; examples including the use of cylindrical, spherical *and general orthogonal curvilinear* coordinates. Divergence, curl and r2 in Cartesian coordinates, examples; formulae for these oper- ators (statement only) in cylindrical, spherical *and general orthogonal curvilinear* coordinates. Solenoidal fields, irrotational fields and conservative fields; scalar potentials. Vector derivative identities. [5] Integration theorems Divergence theorem, Green's theorem, Stokes's theorem, Green's second theorem: statements; informal proofs; examples; application to fluid dynamics, and to electro- magnetism including statement of Maxwell's equations. [5] Laplace's equation 2 3 Laplace's equation in R and R : uniqueness theorem and maximum principle. Solution of Poisson's equation by Gauss's method (for spherical and cylindrical symmetry) and as an integral. [4] 3 Cartesian tensors in R Tensor transformation laws, addition, multiplication, contraction, with emphasis on tensors of second rank. Isotropic second and third rank tensors.